Modelling Diameter Distribution in Near-Natural European Beech Forests: Are Geo-Climatic Variables Alone Sufficient?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Model Procedure
2.3.1. Weibull Distribution and Parameter Prediction Method
2.3.2. Candidate Variables Included in the Modelling Procedure
2.3.3. Model Formulation
2.3.4. Model Evaluation and Validation
3. Results
Diameter Distribution Modelling for the Main Beech Forest Types
4. Discussion
4.1. General Diameter Distribution Model for Near-Natural Beech Forests, Developed by Including Stand, Geo-Climatic and Forest Management Variables
4.2. Models for Beech Forest Types Including Stand, Geo-Climatic and Management Variables
4.3. Diameter Distribution Models with Limited or No Stand Parameters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DMIN | Minimum tree diameter at breast height (cm) |
QMD | Mean quadratic diameter (cm) |
DMAX | Maximum diameter (cm) |
BA | Basal area (m2/ha) |
PBeech | Proportion of beech in BA |
ELE | Elevation (m) |
SLP | Slope (°), |
ASP | Aspect |
Tspr | Average temperature for March, April and May (°C) |
SProd | Coefficient K (proxy of site productivity) |
BAREM | BA of cut and dead trees (m2/ha) |
PPM | Parameter prediction method |
References
- Pretzsch, H. Forest Dynamics, Growth and Yield: From Measurement to Model; Springer: Berlin/Heidelberg, Germany, 2010; p. 683. ISBN 9783540883067. [Google Scholar]
- Bassil, S.; Nyland, R.D.; Kern, C.C.; Kenefic, L.S. Dynamics of the Diameter Distribution after Selection Cutting in Uneven-and Even-Aged Northern Hardwood Stands: A Long-Term Evaluation. Can. J. For. Res. 2019, 49, 1525–1539. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer: Dordrecht, The Netherlands, 2012; p. 458. [Google Scholar] [CrossRef]
- Forrester, D.I. Linking Forest Growth with Stand Structure: Tree Size Inequality, Tree Growth or Resource Partitioning and the Asymmetry of Competition. Ecol. Manag. 2019, 447, 139–157. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dauber, E. Long-Term Stand Dynamics of Managed Spruce-Fir-Beech Mountain Forests in Central Europe: Structure, Productivity and Regeneration Success. Forestry 2015, 88, 407–428. [Google Scholar] [CrossRef]
- Russell, M.B.; Burkhart, H.E.; Amateis, R.L.; Prisley, S.P. Regional Locale and Its Influence on the Prediction of Loblolly Pine Diameter Distributions. South. J. Appl. For. 2012, 36, 198–203. [Google Scholar] [CrossRef]
- Forrester, D.I.; Elms, S.R.; Baker, T.G. Tree Growth-Competition Relationships in Thinned Eucalyptus Plantations Vary with Stand Structure and Site Quality. Eur. J. Res. 2013, 132, 241–252. [Google Scholar] [CrossRef]
- Condés, S.; del Río, M.; Forrester, D.I.; Avdagić, A.; Bielak, K.; Bončina, A.; Bosela, M.; Hilmers, T.; Ibrahimspahić, A.; Drozdowski, S.; et al. Temperature Effect on Size Distributions in Spruce-Fir-Beech Mixed Stands across Europe. Ecol. Manag. 2022, 504, 119819. [Google Scholar] [CrossRef]
- Gorgoso, J.J.; Rojo, A.; Camara-Obregon, A.; Dieguez-Aranda, U. A comparison of estimation methods for fitting Weibull, Johnson’s SB and beta functions to Pinus pinaster, Pinus radiata and Pinus sylvestris stands in northwest Spain. For. Syst. 2012, 21, 446–459. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Ďurský, J. The Single Tree-Based Stand Simulator SILVA: Construction, Application and Evaluation. Ecol. Manag. 2002, 162, 3–21. [Google Scholar] [CrossRef]
- Fabrika, M.; Valent, P.; Scheer, Ľ. Thinning Trainer Based on Forest-Growth Model, Virtual Reality and Computer-Aided Virtual Environment. Environ. Model. Softw. 2018, 100, 11–23. [Google Scholar] [CrossRef]
- Schütz, J.P.; Rosset, C.; Dumollard, G.; Endtner, J.; Gollut, C.; Martin, V.; Sala, V.; Weber, D.; Wyss, F. SiWaWa 2.0 et Placettes Permanentes de Suivi Sylvicole (PPSS), Rapport Final (SiWaWa 2.0) and Permanent Monitoring Plots, Final Report; School of Agricultural, Forest and Food Sciences, HAFL: Zollikofen, Switzerland, 2018; p. 127. [Google Scholar]
- Rijal, B.; Sharma, M. Modelling Diameter at Breast Height Distribution of Jack Pine and Black Spruce Natural Stands in Eastern Canada. Can. J. For. Res. 2024, 54, 554–568. [Google Scholar] [CrossRef]
- Sghaier, T.; Cañellas, I.; Calama, R.; Sánchez-González, M. Modelling Diameter Distribution of Tetraclinis articulata in Tunisia Using Normal and Weibull Distributions with Parameters Depending on Stand Variables. iForest 2016, 9, 702–709. [Google Scholar] [CrossRef]
- Nanos, N.; de Luna, S.S. Fitting Diameter Distribution Models to Data from Forest Inventories with Concentric Plot Design. For. Syst. 2017, 26, e01S. [Google Scholar] [CrossRef]
- Bailey, R.L.; Dell, T.R. Quantifying Diameter Distributions with the Weibull Function. For. Sci. 1973, 19, 97–104. [Google Scholar] [CrossRef]
- Dubey, S.D. Some Percentile Estimators for Weibull Parameters. Technometrics 1967, 9, 119–129. [Google Scholar] [CrossRef]
- Schütz, J.P.; Rosset, C. Performances of Different Methods of Estimating the Diameter Distribution Based on Simple Stand Structure Variables in Monospecific Regular Temperate European Forests. Ann. Sci. 2020, 77, 47. [Google Scholar] [CrossRef]
- Kangas, A.; Maltamo, M. Performance of Percentile Based Diameter Distribution Prediction and Weibull Method in Independent Data Sets. Silva Fenn. 2000, 34, 381–398. [Google Scholar] [CrossRef]
- Guo, H.; Liu, X.; Liu, D. Soil-Sensitive Weibull Distribution Models of Larix principis-rupprechtii Plantations across Northern China. Forests 2024, 15, 1562. [Google Scholar] [CrossRef]
- Cao, Q.V. Predicting Future Diameter Distributions given Current Stand Attributes. Can. J. For. Res. 2022, 52, 561–567. [Google Scholar] [CrossRef]
- Clutter, J.L.; Bennett, F.A. Diameter Distributions in Old-Field Slash Pine Plantations; Georgia Forest Research Council: Dry Branch, GA, USA, 1965; pp. 1–9. [Google Scholar]
- Poudel, K.P.; Cao, Q.V. Evaluation of Methods to Predict Weibull Parameters for Characterizing Diameter Distributions. For. Sci. 2013, 59, 243–252. [Google Scholar] [CrossRef]
- Mehtatalo, L.; Lappi, J. Biometry for Forestry and Environmental Data with Examples in R; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9781498711487. [Google Scholar]
- Newton, P.F.; Lei, Y.; Zhang, S.Y. Stand-Level Diameter Distribution Yield Model for Black Spruce Plantations. Ecol. Manag. 2005, 209, 181–192. [Google Scholar] [CrossRef]
- Kuehne, C.; Granhus, A.; Hanssen, K.H. Analyzing Growth Characteristics and Diameter Distributions of Young Norway Spruce Plantations in Norway. New For. 2025, 56, 32. [Google Scholar] [CrossRef]
- Sa, Q.; Jin, X.; Pukkala, T.; Li, F. Developing Weibull-Based Diameter Distributions for the Major Coniferous Species in Heilongjiang Province, China. J. Res. 2023, 34, 1803–1815. [Google Scholar] [CrossRef]
- Maltamo, M. Comparing Basal Area Diameter Distributions Estimated by Tree Species and for the Entire Growing Stock in a Mixed Stand. Silva Fenn. 1997, 31, 5609. [Google Scholar] [CrossRef]
- Guo, H.; Lei, X.; You, L.; Zeng, W.; Lang, P.; Lei, Y. Climate-Sensitive Diameter Distribution Models of Larch Plantations in North and Northeast China. For. Ecol. Manag. 2022, 506, 119947. [Google Scholar] [CrossRef]
- Sanquetta, C.R.; Behling, A.; Dalla Corte, A.P.; Péllico Netto, S.; Rodrigues, A.L.; Simon, A.A. A Model Based on Environmental Factors for Diameter Distribution in Black Wattle in Brazil. PLoS ONE 2014, 9, e100093. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, K.L.; Ramage, B.S. Silviculture in an Uncertain World: Utilizing Multi-Aged Management Systems to Integrate Disturbance. For. Int. J. For. Res. 2013, 86, 401–410. [Google Scholar] [CrossRef]
- Rodrigo, R.; Pettit, J.L.; Matula, R.; Kozák, D.; Bače, R.; Pavlin, J.; Janda, P.; Mikoláš, M.; Nagel, T.A.; Schurman, J.; et al. Historical Mixed-Severity Disturbances Shape Current Diameter Distributions of Primary Temperate Norway Spruce Mountain Forests in Europe. For. Ecol. Manag. 2022, 503, 119772. [Google Scholar] [CrossRef]
- Kuliešis, A.; Kasperavičius, A. Reliability and Efficiency of Lithuanian National Forest Inventory Sampling Design and Results. Balt. For. 2022, 10, 27–35. [Google Scholar]
- Mey, R.; Stadelmann, G.; Thürig, E.; Bugmann, H.; Zell, J. From Small Forest Samples to Generalised Uni- and Bimodal Stand Descriptions. Methods Ecol. Evol. 2021, 12, 634–645. [Google Scholar] [CrossRef]
- Mey, R.; Temperli, C.; Stillhard, J.; Nitzsche, J.; Thürig, E.; Bugmann, H.; Zell, J. Deriving Forest Stand Information from Small Sample Plots: An Evaluation of Statistical Methods. Ecol. Manag. 2023, 544, 121155. [Google Scholar] [CrossRef]
- Bohn, U.; Gollub, G.; Hettwer, C.; Neuhäuslová, Z.; Raus, T.; Schlüter, H.; Weber, H. Karte der Natürlichen Vegetation Europas Map of the Natural Vegetation of Europe Maßstab/Scale 1:2500000; Landwirtschaftsverlag: Münster, Germany, 2000; p. 523. [Google Scholar]
- Rozman, A.; Poljanec, A.; Babij, V.; Klopčič, M.; Dakskobler, I.; Kutnar, L.; Bončina, A. Gozdni rastiščni tipi Slovenije: Primerjalni pregled ekoloških, vegetacijskih, rastiščnih, sestojnih in upravljavskih značilnosti. GozdVestn 2023, 83, 1–23. [Google Scholar]
- Bončina, A.; Rozman, A.; Dakskobler, I.; Klopčič, M.; Babij, V.; Poljanec, A. Gozdni Rastiščni Tipi Slovenije: Vegetacijske, Sestojne, Upravljavske Značilnosti; Biotechnical Faculty, Department of Forestry and Renewable Forest Resources and Slovenia and Forest Service: Ljubljana, Slovenia, 2021; p. 575. [Google Scholar]
- Diaci, J.; Adamic, T.; Fidej, G.; Rozenbergar, D. Toward a Beech-Dominated Alternative Stable State in Dinaric Mixed Montane Forests: A Long-Term Study of the Pecka Old-Growth Forest. Front. For. Glob. Change 2022, 5, 937404. [Google Scholar] [CrossRef]
- Larsson, T.-B. European Forest Types, Categories and Types for Sustainable Forest Management Reporting and Policy; Technical Report; European Environmental Agency: Copenhagen, Denmark, 2006; p. 114. [Google Scholar]
- Rohner, B.; Waldner, P.; Lischke, H.; Ferretti, M.; Thürig, E. Predicting Individual-Tree Growth of Central European Tree Species as a Function of Site, Stand, Management, Nutrient, and Climate Effects. Eur. J. Res. 2018, 137, 29–44. [Google Scholar] [CrossRef]
- Trifković, V.; Bončina, A.; Ficko, A. Analyzing Asymmetries in the Response of European Beech to Precipitation Anomalies in Various Stand and Site Conditions Using Decadal Diameter Censuses. Agric. For. Meteorol. 2022, 327, 109195. [Google Scholar] [CrossRef]
- Trifković, V.; Bončina, A.; Ficko, A. Recruitment of European Beech, Norway Spruce and Silver Fir in Uneven-Aged Forests: Optimal and Critical Stand, Site and Climatic Conditions. For. Ecol. Manag. 2023, 529, 120679. [Google Scholar] [CrossRef]
- Lexerød, N.L. Recruitment Models for Different Tree Species in Norway. Ecol. Manag. 2005, 206, 91–108. [Google Scholar] [CrossRef]
- Pretzsch, H.; Heym, M.; Hilmers, T.; Bravo-Oviedo, A.; Ahmed, S.; Ammer, C.; Avdagić, A.; Bielak, K.; Bravo, F.; Brazaitis, G.; et al. Mortality Reduces Overyielding in Mixed Scots Pine and European Beech Stands along a Precipitation Gradient in Europe. For. Ecol. Manag. 2023, 539, 121008. [Google Scholar] [CrossRef]
- Trifković, V.; Bončina, A.; Ficko, A. Density-Dependent Mortality Models for Mono- and Multi-Species Uneven-Aged Stands: The Role of Species Mixture. For. Ecol. Manag. 2023, 545, 121260. [Google Scholar] [CrossRef]
- Moreno, A.; Neumann, M.; Hasenauer, H. Climate Limits on European Forest Structure across Space and Time. Glob. Planet. Change 2018, 169, 168–178. [Google Scholar] [CrossRef]
- Schulze, E.D.; Aas, G.; Grimm, G.W.; Gossner, M.M.; Walentowski, H.; Ammer, C.; Kühn, I.; Bouriaud, O.; von Gadow, K. A Review on Plant Diversity and Forest Management of European Beech Forests. Eur. J. Res. 2016, 135, 51–67. [Google Scholar] [CrossRef]
- Antonucci, S.; Santopuoli, G.; Marchetti, M.; Tognetti, R.; Chiavetta, U.; Garfì, V. What Is Known About the Management of European Beech Forests Facing Climate Change? A Review. Curr. For. Rep. 2021, 7, 321–333. [Google Scholar] [CrossRef]
- Schütz, J.-P. The Swiss Experience: More than One Hundred Years of Experience with a Single-Tree-Selection Management-System in Mountainous Mixed-Forests of Spruce, Fir and Beech from an Empirically Developed Utilization in Small-Scale Private Forests to an Elaborate and Original Concept of Silviculture; UFRO Interdisciplinary Uneven-Aged Management Symposium; Oregon State University: Corvallis, OR, USA, 1997. [Google Scholar]
- Bončina, A.; Kadunc, A.; Robič, D. Effects of Selective Thinning on Growth and Development of Beech (Fagus sylvatica L.) Forest Stands in South-Eastern Slovenia. Ann. Sci. 2007, 64, 47–57. [Google Scholar] [CrossRef]
- Newton, P.F. Stand Density Management Diagrams: Modelling Approaches, Variants, and Exemplification of Their Potential Utility in Crop Planning. Can. J. For. Res. 2021, 51, 236–256. [Google Scholar] [CrossRef]
- Rodrigo, R.M.; Pettit, J.L.; Janda, P.; Pavlin, J.; Ralhan, D.; Kozak, D.; Matula, R.; Marchand, W.; Bače, R.; Dušátko, M.; et al. Past Disturbances Shape Present Tree Size Distribution in European Temperate Primary Beech-Dominated Forests. For. Ecol. Manag. 2024, 574, 122364. [Google Scholar] [CrossRef]
- Merganič, J.; Sterba, H. Characterisation of Diameter Distribution Using the Weibull Function: Method of Moments. Eur. J. Res. 2006, 125, 427–439. [Google Scholar] [CrossRef]
- Geßler, A.; Keitel, C.; Kreuzwieser, J.; Matyssek, R.; Seiler, W.; Rennenberg, H. Potential Risks for European Beech (Fagus sylvatica L.) in a Changing Climate. Trees—Struct. Funct. 2007, 21, 1–11. [Google Scholar] [CrossRef]
- Martinez del Castillo, E.; Zang, C.S.; Buras, A.; Hacket-Pain, A.; Esper, J.; Serrano-Notivoli, R.; Hartl, C.; Weigel, R.; Klesse, S.; Resco de Dios, V.; et al. Climate-Change-Driven Growth Decline of European Beech Forests. Commun. Biol. 2022, 5, 163. [Google Scholar] [CrossRef]
- Slovenia Forest Service. Forestry Databases; Slovenia Forest Service: Ljubljana, Slovenia, 2014. [Google Scholar]
- Poljanec, A.; Ficko, A.; Boncina, A. Spatiotemporal Dynamic of European Beech (Fagus sylvatica L.) in Slovenia, 1970–2005. For. Ecol. Manag. 2010, 259, 2183–2190. [Google Scholar] [CrossRef]
- Bončina, A. History, Current Status and Future Prospects of Uneven-Aged Forest Management in the Dinaric Region: An Overview. Forestry 2011, 84, 467–478. [Google Scholar] [CrossRef]
- Slovenian Environment Agency. Databases; Slovenian Environment Agency: Ljubljana, Slovenia, 2021. [Google Scholar]
- Ministry of Agriculture, Forestry and Food. Databases; Ministry of Agriculture, Forestry and Food: Ljubljana, Slovenia, 2021. [Google Scholar]
- Braun-Blanquet, J. Zur Wertung Der Gesellschaftstreue in der Pflanzensoziologie. Vierteljahrsschr. Naturforschenden Ges. Zürich 1925, 70, 122–149. [Google Scholar]
- Kutnar, L.; Dakskobler, I.; Dakskobler, I.; Robič, D. Tipologija Gozdnih Rastišč Slovenije Na Podlagi Ekoloških in Vegetacijskih Razmer Za Potrebe Usmerjanja Razvoja Gozdov. Gozdarski Vestn. 2012, 70, 195–214. [Google Scholar]
- O’Hara, K.L.; Hasenauer, H.; Kindermann, G. Sustainability in Multi-Aged Stands: An Analysis of Long-Term Plenter Systems. Forestry 2007, 80, 163–181. [Google Scholar] [CrossRef]
- Duduman, G. A Forest Management Planning Tool to Create Highly Diverse Uneven-Aged Stands. Forestry 2011, 84, 301–314. [Google Scholar] [CrossRef]
- Klopčič, M.; Poljanec, A.; Dolinar, M.; Kastelec, D.; Bončina, A. Ice-Storm Damage to Trees in Mixed Central European Forests: Damage Patterns, Predictors and Susceptibility of Tree Species. Forestry 2020, 93, 430–443. [Google Scholar] [CrossRef]
- Dănescu, A.; Albrecht, A.T.; Bauhus, J. Structural Diversity Promotes Productivity of Mixed, Uneven-Aged Forests in Southwestern Germany. Oecologia 2016, 182, 319–333. [Google Scholar] [CrossRef]
- Palahí, M.; Pukkala, T.; Trasobares, A. Modelling the Diameter Distribution of Pinus sylvestris, Pinus nigra and Pinus halepensis Forest Stands in Catalonia Using the Truncated Weibull Function. Forestry 2006, 79, 553–562. [Google Scholar] [CrossRef]
- Weibull, W. A Statistical Theory of the Strength of Materials. Vetenskapa Acadmiend Handligar 1939, 151, 1–45. [Google Scholar]
- Schmidt, L.N.; Sanquetta, M.N.I.; McTague, J.P.; da Silva, G.F.; Fraga Filho, C.V.; Sanquetta, C.R.; Soares Scolforo, J.R. On the Use of the Weibull Distribution in Modeling and Describing Diameter Distributions of Clonal Eucalypt Stands. Can. J. For. Res. 2020, 50, 1050–1063. [Google Scholar] [CrossRef]
- Bončina, A.; Klopčič, M.; Trifković, V.; Ficko, A.; Simončič, P. Tree and Stand Growth Differ among Soil Classes in Semi-Natural Forests in Central Europe. Catena 2023, 222, 106854. [Google Scholar] [CrossRef]
- Jones, A.; Montanarella, L.; Jones, R. Soils Atlas of Europe; The European Soil Bureau, Joint Research Centre: Ispra, Italy, 2005; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC32396 (accessed on 17 May 2024).
- Cailliez, F.; Alder, D. Forest Volume Estimation and Yield Prediction; Food and Agriculture Organization of the United Nations: Rome, Italy, 1980; ISBN 9251009236. [Google Scholar]
- Kušar, G.; Hočevar, M. Selection of appropriate tariff functions of adapted uniform French tariffs for stand’s growing stock computation by control sampling method. In Control Sampling Method in Slovenia—History, Characteristics and Use, Špela Planinšek; Gozdarski Inštitut Slovenije, Silva Slovenica: Ljubljana, Slovenia, 2009; pp. 69–83. [Google Scholar]
- Beltran, H.A.; Chauchard, L.; Velásquez, A.; Sbrancia, R.; Pastur, G.M. Índice de Sítio Diamétrico: Um Método Alternativo Para Estimar a Qualidade Do Sítio Em Florestas de Nothofagus Obliqua e N. Alpina. Cerne 2016, 22, 345–354. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. Available online: https://www.stats.ox.ac.uk/pub/MASS4/ (accessed on 13 March 2023).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://www.john-fox.ca/Companion/ (accessed on 14 March 2023).
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Knox, R.G.; Peet, R.K.; Christensen, N.L. Population Dynamics in Loblolly Pine Stands: Changes in Skewness and Size Inequality. Ecology 1989, 70, 1153–1167. [Google Scholar] [CrossRef]
- Stojanović, D.B.; Levanič, T.; Matović, B.; Stjepanović, S.; Orlović, S. Growth Response of Different Tree Species (Oaks, Beech and Pine) from SE Europe to Precipitation over Time. Dendrobiology 2018, 79, 97–110. [Google Scholar] [CrossRef]
- Weigel, R.; Bat-Enerel, B.; Dulamsuren, C.; Muffler, L.; Weithmann, G.; Leuschner, C. Summer Drought Exposure, Stand Structure, and Soil Properties Jointly Control the Growth of European Beech along a Steep Precipitation Gradient in Northern Germany. Glob. Change Biol. 2023, 29, 763–779. [Google Scholar] [CrossRef]
- Binkley, D. Seven Decades of Stand Development in Mixed and Pure Stands of Conifers and Nitrogen-Fixing Red Alder. Can. J. For. Res. 2003, 33, 2274–2279. [Google Scholar] [CrossRef]
- Binkley, D.; Senock, R.; Bird, S.; Cole, T.G. Twenty Years of Stand Development in Pure and Mixed Stands of Eucalyptus saligna and Nitrogen-Fixing Facaltaria moluccana. Ecol. Manag. 2003, 182, 93–102. [Google Scholar] [CrossRef]
- Forrester, D.I.; Smith, R.G.B. Faster Growth of Eucalyptus grandis and Eucalyptus pilularis in Mixed-Species Stands than Monocultures. Ecol. Manag. 2012, 286, 81–86. [Google Scholar] [CrossRef]
- Pretzsch, H.; del Río, M.; Ammer, C.; Avdagic, A.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Coll, L.; Dirnberger, G.; Drössler, L.; et al. Growth and Yield of Mixed versus Pure Stands of Scots Pine (Pinus sylvestris L.) and European Beech (Fagus sylvatica L.) Analysed along a Productivity Gradient through Europe. Eur. J. Res. 2015, 134, 927–947. [Google Scholar] [CrossRef]
- Forrester, D.I.; Bauhus, J.; Khanna, P.K. Growth Dynamics in a Mixed-Species Plantation of Eucalyptus globulus and Acacia mearnsii. Ecol. Manag. 2004, 193, 81–95. [Google Scholar] [CrossRef]
- Diaci, J. Gozdna Ekologija in Nega; Univerza v Ljubljani: Ljubljana, Slovenia, 2021; p. 434. [Google Scholar]
- Diaci, J. Nature-Based Silviculture in Slovenia: Origins, Development and Future Trends. In Nature-Based Forestry in Central Europe; University in Ljubljana: Ljubljana, Slovenia, 2006; pp. 119–131. [Google Scholar]
- Petrovska, R.; Bugmann, H.; Hobi, M.L.; Ghosh, S.; Brang, P. Survival Time and Mortality Rate of Regeneration in the Deep Shade of a Primeval Beech Forest. Eur. J. Res. 2022, 141, 43–58. [Google Scholar] [CrossRef]
- Heiri, C.; Wolf, A.; Rohrer, L.; Bugmann, H. Forty Years of Natural Dynamics in Swiss Beech Forests: Structure, Composition, and the Influence of Former Management. Ecol. Appl. 2009, 19, 1920–1934. [Google Scholar] [CrossRef]
- Fidej, G.; Mikoš, M.; Rugani, T.; Jež, J.; Kumelj, Š.; Diaci, J. Assessment of the Protective Function of Forests against Debris Flows in a Gorge of the Slovenian Alps. iForest 2014, 8, 73–81. [Google Scholar] [CrossRef]
- Lingua, E.; Bettella, F.; Pividori, M.; Marzano, R.; Garbarino, M.; Piras, M.; Kobal, M.; Berger, F. The Protective Role of Forests to Reduce Rockfall Risks and Impacts in the Alps Under a Climate Change Perspective. In Climate Change Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 333–347. [Google Scholar]
- Scheidl, C.; Heiser, M.; Vospernik, S.; Lauss, E.; Perzl, F.; Kofler, A.; Kleemayr, K.; Bettella, F.; Lingua, E.; Garbarino, M.; et al. Assessing the Protective Role of Alpine Forests against Rockfall at Regional Scale. Eur. J. Res. 2020, 139, 969–980. [Google Scholar] [CrossRef]
- Fang, J.; Lechowicz, M.J. Climatic Limits for the Present Distribution of Beech (Fagus L.) Species in the World. J. Biogeogr. 2006, 33, 1804–1819. [Google Scholar] [CrossRef]
Variable | Description | Mean | SD | Min | Max | b | c |
---|---|---|---|---|---|---|---|
DMIN | Minimum tree diameter at breast height (cm) | 14.0 | 5.2 | 10 | 45 | + | + |
QMD | Mean quadratic diameter (cm) | 28.5 | 6.9 | 11.0 | 57.1 | + | - |
DDOM | Dominant tree diameter (mean diameter of the 100 thickest trees per ha (cm)) | 40.5 | 7.7 | 14 | 69 | - | - |
DMAX | Maximum diameter (cm) | 47.0 | 9.7 | 15 | 88 | - | + |
BA | Basal area (m2/ha) | 33.6 | 10.2 | 3.6 | 85.6 | + | + |
N | Number of trees per hectare | 605 | 320 | 200 | 2900 | - | - |
PBeech | Proportion of beech in BA | 0.93 | 0.07 | 0.80 | 1.00 | + | + |
ELE | Elevation (m) | 677 | 305 | 139 | 1646 | + | + |
SLP | Slope (°) | 16.8 | 8.2 | 0.0 | 46.8 | + | + |
ASP | Aspect | Dummy variable (cold, warm) | + | + | |||
Tspr | Average temperature for March. April. May (°C) | 7.4 | 2.0 | 1 | 12 | + | + |
Tspr_sum | Sum temperature for March, April, May (°C) | 22.2 | 5.9 | 3 | 36 | - | - |
SOLRAD | Solar radiation (kJ/m2) | 1904.6 | 105.9 | 1580 | 2395 | - | - |
BIO1 | Annual mean temperature (°C) | 7.9 | 1.7 | 3 | 13 | - | - |
BIO2 | Mean diurnal range (Tmax–Tmin) (°C) | 9.1 | 2.3 | 0 | 14 | - | - |
BIO10 | Mean temperature of warmest quarter (°C) | 16.4 | 2.1 | 10.3 | 21.8 | - | - |
BIO11 | Mean temperature of coldest quarter (°C) | −0.6 | 1.4 | −4.3 | 5.7 | - | - |
PCP | Precipitation (mm) | 1752.1 | 480.1 | 0 | 3600 | - | - |
PCP_D | Days with precipitation | 18 | 7 | 9 | 37 | - | - |
DSoil | Depth of soil (cm) | 58.7 | 22.7 | 0 | 300 | - | - |
DSoil_A | Depth of soil (organic A horizon) (cm) | 13.4 | 4.9 | 0 | 52 | - | - |
pH | Soil pH (average) | 5.18 | 1.08 | 0 | 7.5 | - | - |
pH_A | Soil pH (organic A horizon) | 5.11 | 1.28 | 0 | 7.5 | - | - |
SoilT | FAO soil class (leptosols, eutric & chromic cambisols, dystric cambisols, other soil classes) | + | + | ||||
SProd | Coefficient K (proxy for site productivity) | 1.98 | 0.28 | 1.20 | 2.95 | + | + |
BAREM | Basal area of cut and dead trees (m2/ha) | 3.2 | 4.5 | 0.0 | 41.9 | + | + |
b1 | b2 | b3 | c1 | c2 | c3 | |
---|---|---|---|---|---|---|
DMIN | 1.6 × 10−3 ↑ | x | x | 59.70 ↑ | x | x |
QMD | 99.83 ↑ | excluded due to MC | ||||
DMAX | excluded due to MC | 37.44 ↓ | ||||
BA | 80.97 ↑ | x | 2.28 ↑ | 11.73 ↓ | x | |
PBeech | 4.7 × 10−5 ↑ | 4.37 ↑ | x | 0.28 ↑ | 62.54 ↑ | x |
ELE | 1.4 × 10−5 ↑ | 1.90 ↓ | 5.74 ↓ | 0.11 ↑ | 2.71 ↑ | 13.47 ↑ |
SLP | 4.76 ↑ | 0.03 ↓ | 9.43 ↓ | |||
Tspr | 0.06 ↓ | 4.79 ↓ | 23.90 ↓ | |||
ASP warm | 0.46 ↓ | 2.62 ↓ | 0.02 ↓ | |||
SoilT D. Cambisol | ↑ | ↑ | ↑ | ↑ | ||
SoilT Leptosols | 0.85 ↑ | 7.91 ↑ | 11.76 ↑ | 53.20 ↑ | ||
SoilT Other | ↑ | ↑ | ||||
SProd | 8.98 ↑ | 78.97 ↑ | ||||
BAREM | 2.45 ↑ | x | 0.07 ↑ | 6.46 ↑ | x | |
Performance evaluation | ||||||
AIC | −35,915 | −1369 | −154 | −7011 | 1278 | 1523 |
R2 (%) | 99.5 | 18.8 | 2.8 | 72.0 | 4.9 | 1.3 |
RMSE | 0.0170 | 0.2183 | 0.2389 | 0.1438 | 0.2656 | 0.2705 |
Validation | ||||||
R2 (%) | 99.5 | 18.7 | 2.7 | 72.1 | 4.8 | 1.4 |
RMSE | 0.0169 | 0.2158 | 0.2391 | 0.1440 | 0.2657 | 0.2706 |
ME | 4.907 × 10−8 | −2.947 × 10−6 | −7.895 × 10−7 | 1.268 × 10−5 | 6.0525 × 10−5 | 1.185 × 10−5 |
SD | 1.697 × 10−2 | 2.166 × 10−1 | 2.389 × 10−1 | 1.392 × 10−1 | 2.659 × 10−1 | 2.708 × 10−1 |
Submontane & Colline | Montane | Subalpine & Altimontane | Acidophilous | Thermophilus | |
---|---|---|---|---|---|
DMIN | 61.48 ↑ | 59.11 ↑ | 62.12 ↑ | 61.94 ↑ | 59.73 ↑ |
DMAX | 35.79 ↓ | 37.29 ↓ | 36.25 ↓ | 35.46 ↓ | 38.06 ↓ |
BA | 2.36 ↑ | 2.69 ↑ | 1.23 ↑ | 2.60 ↑ | 1.36 ↑ |
PBeech | 0.28 ↑ | 0.46 ↑ | 0.64 ↑ | ||
ELE | 0.21 ↑ | ||||
SLP | |||||
Tspr | 0.16 ↓ | ||||
ASP warm | 0.07 ↓ | ||||
SoilT D. Cambisol | |||||
SoilT Leptosol | |||||
SoilT Other | |||||
SProd | |||||
BAREM | 0.08 ↑ | 0.20 ↑ | 0.03 ↑ |
Submontane & Colline | Montane | Subalpine & Altimontane | Acidophilous | Thermophilus | ||
---|---|---|---|---|---|---|
N | 1814 | 2155 | 595 | 1487 | 531 | |
b | R2 (%) | 99.5 | 99.6 | 99.6 | 99.4 | 99.6 |
RMSE | 0.166 | 0.0171 | 0.0169 | 0.0169 | 0.0167 | |
c | R2 (%) | 72.4 | 71.7 | 71.2 | 69.9 | 75.6 |
RMSE | 0.141 | 0.150 | 0.151 | 0.138 | 0.140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bončina, Ž.; Rosset, C.; Klopčič, M. Modelling Diameter Distribution in Near-Natural European Beech Forests: Are Geo-Climatic Variables Alone Sufficient? Forests 2025, 16, 1556. https://doi.org/10.3390/f16101556
Bončina Ž, Rosset C, Klopčič M. Modelling Diameter Distribution in Near-Natural European Beech Forests: Are Geo-Climatic Variables Alone Sufficient? Forests. 2025; 16(10):1556. https://doi.org/10.3390/f16101556
Chicago/Turabian StyleBončina, Živa, Christian Rosset, and Matija Klopčič. 2025. "Modelling Diameter Distribution in Near-Natural European Beech Forests: Are Geo-Climatic Variables Alone Sufficient?" Forests 16, no. 10: 1556. https://doi.org/10.3390/f16101556
APA StyleBončina, Ž., Rosset, C., & Klopčič, M. (2025). Modelling Diameter Distribution in Near-Natural European Beech Forests: Are Geo-Climatic Variables Alone Sufficient? Forests, 16(10), 1556. https://doi.org/10.3390/f16101556