One-Step Preparation and Characterization of a Protein–Sucrose Wood Adhesive with Excellent Bonding Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SPI–Sucrose Adhesive and the Testing of Shear Strength
2.3. Orthogonal Experiment
2.4. Test of Insoluble Content of Cured Adhesive
2.5. Differential Scanning Calorimetry (DSC) Analysis
2.6. Thermogravimetry (TG) Analysis
2.7. X-Ray Diffraction (XRD) Analysis
2.8. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis
3. Results and Discussion
3.1. Feasibility of SPI–Sucrose as a Wood Adhesive
3.2. Analysis of Curing Mechanism
3.3. Effect of Preparation Parameters on the Bonding Performance of SPI–Sucrose Adhesive
3.4. Results Analysis of the Orthogonal Test
3.5. Analysis of Curing Performance
3.6. Analysis of Thermal Stability
4. Conclusions
- (1)
- The hot-pressing temperature plays a decisive role in the success for the experiment. A temperature of 200 °C was the critical point at which the adhesive obtained good wet bonding strength and was also the critical temperature at which the effective conversion of sucrose into 5-HMF occurred in this experiment.
- (2)
- The optimum preparation parameters of plywood were a hot-pressing temperature of 216 °C, a hot-pressing time of 5 min, a solid content of 50%, and adhesive loading of 220 g/m2. Under these conditions, the plywood had a bonding strength in warm water of 1.74 MPa, a bonding strength in boiling water of 1.50 MPa, and a wood failure rate of more than 80%.
- (3)
- In future studies, ionic solutions, Bronsted acid, and Lewis acid can be used to further reduce the curing temperature of SPI–sucrose adhesives.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Zhao, S.; Pang, H.; Zhang, W.; Zhang, S.; Li, J. Developing eco-friendly high-strength soy adhesives with improved ductility through multiphase core–shell hyperbranched polysiloxane. ACS Sustain. Chem. Eng. 2019, 7, 7784–7794. [Google Scholar] [CrossRef]
- Kumar, C.; Leggate, W. An overview of bio-adhesives for engineered wood products. Int. J. Adhes. Adhes. 2022, 118, 103187. [Google Scholar] [CrossRef]
- Todorovic, T.; Norstrom, E.; Khabbaz, F.; Brucher, J.; Malmstrom, E.; Fogelstrom, L. A fully bio-based wood adhesive valorising hemicellulose-rich sidestreams from the pulp industry. Green Chem. 2021, 23, 3322–3333. [Google Scholar] [CrossRef]
- Arias, A.; Gonzalez-Rodriguez, S.; Barros, M.; Salvador, R.; Francisco, A.; Moro Piekarski, C.; Moreira, M. Recent developments in bio-based adhesives from renewable natural resources. J. Clean. Prod. 2021, 314, 127892. [Google Scholar] [CrossRef]
- Ndiwe, B.; Pizzi, A.; Raïdandi, D.; Béda, T.; Konaï, N.; Amirou, S. Particleboard bonded with bio-hardeners of tannin adhesives. Eur. J. Wood Wood Prod. 2019, 77, 1221–1223. [Google Scholar] [CrossRef]
- Lin, H.; Chen, X.; Lei, H.; Zhou, X.; Du, G.; Essawy, H.; Xi, X.; Hou, D.; Song, J.; Cao, M. Synthesis and characterization of a bio-aldehyde-based lignin adhesive with desirable water resistance. Int. J. Biol. Macromol. 2024, 264, 130020. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, C.; Wang, Q.; Tan, H.; Zhang, Y. Preparation of glycidyl methacrylate grafted starch adhesive to apply in high-performance and environment-friendly plywood. Int. J. Biol. Macromol. 2022, 194, 954–961. [Google Scholar] [CrossRef]
- Kallakas, H.; Plaza, N.; Crooks, C.; Turner, D.; Gargulak, M.; Arvanitis, M.A.; Frihart, C.R.; Hunt, C.G. Effect of Protein Surface Hydrophobicity and Surface Amines on Soy Adhesive Strength. Polymers 2024, 16, 202. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Yang, W.; Xu, P.; Cai, X.; Dong, W.; Chen, M.; Du, M.; Liu, T.; Lemstra, P.; Ma, P. The bonding strength, water resistance and flame retardancy of soy protein-based adhesive by incorporating tailor-made core–shell nanohybrid compounds. Chem. Eng. J. 2022, 428, 132390. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Y.; Wang, Z.; Chen, H.; Fan, D. Renewable bio-based adhesive fabricated from a novel biopolymer and soy protein. RSC Adv. 2021, 11, 11724–11731. [Google Scholar] [CrossRef]
- Mousavi, S.; Huang, J.; Li, K. A cold-set wood adhesive based on soy protein. Int. J. Adhes. Adhes. 2021, 106, 102801. [Google Scholar] [CrossRef]
- Li, K.; Jin, S.; Zhou, Y.; Zhang, F.; Zeng, G.; Li, J.; Shi, S.Q.; Li, J. Bioinspired dual-crosslinking strategy for fabricating soy protein-based adhesives with excellent mechanical strength and antibacterial activity. Compos. Part B Eng. 2022, 240, 109987. [Google Scholar] [CrossRef]
- Wei, Y.; Jiang, S.; Li, J.; Aladejana, J.; Zhang, T.; Li, X.; Dong, Y.; Li, J. A soy protein-based adhesive with improved mechanical and electromagnetic shielding properties by employment of core@double-shell BT@PDA@PANI fillers. Chem. Eng. J. 2023, 458, 141512. [Google Scholar] [CrossRef]
- Hunt, C.G.; Lorenz, L.F.; Houtman, C.J.; Valle, E.; Coolidge, T.; Mock, C.; Frihart, C.R. Jet cooking dramatically improves the wet strength of soy adhesives. J. Am. Oil Chem. Soc. 2023, 100, 69–79. [Google Scholar] [CrossRef]
- Pang, H.; Wang, Y.; Chang, Z.; Xia, C.; Han, C.; Liu, H.; Li, J.; Zhang, S.; Huang, Z. Soy meal adhesive with high strength and water resistance via carboxymethylated wood fiber-induced crosslinking. Cellulose 2021, 28, 3569–3584. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Chen, M.; Gao, Q.; Li, J. A high-performance and low-cost soy flour adhesive with a hydroxymethyl melamine prepolymer. Polymers 2018, 10, 909. [Google Scholar] [CrossRef]
- Román, J.K.; Wilker, J.J. Cooking chemistry transforms proteins into high-strength adhesives. J. Am. Chem. Soc. 2019, 141, 1359–1365. [Google Scholar] [CrossRef]
- Gao, Q.; Shi, S.Q.; Zhang, S.; Li, J.; Wang, X.; Ding, W.; Liang, K.; Wang, J. Soybean meal-based adhesive enhanced by MUF resin. J. Appl. Polym. Sci. 2012, 125, 3676–3681. [Google Scholar] [CrossRef]
- Jin, S.; Li, K.; Zhang, X.; Gao, Q.; Zeng, L.; Shi, S.Q.; Li, J. Phytic acid-assisted fabrication for soybean meal/nanofiber composite adhesive via bioinspired chelation reinforcement strategy. J. Hazard. Mater. 2020, 399, 123064. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, F.; Zhang, C.; Tang, J.; Zeng, X.; Wan, X. Versatile value-added application of hyperbranched lignin derivatives: Water-resistance adhesive, UV protection coating, self-healing and skin-adhesive sensing. Chem. Eng. J. 2021, 404, 126358. [Google Scholar] [CrossRef]
- Frihart, C.; Satori, H. Soy flour dispersibility and performance as wood adhesive. J. Adhes. Sci. Technol. 2013, 27, 2043–2052. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Gao, Q.; Zhang, S.; Li, J. Properties of soybean-flour-based adhesives enhanced by attapulgite and glycerol polyglycidyl ether. Ind. Crop. Prod. 2014, 59, 35–40. [Google Scholar] [CrossRef]
- Li, J.; Luo, J.; Yi, Z.; Gao, Q.; Li, J. Soybean meal-based wood adhesive enhanced by ethylene glycol diglycidyl ether and diethylenetriamine. Ind. Crop. Prod. 2015, 74, 613–618. [Google Scholar] [CrossRef]
- Xu, F.; Dong, Y.; Zhang, W.; Zhang, S.; Li, L.; Li, J. Preparation of cross-linked soy protein isolate-based environmentally-friendly films enhanced by PTGE and PAM. Ind. Crop. Prod. 2015, 67, 373–380. [Google Scholar] [CrossRef]
- Hemmil, V.; Adamopoulos, S.; Karlssonb, O.; Kumar, A. Development of sustainable bio-adhesives for engineered wood panels—A Review. RSC Adv. 2017, 7, 38604–38630. [Google Scholar] [CrossRef]
- Jin, C.; Zhang, S.; Pang, J.; Gao, Z. Plywood with soy protein-acrylate hybrid adhesive. Adv. Mater. Res. 2014, 884, 108–111. [Google Scholar] [CrossRef]
- Zeng, N.; Xie, J.; Ding, C. Properties of the soy protein isolate/PVAc latex blend adhesives. Adv. Mater. Res. 2012, 550, 1103–1107. [Google Scholar] [CrossRef]
- Chen, N.; Zeng, Q.; Lin, Q.; Rao, J. Development of defatted soy flour based bio-adhesives using Viscozyme L. Ind. Crop. Prod. 2015, 76, 198–203. [Google Scholar] [CrossRef]
- Zhao, Z.; Umemura, K. Investigation of a new natural particleboard adhesive composed of tannin and sucrose. J. Wood Sci. 2014, 60, 269–277. [Google Scholar] [CrossRef]
- Zhao, Z.; Umemura, K. Investigation of a new natural particleboard adhesive composed of tannin and sucrose. 2. Effect of pressing temperature and time on board properties, and characterization of adhesive. BioResources 2015, 10, 2444–2460. [Google Scholar] [CrossRef]
- Zhao, Z.; Umemura, K.; Kanayama, K. Effects of the addition of citric acid on tannin-sucrose adhesive and physical properties of the particleboard. BioResources 2015, 11, 1319–1333. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, Z.; Umemura, K. Further exploration of sucrose-citric acid adhesive: Synthesis and application on plywood. Polymers 2019, 11, 1875. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, K.; Kang, H.; Chen, S. Synthesis and response surface optimization of the phenol- glucose resin in non-aqueous phase. Thermosetting Resin 2015, 30, 29–32. [Google Scholar]
- Long, Y.; Yang, K.; Zhang, Y. Synthesis of melamine-glucose resin adhesive. Mater. Res. Appl. 2008, 2, 409–412. [Google Scholar]
- Chen, Z.; Liu, S.; Guo, J.; Chen, S. Optimization for Synthesis of Fructose-Resorcinol Resin Adhesive by Response Surface Methodology. Polym. Mater. Sci. Eng. 2012, 28, 8–11. [Google Scholar]
- Zhao, H.; Holladay, J.E.; Brown, H.; Zhang, Z.C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 2007, 316, l597–1600. [Google Scholar] [CrossRef] [PubMed]
- GB/T 14074-2017; Test Method for Adhesives and Their Resins Used in Wood Industry. Standards Press: Beijing, China, 2017.
- GB/T 17657-2022; Test Method for Physical and Chemical Properties of Wood-Based Panels and Veneer Panels. Standards Press: Beijing, China, 2022.
- Xiao, G.; Liang, J.; Wu, Z.; Lei, H.; Gong, F.; Gu, W.; Tu, Y.; Li, D. A composite whole-biomass tannin–sucrose–soy protein wood adhesive with high performance. Forests 2023, 14, 1250. [Google Scholar] [CrossRef]
- Liu, D.; Chen, H.; Chang, P.R.; Wu, Q.; Li, K.; Guan, L. Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive. Bioresour. Technol. 2010, 101, 6235–6241. [Google Scholar] [CrossRef]
- Xi, X.; Pizzi, A.; Lei, H.; Zhang, B.; Chen, X.; Du, G. Environmentally friendly chitosan adhesives for plywood bonding. Int. J. Adhes. Adhes. 2022, 112, 103027. [Google Scholar] [CrossRef]
- Menegazzo, F.; Ghedini, E.; Signoretto, M. 5-Hydroxymethylfurfural (HMF) Production from Real Biomasses. Molecules 2018, 23, 2201. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Ding, X.; Tang, M.; Gong, F.; Yuan, S.; Duan, J. Study on the preparation process optimization of plywood based on a full biomass tannin-sucrose wood adhesive. J. Renew. Mater. 2023, 11, 3245–3259. [Google Scholar] [CrossRef]
- Li, X.; Jiang, S.; Li, J.; Li, K.; Li, J. Highly dispersed manganese dioxide nanoparticles anchored on diatomite surface by sol-gel method and its performance on soybean meal-based adhesive. J. Appl. Polym. Sci. 2022, 139, 51719. [Google Scholar] [CrossRef]
- Liu, Y.; Kerton, F.M. Mechanistic studies on the formation of 5-hydroxymethylfurfural from the sugars fructose and glucose. Pure Appl. Chem. 2021, 93, 463–478. [Google Scholar] [CrossRef]
- Pyo, S.; Sayed, M.; Hatti-Kaul, R. Batch and Continuous Flow Production of 5-Hydroxymethylfurfural from a High Concentration of Fructose Using an Acidic Ion Exchange Catalyst. Org. Process Res. Dev. 2019, 23, 952–960. [Google Scholar] [CrossRef]
- Munshi, M.; Lomate, S.; Deshpande, R.; Rane, V.; Kelkar, A. Synthesis of acrolein by gas-phase dehydration of glycerol over silica supported Bronsted acidic ionic liquid catalysts. J. Chem. Technol. Biot. 2010, 85, 1319–1324. [Google Scholar] [CrossRef]
Samples | SPI/g | Sucrose/g | Water/g |
---|---|---|---|
100:0 | 60 | 0 | 60 |
80:20 | 48 | 12 | 60 |
60:40 | 36 | 24 | 60 |
50:50 | 30 | 30 | 60 |
40:60 | 24 | 36 | 60 |
20:80 | 12 | 48 | 60 |
0:100 | 0 | 60 | 60 |
Levels | Factors | |||
---|---|---|---|---|
Hot-Pressing Temperature/°C | Hot-Pressing Time/(min/mm) | Adhesive Loading /(g/m2) | Solid Content /% | |
1 | 200 | 0.8 | 150 | 35 |
2 | 208 | 1.0 | 180 | 40 |
3 | 216 | 1.2 | 210 | 45 |
4 | 224 | 1.4 | 240 | 50 |
No. | Pressing Temperature/°C | Pressing Time/(min) | Adhesive Loading/(g/m2) | Solid Content /% |
---|---|---|---|---|
Shear strength in warm water/MPa | ||||
K1 | 0.35 | 0.97 | 1.17 | 1.15 |
K2 | 0.89 | 1.08 | 1.10 | 1.18 |
K3 | 1.48 | 1.21 | 1.16 | 1.05 |
K4 | 1.78 | 1.24 | 1.08 | 1.13 |
R | 1.43 | 0.27 | 0.09 | 0.13 |
Shear strength in boiling water/MPa | ||||
K1 | 0.26 | 0.73 | 0.84 | 0.90 |
K2 | 0.67 | 0.79 | 0.82 | 0.90 |
K3 | 1.09 | 0.91 | 0.91 | 0.77 |
K4 | 1.37 | 0.96 | 0.82 | 0.83 |
R | 1.11 | 0.23 | 0.09 | 0.13 |
Factors | DEVSQ | DOF | Mean Square Error | Signifance |
---|---|---|---|---|
Bonding strength in warm water | ||||
Pressing temperature | 4.485 | 3 | 80.750 | * |
Pressing time | 0.183 | 3 | 3.050 | |
Adhesive loading | 0.025 | 3 | 0.417 | |
Solid content | 0.039 | 3 | 0.650 | |
Error | 0.180 | 9 | ||
Bonding strength in boiling water | ||||
Pressing temperature | 2.847 | 3 | 73 | * |
Pressing time | 0.134 | 3 | 3.436 | |
Adhesive loading | 0.023 | 3 | 0.59 | |
Solid content | 0.049 | 3 | 1.256 | |
Error | 0.12 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Gu, W.; Li, D.; Yang, H.; Yang, Q.; Li, H.; Chen, C.; Meng, T.; Yang, X.; He, X.; et al. One-Step Preparation and Characterization of a Protein–Sucrose Wood Adhesive with Excellent Bonding Performance. Forests 2025, 16, 318. https://doi.org/10.3390/f16020318
Wu L, Gu W, Li D, Yang H, Yang Q, Li H, Chen C, Meng T, Yang X, He X, et al. One-Step Preparation and Characterization of a Protein–Sucrose Wood Adhesive with Excellent Bonding Performance. Forests. 2025; 16(2):318. https://doi.org/10.3390/f16020318
Chicago/Turabian StyleWu, Longxu, Wen Gu, De Li, Haiyuan Yang, Qingqing Yang, Huali Li, Chuchu Chen, Tong Meng, Xuehang Yang, Xin He, and et al. 2025. "One-Step Preparation and Characterization of a Protein–Sucrose Wood Adhesive with Excellent Bonding Performance" Forests 16, no. 2: 318. https://doi.org/10.3390/f16020318
APA StyleWu, L., Gu, W., Li, D., Yang, H., Yang, Q., Li, H., Chen, C., Meng, T., Yang, X., He, X., Yang, Y., & Wu, Z. (2025). One-Step Preparation and Characterization of a Protein–Sucrose Wood Adhesive with Excellent Bonding Performance. Forests, 16(2), 318. https://doi.org/10.3390/f16020318