Role of Extractable and Non-Extractable Polyphenols in the Formation of Beech (Fagus sylvatica L.) Red Heartwood Chromophores
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Extraction of EPs
2.2. Hydrolysis of Extracted Wood Samples—Preparation of NEPs
2.3. HPLC-PDA-ESI-MS/MS Analysis of Extracts
3. Results
3.1. Evaluation of EPs of Red Heartwood
3.2. The NEP Content of Beech Wood Tissues
3.2.1. Acid Hydrolysis
3.2.2. Alkaline Hydrolysis
4. Conclusions
- The study was the first to provide experimental proof of the molecular structure of the chromophores of beech red heartwood. Red heartwood chromophores are water/methanol soluble high molecular weight (400–2200 Da) compounds, which are mostly polymerized, transformed, and oxidized products of (epi)catechin and taxifolin.
- The presence and participation of other identified monomers (quercetin, isorhamnetin, gallic acid, etc.) in the structure of the chromophores was not evidenced, yet it cannot be excluded.
- Results of the chromatographic analysis of the acid hydrolysis of the extracted wood samples proved that red heartwood chromophores are not built up by additional flavonoid and tannin-type non-extractable polyphenols bound to or incorporated into the cell wall structure.
- Alkaline hydrolysis of beech wood tissues revealed that the sapwood/red heartwood transition zone contained significant amounts of ferulic acid, dehydrodiferulic acid, and p-coumaric acid as non-extractable polyphenols. They supposedly play a role in the structural reinforcement of the cell wall structure and in the enhancement of antioxidant protection against environmental stress during red heartwood formation, and may have a lesser role in the formation of the chromophores, yet their function needs further elucidation.
- Results provide data for a better understanding of the biochemical reactions of red heartwood formation in beech. Novel information on the structure of chromophores and on the composition of the cell wall may enhance color homogenization technologies and contribute to a better utilization of red heartwood in timber.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bittmann, O. Frostkern Der Rotbuche. Holzmarkt 1930, 22, 3–4. [Google Scholar]
- Ward, H.M. Beech Wood. Nature 1889, 39, 511–515. [Google Scholar] [CrossRef]
- Tuzson, J. A Bükkfa Korhadása És Konzerválása; Pallas Részvénytársaság Nyomdája: Budapest, Magyarország, 1904. [Google Scholar]
- Knoke, T. Value of Complete Information on Red Heartwood Formation in Beech (Fagus sylvatica). Silva Fenn. 2002, 36, 525. [Google Scholar] [CrossRef]
- Trenčiansky, M.; Lieskovský, M.; Merganič, J.; Šulek, R. Analysis and Evaluation of the Impact of Stand Age on the Occurrence and Metamorphosis of Red Heartwood. iForest-Biogeosci. For. 2017, 10, 605. [Google Scholar] [CrossRef]
- Gurda, S.; Sokolović, D.; Knežević, J.; Hajdarević, S.; Avdibegović, J. Impact of Site Quality and Some Taxation Elements on Beech Red Heart Formation in Forest Compartments 107. M.U. „Gostelja“ and 47. M.U. „Srednja DrinjačaA“. Rad. Šumar. Fak. Univ. U Sarajev. 2017, 47, 60–76. [Google Scholar] [CrossRef]
- Knoke, T. Predicting Red Heartwood Formation in Beech Trees (Fagus sylvatica L.). Ecol. Model. 2003, 169, 295–312. [Google Scholar] [CrossRef]
- Wernsdörfer, H.; Constant, T.; Mothe, F.; Badia, M.A.; Nepveu, G.; Seeling, U. Detailed Analysis of the Geometric Relationship between External Traits and the Shape of Red Heartwood in Beech Trees (Fagus sylvatica L.). Trees 2005, 19, 482–491. [Google Scholar] [CrossRef]
- Zell, J.; Hanewinkel, M.; Seeling, U. Financial Optimisation of Target Diameter Harvest of European Beech (Fagus sylvatica) Considering the Risk of Decrease of Timber Quality Due to Red Heartwood. For. Policy Econ. 2004, 6, 579–593. [Google Scholar] [CrossRef]
- Lakatos, F.; Molnár, M. Mass Mortality of Beech (Fagus sylvatica L.) in South-West Hungary. Acta Silv. Lignaria Hung. 2009, 5, 75–82. [Google Scholar] [CrossRef]
- Langer, G.J.; Bußkamp, J. Vitality Loss of Beech: A Serious Threat to Fagus sylvatica in Germany in the Context of Global Warming. J. Plant Dis. Prot. 2023, 130, 1101–1115. [Google Scholar] [CrossRef]
- Antonucci, S.; Santopuoli, G.; Marchetti, M.; Tognetti, R.; Chiavetta, U.; Garfi, V. What Is Known About the Management of European Beech Forests Facing Climate Change? A Review. Curr. For. Rep. 2021, 7, 321–333. [Google Scholar] [CrossRef]
- Bíró, B. A Bükk Álgesztesedés Vizsgálata a Somogyi Erdészeti És Faipari Részvénytársaság Erdőállományaiban. Ph.D. Thesis, Nyugat-Magyarországi Egyetem, Sopron, Magyarország, 2005. [Google Scholar]
- Rukh, S.; Sanders, T.G.M.; Krüger, I.; Schad, T.; Bolte, A. Distinct Responses of European Beech (Fagus sylvatica L.) to Drought Intensity and Length—A Review of the Impacts of the 2003 and 2018–2019 Drought Events in Central Europe. Forests 2023, 14, 248. [Google Scholar] [CrossRef]
- Walthert, L.; Ganthaler, A.; Mayr, S.; Saurer, M.; Waldner, P.; Walser, M.; Zweifel, R.; von Arx, G. From the Comfort Zone to Crown Dieback: Sequence of Physiological Stress Thresholds in Mature European Beech Trees across Progressive Drought. Sci. Total Environ. 2021, 753, 141792. [Google Scholar] [CrossRef]
- Hansmann, C.; Stingl, R.; Teischinger, A. Inquiry in Beech Wood Processing Industry Concerning Red Heartwood. Wood Res. 2009, 54, 1–12. [Google Scholar]
- Visi-Rajczi, E.; Hofmann, T.; Albert, L. Radial and Vertical Distribution of Dissoluble Total Carbohydrate Content in the Beech (Fagus sylvatica L.): Relationships with Red Heartwood Formation. Acta Silv. Lignaria Hung. 2024, 20, 83–94. [Google Scholar] [CrossRef]
- Hofmann, T.; Albert, L.; Rétfalvi, T.; Visi-Rajczi, E.; Brolly, G. TLC Analysis of the In-Vitro Reaction of Beech (Fagus sylvatica L.) Wood Enzyme Extract with Catechins. JPC-J. Planar Chromatogr.-Mod. TLC 2008, 21, 83–88. [Google Scholar] [CrossRef]
- Hofmann, T.; Albert, L.; Rétfalvi, T. Quantitative TLC Analysis of (+)-Catechin and (−)-Epicatechin from Fagus sylvatica L. with and without Red Heartwood. JPC-J. Planar Chromatogr. 2004, 17, 350–354. [Google Scholar] [CrossRef]
- Vek, V.; Oven, P.; Humar, M. Phenolic Extractives of Wound-Associated Wood of Beech and Their Fungicidal Effect. Int. Biodeterior. Biodegrad. 2013, 77, 91–97. [Google Scholar] [CrossRef]
- Vek, V.; Oven, P.; Poljanšek, I. Content of Total Phenols in Red Heart and Wound-Associated Wood in Beech (Fagus sylvatica L.). Drv. Ind. 2013, 64, 25–32. [Google Scholar] [CrossRef]
- Vek, V.; Oven, P.; Poljanšek, I.; Ters, T. Contribution to Understanding the Occurrence of Extractives in Red Heart of Beech. BioResources 2014, 10, 970–985. [Google Scholar] [CrossRef]
- Celedon, J.; Bohlmann, J. An Extended Model of Heartwood Secondary Metabolism Informed by Functional Genomics. Tree Physiol. 2018, 38, 311–319. [Google Scholar] [CrossRef]
- Cao, S.; Deng, H.; Zhao, Y.; Zhang, Z.; Tian, Y.; Sun, Y.; Li, Y.; Zheng, H. Metabolite Profiling and Transcriptome Analysis Unveil the Mechanisms of Red-Heart Chinese Fir [Cunninghamia lanceolata (Lamb.) Hook] Heartwood Coloration. Front. Plant Sci. 2022, 13, 854716. [Google Scholar] [CrossRef]
- Hofmann, T.; Guran, R.; Zitka, O.; Visi-Rajczi, E.; Albert, L. Liquid Chromatographic/Mass Spectrometric Study on the Role of Beech (Fagus sylvatica L.) Wood Polyphenols in Red Heartwood Formation. Forests 2021, 13, 10. [Google Scholar] [CrossRef]
- Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int. J. Mol. Sci. 2023, 24, 13874. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Durazzo, A. Chapter3: Extractable and Non-Extractable Polyphenols: An Overview. In Non-extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health; Royal Society of Chemistry: London, UK, 2018; pp. 37–45. ISBN 978-1-78801-320-8. [Google Scholar]
- Zeng, Y.; Zhou, W.; Yu, J.; Zhao, L.; Wang, K.; Hu, Z.; Liu, X. By-Products of Fruit and Vegetables: Antioxidant Properties of Extractable and Non-Extractable Phenolic Compounds. Antioxidants 2023, 12, 418. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, G.; Marina, M.L.; Plaza, M. Strategies for the Extraction and Analysis of Non-Extractable Polyphenols from Plants. J. Chromatogr. A 2017, 1514, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Serwah Boateng, N.A.; Ma, H. Latest Developments in Polyphenol Recovery and Purification from Plant By-Products: A Review. Trends Food Sci. Technol. 2020, 99, 375–388. [Google Scholar] [CrossRef]
- Ding, Y.; Morozova, K.; Scampicchio, M.; Ferrentino, G. Non-Extractable Polyphenols from Food By-Products: Current Knowledge on Recovery, Characterisation, and Potential Applications. Processes 2020, 8, 925. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Ge, S.; Lin, S. Review of Distribution, Extraction Methods, and Health Benefits of Bound Phenolics in Food Plants. J. Agric. Food Chem. 2020, 68, 3330–3343. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Vek, V.; Oven, P.; Poljanšek, I. Review on Lipophilic and Hydrophilic Extractives in Tissues of Common Beech. Drv. Ind. 2016, 67, 85–96. [Google Scholar] [CrossRef]
- Burtin, P.; Jay-Allemand, C.; Charpentier, J.-P.; Janin, G. Natural Wood Colouring Process in Juglans Sp. (J. nigra, J. regia and Hybrid J. nigra 23 ×J. regia) Depends on Native Phenolic Compounds Accumulated in the Transition Zone between Sapwood and Heartwood. Trees 1998, 12, 258–264. [Google Scholar] [CrossRef]
- Beritognolo, I.; Magel, E.; Abdel-Latif, A.; Charpentier, J.-P.; Jay-Allemand, C.; Breton, C. Expression of Genes Encoding Chalcone Synthase, Flavanone 3-Hydroxylase and Dihydroflavonol 4-Reductase Correlates with Flavanol Accumulation during Heartwood Formation in Juglans Nigra. Tree Physiol. 2002, 22, 291–300. [Google Scholar] [CrossRef]
- Wei, L.; Ma, R.; Fu, Y. Differences in Chemical Constituents between Dalbergia Oliveri Heartwood and Sapwood and Their Effect on Wood Color. Molecules 2022, 27, 7978. [Google Scholar] [CrossRef]
- Yang, H.; An, W.; Gu, Y.; Peng, J.; Jiang, Y.; Li, J.; Chen, L.; Zhu, P.; He, F.; Zhang, F.; et al. Integrative Metabolomic and Transcriptomic Analysis Reveals the Mechanism of Specific Color Formation in Phoebe Zhennan Heartwood. Int. J. Mol. Sci. 2022, 23, 13569. [Google Scholar] [CrossRef]
- Fernández de Simón, B.; Cadahía, E.; Conde, E.; García-Vallejo, M.C. Low Molecular Weight Phenolic Compounds in Spanish Oak Woods. J. Agric. Food Chem. 1996, 44, 1507–1511. [Google Scholar] [CrossRef]
- Qiu, H.; Liu, R.; Long, L. Analysis of Chemical Composition of Extractives by Acetone and the Chromatic Aberration of Teak (Tectona Grandis L.F.) from China. Molecules 2019, 24, 1989. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Bai, X.; Chen, Z.; Chen, M.; Li, X.; Zeng, B.; Hu, B. Physiological, Biochemical, and Molecular Analyses Reveal Dark Heartwood Formation Mechanism in Acacia Melanoxylon. Int. J. Mol. Sci. 2024, 25, 4974. [Google Scholar] [CrossRef] [PubMed]
- Pâques, L.E.; García-Casas, M.d.C.; Charpentier, J.-P. Distribution of Heartwood Extractives in Hybrid Larches and in Their Related European and Japanese Larch Parents: Relationship with Wood Colour Parameters. Eur. J. For. Res. 2013, 132, 61–69. [Google Scholar] [CrossRef]
- Nezu, I.; Ishiguri, F.; Suzuki, H.; Takahashi, Y.; Takashima, Y.; Hiraoka, Y.; Iki, T.; Miyashita, H.; Matsushita, M.; Habu, N.; et al. Inheritance of Wood Color, Decay Resistance, and Polyphenol Content of Heartwood in Full-Sib Families of Japanese Larch (Larix kaempferi (Lamb.) Carr.). Holzforschung 2022, 76, 348–355. [Google Scholar] [CrossRef]
- Sawada, Y.; Nakabayashi, R.; Yamada, Y.; Suzuki, M.; Sato, M.; Sakata, A.; Akiyama, K.; Sakurai, T.; Matsuda, F.; Aoki, T.; et al. RIKEN Tandem Mass Spectral Database (ReSpect) for Phytochemicals: A Plant-Specific MS/MS-Based Data Resource and Database. Phytochemistry 2012, 82, 38–45. [Google Scholar] [CrossRef]
- Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A Public Repository for Sharing Mass Spectral Data for Life Sciences. J. Mass Spectrom. 2010, 45, 703–714. [Google Scholar] [CrossRef]
- Galgonek, J.; Vondrášek, J. The IDSM Mass Spectrometry Extension: Searching Mass Spectra Using SPARQL. Bioinformatics 2024, 40, btae174. [Google Scholar] [CrossRef]
- Dzurenda, L.; Dudiak, M. Cross-Correlation of Color and Acidity of Wet Beech Wood in the Process of Thermal Treatment with Saturated Steam. Wood Res. 2021, 66, 105–116. [Google Scholar] [CrossRef]
- Godínez-Santillán, R.I.; Kuri-García, A.; Ramírez-Pérez, I.F.; Herrera-Hernández, M.G.; Ahumada-Solórzano, S.M.; Guzmán-Maldonado, S.H.; Vergara-Castañeda, H.A. Characterization of Extractable and Non-Extractable Phenols and Betalains in Berrycactus (Myrtillocactus Geometrizans) and Its Chemoprotective Effect in Early Stage of Colon Cancer In Vivo. Antioxidants 2024, 13, 1112. [Google Scholar] [CrossRef]
- Gonzales, G.B.; Raes, K.; Vanhoutte, H.; Coelus, S.; Smagghe, G.; Van Camp, J. Liquid Chromatography–Mass Spectrometry Coupled with Multivariate Analysis for the Characterization and Discrimination of Extractable and Nonextractable Polyphenols and Glucosinolates from Red Cabbage and Brussels Sprout Waste Streams. J. Chromatogr. A 2015, 1402, 60–70. [Google Scholar] [CrossRef]
- Cheng, A.; Yan, H.; Han, C.; Chen, X.; Wang, W.; Xie, C.; Qu, J.; Gong, Z.; Shi, X. Acid and Alkaline Hydrolysis Extraction of Non-Extractabke Polyphenols in Blueberries Optimisation by Response Surface Methodology. Czech J. Food Sci. 2014, 32, 218–225. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, S.; Wang, H.; Yang, J.; Li, L.; Zhu, J.; Liu, Y. Ultrasound-Alkaline Combined Extraction Improves the Release of Bound Polyphenols from Pitahaya (Hylocereus Undatus ’Foo-Lon’) Peel: Composition, Antioxidant Activities and Enzyme Inhibitory Activity. Ultrason. Sonochem. 2022, 90, 106213. [Google Scholar] [CrossRef]
- Bento-Silva, A.; Vaz Patto, M.C.; do Rosário Bronze, M. Relevance, Structure and Analysis of Ferulic Acid in Maize Cell Walls. Food Chem. 2018, 246, 360–378. [Google Scholar] [CrossRef]
- Chateigner-Boutin, A.-L.; Ordaz-Ortiz, J.J.; Alvarado, C.; Bouchet, B.; Durand, S.; Verhertbruggen, Y.; Barrière, Y.; Saulnier, L. Developing Pericarp of Maize: A Model to Study Arabinoxylan Synthesis and Feruloylation. Front. Plant Sci. 2016, 7, 1476. [Google Scholar] [CrossRef]
- Chandrakanth, N.N.; Zhang, C.; Freeman, J.; de Souza, W.R.; Bartley, L.E.; Mitchell, R.A.C. Modification of Plant Cell Walls with Hydroxycinnamic Acids by BAHD Acyltransferases. Front. Plant Sci. 2023, 13, 1088879. [Google Scholar] [CrossRef]
- Bunzel, M. Chemistry and Occurrence of Hydroxycinnamate Oligomers. Phytochem. Rev. 2010, 9, 47–64. [Google Scholar] [CrossRef]
- Khan, K.A.; Saleem, M.H.; Afzal, S.; Hussain, I.; Ameen, F.; Fahad, S. Ferulic Acid: Therapeutic Potential Due to Its Antioxidant Properties, Role in Plant Growth, and Stress Tolerance. Plant Growth Regul. 2024, 104, 1329–1353. [Google Scholar] [CrossRef]
- Zhang, X.; Li, L.; Xu, F. Chemical Characteristics of Wood Cell Wall with an Emphasis on Ultrastructure: A Mini-Review. Forests 2022, 13, 439. [Google Scholar] [CrossRef]
- Sato-Izawa, K.; Ito, M.; Nuoendagula; Kajita, S.; Nakamura, S.; Matsumoto, T.; Ezura, H. Distinct Deposition of Ester-Linked Ferulic and p-Coumaric Acids to the Cell Wall of Developing Sorghum Internodes. Plant Biotechnol. 2020, 37, 15–23. [Google Scholar] [CrossRef]
- Ralph, J.; Hatfield, R.D.; Quideau, S.; Helm, R.F.; Grabber, J.H.; Jung, H.-J.G. Pathway of P-Coumaric Acid Incorporation into Maize Lignin as Revealed by NMR. J. Am. Chem. Soc. 1994, 116, 9448–9456. [Google Scholar] [CrossRef]
- Hellinger, J.; Kim, H.; Ralph, J.; Karlen, S.D. P-Coumaroylation of Lignin Occurs Outside of Commelinid Monocots in the Eudicot Genus Morus (Mulberry). Plant Physiol. 2023, 191, 854–861. [Google Scholar] [CrossRef]
- Hatfield, R.D.; Rancour, D.M.; Marita, J.M. Grass Cell Walls: A Story of Cross-Linking. Front. Plant Sci. 2017, 7, 2056. [Google Scholar] [CrossRef]
- Gesteiro, N.; Butrón, A.; Estévez, S.; Santiago, R. Unraveling the Role of Maize (Zea mays L.) Cell-Wall Phenylpropanoids in Stem-Borer Resistance. Phytochemistry 2021, 185, 112683. [Google Scholar] [CrossRef]
- López-Malvar, A.; Main, O.; Guillaume, S.; Jacquemot, M.-P.; Meunier, F.; Revilla, P.; Santiago, R.; Mechin, V.; Reymond, M. Genotype-Dependent Response to Water Deficit: Increases in Maize Cell Wall Digestibility Occurs through Reducing Both p-Coumaric Acid and Lignification of the Rind. Front. Plant Sci. 2025, 16, 1571407. [Google Scholar] [CrossRef] [PubMed]
Peak | tr (min) | Compound | Color | Parent ion [M-H]− (m/z) | Charge (n) | (Estimated) Molecular Weight (Da) | Fragments (MS/MS) |
---|---|---|---|---|---|---|---|
1 | 24.7 | (+)-Catechin | N | 289 | 1 | 290 | 289, 271, 245, 203, 179, 125 |
2 | 29.55 | (Epi)catechin derivative | N | 485 | 1 | 486 | 437, 361, 331, 289, 271, 245, 203 |
3 | 30.84 | (Epi)catechin derivative | N | 485 | 1 | 486 | 437, 361, 331, 289, 271, 245, 203 |
4 | 32.5 | (−)-Epicatechin | N | 289 | 1 | 290 | 289, 271, 245, 203, 179, 125 |
5 | 33.8 | (Epi)catechin derivative | Y | 798.2 | 2 | 1596 | 691, 643, 289, 245, 203 |
6 | 35.3 | (Epi)catechin derivative | N | 485 | 1 | 486 | 437, 361, 331, 289, 271, 245, 203 |
7 | 36.9 | (Epi)catechin derivative | N | 485 | 1 | 486 | 437, 361, 331, 289, 271, 245, 203 |
8 | 41.35 | (Epi)catechin derivative | Y | 713.4 | 1 | 714 | 543, 331, 289, 271, 245, 203 |
9 | 41.37 | (Epi)catechin + taxifolin derivative | Y | 863 | 1 | 864 | 693, 449, 289, 285, 245, 241, 217, 203, 175 |
10 | 41.75 | (Epi)catechin + taxifolin | Y | 575 | 1 | 576 | 539, 449, 423, 289, 285, 271, 245, 241, 217, 203 |
11 | 41.8 | (Epi)catechin derivative | Y | 811.5 | 2 | 1623 | 631, 507, 315, 289, 245, 203 |
12 | 42.4 | (Epi)catechin + taxifolin | Y | 575 | 1 | 576 | 539, 449, 423, 289, 285, 271, 245, 241, 217, 203 |
13 | 42.5 | (Epi)catechin derivative | Y | 753.5 | 2 | 1507 | 601, 449, 301, 289, 271, 245, 203 |
14 | 43.25 | (Epi)catechin derivative | Y | 771.6 | 2 | 1544 | 441, 331, 303, 289, 271, 245, 203 |
15 | 43.4 | Taxifolin | N | 303 | 1 | 304 | 285, 241, 217, 175 |
16 | 43.8 | (Epi)catechin + taxifolin | Y | 575 | 1 | 576 | 539, 449, 423, 289, 285, 271, 245, 241, 217, 203 |
17 | 44.2 | (Epi)catechin + taxifolin | Y | 575 | 1 | 576 | 539, 449, 423, 289, 285, 271, 245, 241, 217, 203 |
18 | 45.8 | Unidentified | Y | 731.6 | 1 | 732 | 419, 389, 373, 359, 311 |
19 | 46.1 | Unidentified | Y | 709.5 | 3 | 2130 | 489, 471, 455, 441, 243 |
20 | 46.3 | Unidentified | Y | 703.5 | 2 | 1408 | 519, 419, 315, 169, 183 |
21 | 46.7 | (Epi)catechin derivative | Y | 455 | 1 | 456 | 455, 301, 289, 271, 245, 203 |
22 | 47.35 | Unidentified | Y | 731.7 | 3 | 2196 | 577, 314, 285 |
23 | 52.5 | Unidentified | Y | 711.8 | 2 | 1424 | 545, 504 |
24 | 54.8 | Unidentified | Y | 878.1 | 1 | 878 | 498, 227, 209, 183 |
25 | 54.8 | Unidentified | Y | 867.2 | 1 | 1734 | |
26 | 60.75 | Unidentified | Y | 729.8 | 2 | 1460 | 504, 357, 342, 193, 175 |
27 | 60.83 | Unidentified | Y | 716.5 | 2 | 1434 | 670, 557, 408, 369, 317 |
28 | 61.1 | Unidentified | Y | 716.5 | 2 | 1434 | 670, 557, 408, 369, 317 |
29 | 61.2 | Unidentified | Y | 729.8 | 2 | 1460 | 504, 357, 342, 193, 175 |
30 | 61.3 | Unidentified | Y | 713.8 | 2 | 1426 | 506, 343, 207, 207, 193, 175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, T.; Visi-Rajczi, E.; Albert, L. Role of Extractable and Non-Extractable Polyphenols in the Formation of Beech (Fagus sylvatica L.) Red Heartwood Chromophores. Forests 2025, 16, 1557. https://doi.org/10.3390/f16101557
Hofmann T, Visi-Rajczi E, Albert L. Role of Extractable and Non-Extractable Polyphenols in the Formation of Beech (Fagus sylvatica L.) Red Heartwood Chromophores. Forests. 2025; 16(10):1557. https://doi.org/10.3390/f16101557
Chicago/Turabian StyleHofmann, Tamás, Eszter Visi-Rajczi, and Levente Albert. 2025. "Role of Extractable and Non-Extractable Polyphenols in the Formation of Beech (Fagus sylvatica L.) Red Heartwood Chromophores" Forests 16, no. 10: 1557. https://doi.org/10.3390/f16101557
APA StyleHofmann, T., Visi-Rajczi, E., & Albert, L. (2025). Role of Extractable and Non-Extractable Polyphenols in the Formation of Beech (Fagus sylvatica L.) Red Heartwood Chromophores. Forests, 16(10), 1557. https://doi.org/10.3390/f16101557