Assessing the Spatiotemporal Patterns and Afforestation Impacts on Land-Use Carbon Storage in the Yellow River Basin Using Multi-Source Remote Sensing Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Study Area
2.1.2. Data Sources and Pre-Processing
2.2. Research Methods
2.2.1. Land-Use Change Analysis
2.2.2. Carbon Storage Accounting Model
2.2.3. Spatiotemporal Analysis
3. Results
3.1. Spatiotemporal Evolution of Land Use in the YRB
3.2. Spatiotemporal Patterns of Carbon Storage in the YRB
3.3. Assessment of Afforestation Impacts on Carbon Storage in the YRB
3.3.1. Effects of Afforestation on Land-Use and Carbon Storage
3.3.2. Comparative Analysis of PFs and NFs
3.3.3. Effects of Afforestation on Carbon Storage in the YRB
4. Discussion
4.1. Land-Use Reconfiguration and Policy Context
4.2. Carbon Storage Dynamics and Afforestation Effects
4.3. Sources and Impacts of PF Expansion
4.4. PF-Driven Carbon Gains and Sink Potential
4.5. Spatial Evolution of Carbon Storage and Planted Forest Role
4.6. Uncertainties and Recommendations Under the Dual-Carbon Strategy
5. Conclusions
5.1. Land-Use Change (2000–2020)
5.2. Carbon Dynamics and PF Gains (2005–2020)
5.3. Sources and Spatial Patterns of PF Expansion (2005–2020)
5.4. PF and NF Carbon (2005–2020)
5.5. Spatial Evolution of Carbon Storage (2005–2020)
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| YRB | Yellow River Basin |
| TEC | total ecosystem carbon |
| AGC | aboveground carbon |
| PF | planted forest |
| PF-AGC | planted forests aboveground carbon |
| NF | natural forest |
| SDE | Standard deviational ellipse |
| GGP | Grain-for-Green Program |
| CL | cropland |
| FL | forest land |
| GL | grassland |
| WL | water land |
| BL | built-up land |
| UL | unused land |
| SOC | soil organic carbon |
| NSIGC | National Soil Information Grid of China |
| DOC | dead organic carbon |
| YF | young forest |
| MiF | middle-aged forest |
| NmF | near-mature forest |
| MaF | mature forest |
| OF | Overmature forest |
References
- UNFCCC. Paris Agreement: Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change, Twenty-First Session, Paris, France, 30 November–13 December 2015; United Nations: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Yu, Z.; Ciais, P.; Piao, S.; Houghton, R.A.; Lu, C.; Tian, H.; Agathokleous, E.; Kattel, G.R.; Sitch, S.; Goll, D.; et al. Forest Expansion Dominates China’s Land Carbon Sink Since 1980. Nat. Commun. 2022, 13, 5374. [Google Scholar] [CrossRef]
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Mu, M.; Saatchi, S.; Santoro, M.; Thurner, M.; et al. Global Covariation of Carbon Turnover Times with Climate in Terrestrial Ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Ciais, P.; Tans, P.P.; Trolier, M.; White, J.W.C.; Francey, R.J. A Large Northern Hemisphere Terrestrial CO2 Sink Indicated by the 13C/12C Ratio of Atmospheric CO2. Science 1995, 269, 1098–1102. [Google Scholar] [CrossRef]
- Han, X.; Zhao, F.; Tong, X.; Deng, J.; Yang, G.; Chen, L.; Kang, D. Understanding Soil Carbon Sequestration Following the Afforestation of Former Arable Land by Physical Fractionation. Catena 2017, 150, 317–327. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon Emissions from Land-Use Change and Management in China Between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Zhou, L.; Wang, S.; Wang, X. Carbon Sequestration Potential of Biomass Carbon Pool for New Afforestation in China During 2005–2013. Dili Xuebao/Acta Geogr. Sin. 2016, 71, 1939–1947. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of Biomass in the Global Carbon Cycle. J. Geophys. Res. Biogeosci. 2009, 114, G00E03. [Google Scholar] [CrossRef]
- He, Y.; Ma, J.; Zhang, C.; Yang, H. Spatio-Temporal Evolution and Prediction of Carbon Storage in Guilin Based on FLUS and InVEST Models. Remote. Sens. 2023, 15, 1445. [Google Scholar] [CrossRef]
- Yu, D.; Shi, X.; Wang, H.; Sun, W.; Chen, J.; Liu, Q.; Zhao, Y. Regional Patterns of Soil Organic Carbon Stocks in China. J. Environ. Manag. 2007, 85, 680–689. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D. Spatio-Temporal Evolution of Carbon Stocks in the Yellow River Basin Based on InVEST and CA-Markov Models. Chin. J. Eco-Agric. 2021, 29, 1018–1029. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D. The Trade-Offs and Synergistic Relationships Between Grassland Ecosystem Functions in the Yellow River Basin. Diversity 2021, 13, 505. [Google Scholar] [CrossRef]
- Zhang, L.J.; Wang, L.; Cai, W.-J.; Liu, D.M.; Yu, Z.G. Impact of Human Activities on Organic Carbon Transport in the Yellow River. Biogeosciences 2013, 10, 2513–2524. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Tao, W.; Zhang, D. Ecosystem Services Assessment, Trade-Off, and Bundles in the Yellow River Basin, China. Diversity 2021, 13, 308. [Google Scholar] [CrossRef]
- Xi, F.; Lin, G.; Zhao, Y.; Li, X.; Chen, Z.; Cao, C. Land Use Optimization and Carbon Storage Estimation in the Yellow River Basin, China. Sustainability 2023, 15, 11278. [Google Scholar] [CrossRef]
- Sun, J.; Li, G.; Zhang, Y.; Qin, W.; Wang, M. Identification of Priority Areas for Afforestation in the Loess Plateau Region of China. Ecol. Indic. 2022, 140, 108998. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Q.; Yu, Q.; Wang, J.; Wang, F.; Qiu, S.; Ai, M.; Zhao, J. Effects of Land Use/Cover Change on Carbon Storage Between 2000 and 2040 in the Yellow River Basin, China. Ecol. Indic. 2023, 151, 110345. [Google Scholar] [CrossRef]
- Sun, B.; Du, J.; Chong, F.; Li, L.; Zhu, X.; Zhai, G.; Song, Z.; Mao, J. Spatio-Temporal Variation and Prediction of Carbon Storage in Terrestrial Ecosystems in the Yellow River Basin. Remote. Sens. 2023, 15, 3866. [Google Scholar] [CrossRef]
- Brown, S. Measuring Carbon in Forests: Current Status and Future Challenges. Environ. Pollut. 2002, 116, 363–372. [Google Scholar] [CrossRef]
- Fang, J.; Shugart, H.H.; Liu, F.; Yan, X.; Song, Y.; Lv, F. FORCCHN V2.0: An Individual-Based Model for Predicting Multiscale Forest Carbon Dynamics. Geosci. Model Dev. 2022, 15, 6863–6872. [Google Scholar] [CrossRef]
- Zhao, M.; Yue, T.; Zhao, N.; Sun, X.; Zhang, X. Combining LPJ-GUESS and HASM to Simulate the Spatial Distribution of Forest Vegetation Carbon Stock in China. J. Geogr. Sci. 2014, 24, 249–268. [Google Scholar] [CrossRef]
- García-Ontiyuelo, M.; Acuña-Alonso, C.; Valero, E.; Álvarez, X. Geospatial Mapping of Carbon Estimates for Forested Areas Using the InVEST Model and Sentinel-2: A Case Study in Galicia (NW Spain). Sci. Total Environ. 2024, 922, 171297. [Google Scholar] [CrossRef]
- Penman, J.; Gytarsky, M.; Hiraishi, T.; Irving, W.; Krug, T. 2006 IPCC—Guidelines for National Greenhouse Gas Inventories; IGES: Kanagawa, Japan, 2006. [Google Scholar]
- Lu, H.; Jing, W.; Zhao, J.; Liu, X.; Huang, Z. Characteristics of the Temporal Variation in Temperature and Precipitation in China’s Lower Yellow River Region. Adv. Meteorol. 2014, 2014, 186823. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and Estimating Tropical Forest Carbon Stocks: Making REDD a Reality. Environ. Res. Lett. 2007, 2, 045023. [Google Scholar] [CrossRef]
- Lefever, D.W. Measuring Geographic Concentration by Means of the Standard Deviational Ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef]
- Wang, B.; Shi, W.; Miao, Z. Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional Euclidean Space. PLoS ONE 2015, 10, e0118537. [Google Scholar] [CrossRef]
- Yu, P.; Li, Y.; Liu, S.; Liu, J.; Ding, Z.; Ma, M.; Tang, X. Afforestation Influences Soil Organic Carbon and Its Fractions Associated with Aggregates in a Karst Region of Southwest China. Sci. Total Environ. 2022, 814, 152710. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Delang, C.O.; Lu, X.; Gao, L. A Meta-Analysis of Changes in Soil Organic Carbon Stocks After Afforestation with Deciduous Broadleaved, Sempervirent Broadleaved, and Conifer Tree Species. Ann. For. Sci. 2020, 77, 92. [Google Scholar] [CrossRef]
- Nave, L.E.; Swanston, C.W.; Mishra, U.; Nadelhoffer, K.J. Afforestation Effects on Soil Carbon Storage in the United States: A Synthesis. Soil Sci. Soc. Am. J. 2013, 77, 1035–1047. [Google Scholar] [CrossRef]
- Hong, S.; Yin, G.; Piao, S.; Dybzinski, R.; Cong, N.; Li, X.; Wang, K.; Peñuelas, J.; Zeng, H.; Chen, A. Divergent Responses of Soil Organic Carbon to Afforestation. Nat. Sustain. 2020, 3, 694–700. [Google Scholar] [CrossRef]
- Zhang, C.; Ju, W.; Chen, J.M.; Li, D.; Wang, X.; Fan, W.; Li, M.; Zan, M. Mapping Forest Stand Age in China Using Remotely Sensed Forest Height and Observation Data. J. Geophys. Res. Biogeosci. 2014, 119, 1163–1179. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The Carbon Balance of Terrestrial Ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Fang, J.Y.; Guo, Z.D.; Piao, S.L.; Chen, A.P. Terrestrial Vegetation Carbon Sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Liu, B.; Pan, L.; Qi, Y.; Guan, X.; Li, J. Land Use and Land Cover Change in the Yellow River Basin from 1980 to 2015 and Its Impact on the Ecosystem Services. Land 2021, 10, 1080. [Google Scholar] [CrossRef]
- Chen, X.; Lupi, F.; He, G.; Ouyang, Z.; Liu, J. Factors Affecting Land Reconversion Plans Following a Payment for Ecosystem Service Program. Biol. Conserv. 2009, 142, 1740–1747. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Q.; Zhang, J.; Liu, J.; Zhu, C.; Qu, L. Characteristics of Water Use Efficiency during the Changing Process of Vegetation in the Yellow River Basin. Shengtai Xuebao 2023, 43, 3103–3115. [Google Scholar] [CrossRef]
- He, W.; Jiang, F.; Wu, M.; Ju, W.; Scholze, M.; Chen, J.M.; Byrne, B.; Liu, J.; Wang, H.; Wang, J.; et al. China’s Terrestrial Carbon Sink Over 2010–2015 Constrained by Satellite Observations of Atmospheric CO2 and Land Surface Variables. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006644. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of National Ecological Restoration Projects on Carbon Sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Li, Q.; Wang, S.; Liu, X.; Li, Y. The Spatiotemporal Evolution and Prediction of Carbon Storage in the Yellow River Basin Based on the Major Function-Oriented Zone Planning. Sustainability 2022, 14, 7963. [Google Scholar] [CrossRef]
- Deng, L.; Shangguan, Z.-P.; Sweeney, S. “Grain for Green” Driven Land Use Change and Carbon Sequestration on the Loess Plateau, China. Sci. Rep. 2014, 4, 7039. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, R.; Yin, Z.; Chen, Z.; Fang, C.; Lu, R.; Zhou, J.; Feng, Y. Impacts of Land-Use Change on the Spatio-Temporal Patterns of Terrestrial Ecosystem Carbon Storage in the Gansu Province, Northwest China. Remote. Sens. 2022, 14, 3164. [Google Scholar] [CrossRef]
- Qu, Y.; Zong, H.; Su, D.; Ping, Z.; Guan, M. Land Use Change and Its Impact on Landscape Ecological Risk in Typical Areas of the Yellow River Basin in China. Int. J. Environ. Res. Public Health 2021, 18, 11301. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau Is Approaching Sustainable Water Resource Limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Jia, X.; Shao, M.; Zhu, Y.; Luo, Y. Soil Moisture Decline Due to Afforestation Across the Loess Plateau, China. J. Hydrol. 2017, 546, 113–122. [Google Scholar] [CrossRef]
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Peña-Arancibia, J.L.; et al. The Biodiversity and Ecosystem Service Contributions and Trade-Offs of Forest Restoration Approaches. Science 2022, 376, 839–844. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Li, X.; Wu, J. A Global Meta-Analysis of the Impacts of Tree Plantations on Biodiversity. Glob. Ecol. Biogeogr. 2022, 31, 576–587. [Google Scholar] [CrossRef]
- Sun, P.; Wu, Y.; Yang, Z.; Sivakumar, B.; Qiu, L.; Liu, S.; Cai, Y. Can the Grain-for-Green Program Really Ensure a Low Sediment Load on the Chinese Loess Plateau? Engineering 2019, 5, 855–864. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, F.; Dong, J.; Yang, Z.; Zhao, G.; Zhai, J.; Qin, Y.; Xiao, X. Tracking Reforestation in the Loess Plateau, China After the “Grain for Green” Project Through Integrating PALSAR and Landsat Imagery. Remote. Sens. 2019, 11, 2685. [Google Scholar] [CrossRef]
- Liang, B.; Wang, J.; Zhang, Z.; Zhang, J.; Zhang, J.; Cressey, E.L.; Wang, Z. Planted Forest Is Catching Up with Natural Forest in China in Terms of Carbon Density and Carbon Storage. Fundam. Res. 2022, 2, 688–696. [Google Scholar] [CrossRef]
- Yu, Z.; Deng, X.; Cheshmehzangi, A. The Grain for Green Program Enhanced Synergies between Ecosystem Regulating Services in Loess Plateau, China. Remote. Sens. 2022, 14, 5940. [Google Scholar] [CrossRef]
- Meng, Y.; Hou, B.; Ding, C.; Huang, L.; Guo, Y.; Tang, Z. Spatiotemporal Patterns of Planted Forests on the Loess Plateau Between 1986 and 2021 Based on Landsat NDVI Time-Series Analysis. GISci. Remote. Sens. 2023, 60, 2185980. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, Y.; Luo, X.; Liu, Y.; Huang, P.; Yao, B.; Zhang, L.; Li, W.; Xue, J.; Gao, H.; et al. Mixed Plantations Enhance More Soil Organic Carbon Stocks Than Monocultures Across China: Implication for Optimizing Afforestation/Reforestation Strategies. Sci. Total Environ. 2022, 821, 153449. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive Reliance on Afforestation in China’s Arid and Semi-arid Regions: Lessons in Ecological Restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Lv, Y.; Ma, Y.; Li, H.; Ding, Y.; Meng, Q.; Guo, J. Analysis of Spatiotemporal Patterns of Atmospheric CO2 Concentration in the Yellow River Basin over the Past Decade Based on Time-Series Remote Sensing Data. Environ. Sci. Pollut. Res. 2023, 30, 115745–115757. [Google Scholar] [CrossRef]
- Mndela, M.; Tjelele, J.T.; Madakadze, I.C.; Mangwane, M.; Samuels, I.M.; Muller, F.; Pule, H.T. A Global Meta-Analysis of Woody Plant Responses to Elevated CO2: Implications on Biomass, Growth, Leaf N Content, Photosynthesis and Water Relations. Ecol. Process. 2022, 11, 52. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and Its Drivers. Nat. Clim. Change 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil Carbon Stocks and Land Use Change: A Meta Analysis. Glob. Change Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Chen, L.; Gong, J.; Fu, B.; Huang, Z.; Huang, Y.; Gui, L. Effect of Land Use Conversion on Soil Organic Carbon Sequestration in the Loess Hilly Area, Loess Plateau of China. Ecol. Res. 2007, 22, 641–648. [Google Scholar] [CrossRef]
- Peng, L.; Searchinger, T.D.; Zionts, J.; Waite, R. The Carbon Costs of Global Wood Harvests. Nature 2023, 620, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Nabuurs, G.-J.; Lindner, M.; Verkerk, P.J.; Gunia, K.; Deda, P.; Michalak, R.; Grassi, G. First Signs of Carbon Sink Saturation in European Forest Biomass. Nat. Clim. Change 2013, 3, 792–796. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Z.; Hu, H.; Kato, T.; Muraoka, H.; Son, Y. Forest Biomass Carbon Sinks in East Asia, with Special Reference to the Relative Contributions of Forest Expansion and Forest Growth. Glob. Change Biol. 2014, 20, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of Tropical Land-Use Change on Soil Organic Carbon Stocks—A Meta-Analysis. Glob. Change Biol. 2011, 17, 1658–1670. [Google Scholar] [CrossRef]






| Data Type | Dataset Name | Format | Resolution | Source |
|---|---|---|---|---|
| Multi-Source Remote Sensing Products | Land-use data | Raster | 30 m | http://doi.org/10.5281/zenodo.4417809 (accessed on 17 March 2025) |
| Biomass data | Raster | 500 m | https://engine.piesat.cn/ (accessed on 17 March 2025) | |
| Plantation and natural forest data | Raster | 1000 m | http://www.nesdc.org.cn (accessed on 19 March 2025) | |
| Forest age data | Raster | 30 m | ||
| Soil carbon density | Soil carbon density data | Raster | 1000 m | https://www.geodata.cn (accessed on 20 March 2025) |
| Regional datasets | Vegetation regionalization data | Vector | - | https://www.resdc.cn (accessed on 20 March 2025) |
| Yellow River Basin boundary data | Vector | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, L.; Liu, M.; Wang, Y.; Zhang, H.; Liu, X. Assessing the Spatiotemporal Patterns and Afforestation Impacts on Land-Use Carbon Storage in the Yellow River Basin Using Multi-Source Remote Sensing Products. Forests 2025, 16, 1731. https://doi.org/10.3390/f16111731
Luo L, Liu M, Wang Y, Zhang H, Liu X. Assessing the Spatiotemporal Patterns and Afforestation Impacts on Land-Use Carbon Storage in the Yellow River Basin Using Multi-Source Remote Sensing Products. Forests. 2025; 16(11):1731. https://doi.org/10.3390/f16111731
Chicago/Turabian StyleLuo, Libing, Ming Liu, Ying Wang, Hao Zhang, and Xiangnan Liu. 2025. "Assessing the Spatiotemporal Patterns and Afforestation Impacts on Land-Use Carbon Storage in the Yellow River Basin Using Multi-Source Remote Sensing Products" Forests 16, no. 11: 1731. https://doi.org/10.3390/f16111731
APA StyleLuo, L., Liu, M., Wang, Y., Zhang, H., & Liu, X. (2025). Assessing the Spatiotemporal Patterns and Afforestation Impacts on Land-Use Carbon Storage in the Yellow River Basin Using Multi-Source Remote Sensing Products. Forests, 16(11), 1731. https://doi.org/10.3390/f16111731

