Characteristics of Long-Term Soil Respiration Variability in a Temperate Deciduous Broadleaf Forest
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Respiration
2.3. Environmental Factors
2.4. Litter
2.5. Data Analysis
3. Results
3.1. Rs and Environmental Variations
3.2. Contrasting Response of Rs Components to Rainfall
3.3. Effect of Litter on Rs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| Rs | Soil respiration |
| Ra | Autotrophic respiration |
| Rh | Heterotrophic respiration |
| Ts | Soil temperature |
| Ta | Air temperature |
| SMC | Soil moisture content |
| RW | Ridge-west |
| RE | Ridge-east |
| R | Ridge |
| E | Eastern slope |
| W | Western slope |
| CV | Coefficient of variation |
| R-Rh | Trench plot of the ridge |
| E-Rh | Trench plot of the eastern slope |
| W-Rh | Trench plot of the western slope |
References
- IPCC. Intergovernmental Panel on Climate Change. Climate Change 2022, Impacts, Adaptation and Vulnerability Summary for Policymakers; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- IPCC. Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report, 1st ed.; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Lenton, T.M.; Xu, C.; Abrams, J.F.; Ghadiali, A.; Loriani, S.; Sakschewski, B.; Zimm, C.; Ebi, K.L.; Dunn, R.R.; Svenning, J.-C.; et al. Quantifying the human cost of global warming. Nat. Sustain. 2023, 6, 1237–1247. [Google Scholar] [CrossRef]
- Meinshausen, M.; Lewis, J.; McGlade, C.; Gütschow, J.; Nicholls, Z.; Burdon, R.; Cozzi, L.; Hackmann, B. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 2022, 604, 304–309. [Google Scholar] [CrossRef]
- Song, J.; Tong, G.; Chao, J.; Chung, J.; Zhang, M.; Lin, W.; Zhang, T.; Bentler, P.M.; Zhu, W. Data driven pathway analysis and forecast of global warming and sea level rise. Sci. Rep. 2023, 13, 5536. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, T.; Wu, P. Anthropogenic amplification of precipitation variability over the past century. Science 2024, 385, 427–432. [Google Scholar] [CrossRef]
- Ma, N.; Szilagyi, J.; Zhang, Y. Hydrological responses to warming: Insights from centennial-scale terrestrial evapotranspiration estimates. Water Resour. Res. 2025, 61, e2025WR041001. [Google Scholar] [CrossRef]
- Nazeri Tahroudi, M. Comprehensive global assessment of precipitation trend and pattern variability considering their distribution dynamics. Sci. Rep. 2025, 15, 22458. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Jia, X.; Ma, H.; Chen, X.; Liu, J.; Shangguan, Z.; Yan, W. Effects of warming and precipitation changes on soil GHG fluxes: A meta-analysis. Sci. Total Environ. 2022, 827, 154351. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The enduring world forest carbon sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef]
- Xu, M.; Shang, H. Contribution of soil respiration to the global carbon equation. J. Plant Physiol. 2016, 203, 16–28. [Google Scholar] [CrossRef]
- Zeng, J.; Zhou, T.; Cao, L.; Yu, Y.; Tan, E.; Zhang, Y.; Wu, X.; Zhang, J.; Zhang, Q.; Qu, Y.; et al. Various responses of global heterotrophic respiration to variations in soil moisture and temperature enhance the positive feedback on atmospheric warming. Commun. Earth Environ. 2025, 6, 475. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Kou, D.; Peng, Y.; Yang, Y. Substantial non-growing season carbon dioxide loss across Tibetan alpine permafrost region. Glob. Change Biol. 2022, 28, 5200–5210. [Google Scholar] [CrossRef]
- Nissan, A.; Alcolombri, U.; Peleg, N.; Galili, N.; Jimenez-Martinez, J.; Molnar, P.; Holzner, M. Global warming accelerates soil heterotrophic respiration. Nat. Commun. 2023, 14, 3452. [Google Scholar] [CrossRef]
- Feng, L.; Jiang, J.; Hu, J.; Zhu, C.; Wu, Z.; Li, G.; Chen, T. Global spatial projections of forest soil respiration and associated uncertainties. Forests 2024, 15, 1982. [Google Scholar] [CrossRef]
- Liang, G.; Stefanski, A.; Eddy, W.C.; Bermudez, R.; Montgomery, R.A.; Hobbie, S.E.; Rich, R.L.; Reich, P.B. Soil respiration response to decade-long warming modulated by soil moisture in a boreal forest. Nat. Geosci. 2024, 17, 905–911. [Google Scholar] [CrossRef]
- Eom, J.Y.; Jeong, S.H.; Chun, J.H.; Lee, J.H.; Lee, J.S. Long-term characteristics of soil respiration in a Korean cool-temperate deciduous forest in a monsoon climate. Anim. Cells Syst. 2018, 22, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Possinger, A.R.; Driscoll, C.T.; Green, M.B.; Fahey, T.J.; Johnson, C.E.; Koppers, M.M.K.; Martel, L.D.; Morse, J.L.; Templer, P.H.; Uribe, A.M.; et al. Increasing soil respiration in a northern hardwood forest indicates symptoms of a changing carbon cycle. Commun. Earth Environ. 2025, 6, 418. [Google Scholar] [CrossRef]
- Jacobson, K.; van Diepeningen, A.; Evans, S.; Fritts, R.; Gemmel, P.; Marsho, C.; Seely, M.; Wenndt, A.; Yang, X.; Jacobson, P. Non-rainfall moisture activates fungal decomposition of surface litter in the Namib Sand Sea. PLoS ONE 2015, 10, e0126977. [Google Scholar] [CrossRef]
- Lei, J.; Guo, X.; Zeng, Y.; Zhou, J.; Gao, Q.; Yang, Y. Temporal changes in global soil respiration since 1987. Nat. Commun. 2021, 12, 403. [Google Scholar] [CrossRef]
- Yang, R.; Wang, F.; Tang, X.; Cui, J.; Wang, G.; Guo, L.; Zhang, H. Quantification of Soil Water Dynamics Response to Rainfall in Forested Hillslope Based on Soil Water Potential Measurement. Forests 2025, 16, 75. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Williams, R.A.; Chen, Y.; Peng, R.; Liu, X.; Qi, Y.; Wang, Z. Responses of soil respiration and its sensitivities to temperature and precipitation: A meta-analysis. Ecol. Inform. 2023, 75, 102057. [Google Scholar] [CrossRef]
- Lee, X.; Wu, H.-J.; Sigler, J.; Oishi, C.; Siccama, T. Rapid and transient response of soil respiration to rain. Glob. Change Biol. 2004, 10, 1017–1026. [Google Scholar] [CrossRef]
- Chen, X.; Hu, H.; Wang, Q.; Wang, X.; Ma, B. Exploring the Factors Affecting Terrestrial Soil Respiration in Global Warming Manipulation Experiments Based on Meta-Analysis. Agriculture 2024, 14, 1581. [Google Scholar] [CrossRef]
- Bréchet, L.M.; Lopez-Sangil, L.; George, C.; Birkett, A.J.; Baxendale, C.; Castro Trujillo, B.; Sayer, E.J. Distinct responses of soil respiration to experimental litter manipulation in temperate woodland and tropical forest. Ecol. Evol. 2018, 8, 3787–3796. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zhao, L.; Zhou, G.; Huang, W.; Liu, J. Increased litter input increases litter decomposition and soil respiration but has minor effects on soil organic carbon in subtropical forests. Plant Soil 2015, 392, 139–153. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, X.; Li, Y.; Liu, X.; Wang, L.; Wang, X.; Du, Z. Wind disturbance on litter production affects soil carbon accumulation in degraded sandy grasslands in semi-arid sandy grassland. Ecol. Eng. 2021, 171, 106373. [Google Scholar] [CrossRef]
- Lee, D.; Yoo, G.; Oh, S.; Shim, J.H.; Kang, S. Significance of aspect and understory type to leaf litter redistribution in a temperate hardwood forest. Korean J. Biol. Sci. 1999, 3, 143–147. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Q.; Qiao, Y.; Zhai, D.; Jiang, L.; Liang, G.; Sun, X.; Wei, N.; Wang, X.; Xia, J. Relative contributions of biotic and abiotic factors to the spatial variation of litter stock in a mature subtropical forest. J. Plant Ecol. 2019, 12, 769–780. [Google Scholar] [CrossRef]
- Lee, J.-S. Effect of micro-environment in ridge and southern slope on soil respiration in Quercus mongolica forest. J. Ecol. Environ. 2018, 42, 26. [Google Scholar] [CrossRef]
- Walter, H. General Section. In Vegetation of the Earth and Ecological Systems of the Geo-Biosphere, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 19–38. ISBN 978-3-642-96859-4. [Google Scholar]
- Cho, E.-S.; Yang, G.-S.; Kim, Y.-S.; Cho, D.-G. Community structure and growth rate of Korean Quercus mongolica forests by vegetation climate zone. Sustainability 2023, 15, 6465. [Google Scholar] [CrossRef]
- Won, H.-Y.; Lee, Y.-S.; Lee, J.-S.; Lee, I.-H. Correlation between litter decomposition rate of Quercus mongolica leaf and microclimatic factors at Mt. Jeombongsan. Korean J. Environ. Biol. 2022, 40, 455–463. [Google Scholar] [CrossRef]
- Baek, H.J.; Kim, M.K.; Kwon, W.T. Observed short-and long-term changes in summer precipitation over South Korea and their links to large-scale circulation anomalies. Int. J. Climatol. 2017, 37, 972–986. [Google Scholar] [CrossRef]
- Lee, K.; Cha, J.-Y.; Lee, E.-J.; Lee, S.-C.; Son, S.; Kim, S.; Jin, X.; Choi, J.W.; Oh, N.-H. Biogeochemical Properties of a Forest Stream Dissolved Organic Matter at Mt. Jeombong, a Korean Long-term Ecological Research (KLTER) Site. J. Korean Soc. Water Environ. 2025, 41, 54–69. [Google Scholar] [CrossRef]
- Kim, G.-S.; Son, H.-K.; Lee, C.-H.; Cho, H.-J.; Lee, C.-S. Ecological comparison of Mongolian oak (Quercus mongolica Fisch. ex Ledeb.) community between Mt. Nam and Mt. Jeombong as a Long Term Ecological Research (LTER) site. J. Ecol. Environ. 2011, 34, 75–85. [Google Scholar] [CrossRef]
- Kong, H.Y.; Park, S.A.; Shim, K.Y.; Kim, T.K.; Lee, J.S.; Suh, S.U. A study on annual carbon emission characteristic changes affected by rainfall. J. Climate Change Res. 2016, 7, 397–405. [Google Scholar] [CrossRef]
- Chen, Z.; Cai, Y.; Pan, C.; Jiang, H.; Jia, Z.; Li, C.; Zhou, G. Spatial Heterogeneity of Soil Respiration and Its Relationship with the Spatial Distribution of the Forest Ecosystem at the Fine Scale. Forests 2025, 16, 678. [Google Scholar] [CrossRef]
- Aranda-Barranco, S.; Serrano-Ortiz, P.; Kowalski, A.S.; Sánchez-Cañete, E.P. Spatial and temporal heterogeneity of soil respiration in a bare-soil Mediterranean olive grove. Soil 2025, 11, 213–232. [Google Scholar] [CrossRef]
- Hashimoto, S.; Ito, A.; Nishina, K. Divergent data-driven estimates of global soil respiration. Commun. Earth Environ. 2023, 4, 460. [Google Scholar] [CrossRef]
- Hashimoto, S.; Carvalhais, N.; Ito, A.; Migliavacca, M.; Nishina, K.; Reichstein, M. Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 2015, 12, 4121–4132. [Google Scholar] [CrossRef]
- Jian, J.; Steele, M.K.; Day, S.D.; Thomas, R.Q. Future global soil respiration rates will swell despite regional decreases in temperature sensitivity caused by rising temperature. Earth’s Future 2018, 6, 1539–1554. [Google Scholar] [CrossRef]
- Zhao, C.; Miao, Y.; Yu, C.; Zhu, L.; Wang, F.; Jiang, L.; Hui, D.; Wan, S. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe. Sci. Rep. 2016, 6, 24317. [Google Scholar] [CrossRef]
- Lv, W.; Liu, X.; Ding, H. Characteristics, Sources, and Mechanisms of Soil Respiration under Simulated Rainfall in a Native Karst Forest in Southwestern China. Forests 2024, 15, 945. [Google Scholar] [CrossRef]
- Kurganova, I.; Lopes de Gerenyu, V.; Khoroshaev, D.; Myakshina, T.; Sapronov, D.; Zhmurin, V. Temperature sensitivity of soil respiration in two temperate forest ecosystems: The synthesis of a 24-year continuous observation. Forests 2022, 13, 1374. [Google Scholar] [CrossRef]
- Diao, H.; Hao, J.; Yang, Q.; Gao, Y.; Ma, T.; Han, F.; Liang, W.; Chang, J.; Yi, L.; Pang, G.; et al. Soil environment and annual rainfall co-regulate the response of soil respiration to different grazing intensities in saline-alkaline grassland. Catena 2024, 236, 107709. [Google Scholar] [CrossRef]
- Kume, T.; Tanaka, N.; Yoshifuji, N.; Chatchai, T.; Igarashi, Y.; Suzuki, M.; Hashimoto, S. Soil respiration in response to year-to-year variations in rainfall in a tropical seasonal forest in northern Thailand. Ecohydrology 2013, 6, 134–141. [Google Scholar] [CrossRef]
- Balogh, J.; Papp, M.; Pintér, K.; Fóti, S.; Posta, K.; Eugster, W.; Nagy, Z. Autotrophic component of soil respiration is repressed by drought more than the heterotrophic one in dry grasslands. Biogeosciences 2016, 13, 5171–5182. [Google Scholar] [CrossRef]
- Hinko-Najera, N.; Fest, B.; Livesley, S.J.; Arndt, S.K. Reduced throughfall decreases autotrophic respiration, but not heterotrophic respiration in a dry temperate broadleaved evergreen forest. Agric. For. Meteorol. 2015, 200, 66–77. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Eom, J.-Y.; Lee, J.-H.; Lee, J.-S. Effect of rainfall events on soil carbon flux in mountain pastures. J. Ecol. Environ. 2017, 41, 37. [Google Scholar] [CrossRef]
- Kumari, T.; Singh, R.; Verma, P.; Raghubanshi, A.S. Monsoon-phase regulates the decoupling of auto-and heterotrophic respiration by mediating soil nutrient availability and root biomass in tropical grassland. Catena 2022, 209, 105808. [Google Scholar] [CrossRef]
- Evans, S.E.; Allison, S.D.; Hawkes, C.V. Microbes, memory and moisture: Predicting microbial moisture responses and their impact on carbon cycling. Funct. Ecol. 2022, 36, 1430–1441. [Google Scholar] [CrossRef]
- Feng, J.; Wang, C.; Gao, J.; Ma, H.; Li, Z.; Hao, Y.; Qiu, X.; Ru, J.; Song, J.; Wan, S. Changes in plant litter and root carbon inputs alter soil respiration in three different forests of a climate transitional region. Agric. For. Meteorol. 2024, 358, 110212. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, S.; Liu, Q.; Jiang, J. Influence of soil moisture on litter respiration in the semiarid loess plateau. PLoS ONE 2014, 9, e114558. [Google Scholar] [CrossRef] [PubMed]
- Contractor, S.; Donat, M.G.; Alexander, L.V. Changes in observed daily precipitation over global land areas since 1950. J. Clim. 2021, 34, 3–19. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Knutti, R.; Lehner, F.; Deser, C.; Sanderson, B.M. Precipitation variability increases in a warmer climate. Sci. Rep. 2017, 7, 17966. [Google Scholar] [CrossRef]
- Zhang, W.; Furtado, K.; Wu, P.; Zhou, T.; Chadwick, R.; Marzin, C.; Rostron, J.; Sexton, D. Increasing precipitation variability on daily-to-multiyear time scales in a warmer world. Sci. Adv. 2021, 7, eabf8021. [Google Scholar] [CrossRef]
- Giorgi, F.; Raffaele, F.; Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 2019, 10, 73–89. [Google Scholar] [CrossRef]
- Wang, C.G.; Zheng, X.B.; Wang, A.Z.; Dai, G.H.; Zhu, B.K.; Zhao, Y.M.; Dong, S.J.; Zu, W.Z.; Wang, W.; Zheng, Y.G.; et al. Temperature and precipitation diversely control seasonal and annual dynamics of litterfall in a temperate mixed mature forest, revealed by long-term data analysis. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006204. [Google Scholar] [CrossRef]
- Barba, J.; Lloret, F.; Poyatos, R.; Molowny-Horas, R.; Yuste, J.C. Multi-temporal influence of vegetation on soil respiration in a droughtaffected forest. iForest 2018, 11, 189–198. [Google Scholar] [CrossRef]
- Han, G.; Luo, Y.; Li, D.; Xia, J.; Xing, Q.; Yu, J. Ecosystem photosynthesis regulates soil respiration on a diurnal scale with a short-term time lag in a coastal wetland. Soil Biol. Biochem. 2014, 68, 85–94. [Google Scholar] [CrossRef]
- Khoroshaev, D.; Kurganova, I.; Lopes de Gerenyu, V.; Sapronov, D.; Kivalov, S.; Aloufi, A.S.; Kuzyakov, Y. Vegetation and Precipitation Patterns Define Annual Dynamics of CO2 Efflux from Soil and Its Components. Land 2024, 13, 2152. [Google Scholar] [CrossRef]










| Year | RW-Ts (°C) | RE-Ts (°C) | E-Ts (°C) | W-Ts (°C) |
|---|---|---|---|---|
| 2018 | 14.0 ± 4.3 | 13.2 ± 4.9 | 13.1 ± 5.3 | 14.5 ± 4.0 |
| 2019 | 13.8 ± 6.2 | 13.3 ± 6.0 | 13.2 ± 6.6 | 13.7 ± 6.5 |
| 2020 | 14.4 ± 5.6 | 13.9 ± 5.2 | 14.3 ± 5.2 | 15.3 ± 4.2 |
| 2021 | 15.7 ± 3.5 | 14.9 ± 4.3 | 14.5 ± 5.1 | 15.3 ± 4.3 |
| 2022 | 14.1 ± 4.3 | 13.5 ± 4.6 | 13.3 ± 5.2 | 14.9 ± 4.8 |
| 2023 | 13.4 ± 5.7 | 13.3 ± 5.4 | 14.2 ± 6.0 | 14.0 ± 5.4 |
| 2024 | 14.5 ± 4.8 | 14.4 ± 4.8 | 14.0 ± 4.9 | 14.4 ± 4.7 |
| Mean annual | 14.3 ± 0.7 a | 13.8 ± 0.6 a | 13.8 ± 0.6 a | 14.6 ± 0.6 a |
| Year | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Average |
|---|---|---|---|---|---|---|---|---|
| Ra contribution to Rs (%) | 37.1 ± 6.9 | 35.7 ± 6.1 | 42.2 ± 10.1 | 26.6 ± 8.1 | 36.4 ± 16.3 | 31.4 ± 10.6 | 35.4 ± 16.2 | 35.0 ± 4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Seo, D.; Park, J.; Won, H.; Lee, J. Characteristics of Long-Term Soil Respiration Variability in a Temperate Deciduous Broadleaf Forest. Forests 2025, 16, 1720. https://doi.org/10.3390/f16111720
Lee M, Seo D, Park J, Won H, Lee J. Characteristics of Long-Term Soil Respiration Variability in a Temperate Deciduous Broadleaf Forest. Forests. 2025; 16(11):1720. https://doi.org/10.3390/f16111720
Chicago/Turabian StyleLee, Minyoung, Dongmin Seo, Jeongsoo Park, Hoyeon Won, and Jaeseok Lee. 2025. "Characteristics of Long-Term Soil Respiration Variability in a Temperate Deciduous Broadleaf Forest" Forests 16, no. 11: 1720. https://doi.org/10.3390/f16111720
APA StyleLee, M., Seo, D., Park, J., Won, H., & Lee, J. (2025). Characteristics of Long-Term Soil Respiration Variability in a Temperate Deciduous Broadleaf Forest. Forests, 16(11), 1720. https://doi.org/10.3390/f16111720

