Construction of Stand Density Management Diagrams and Silvicultural Simulation for Different Stand Types of Chinese Fir in the Mid-Subtropics
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.2. Model Construction Methods
2.2.1. Selection of Fully Stocked Plots
2.2.2. Construction of the Self-Thinning Model
2.2.3. Construction of Dominant Height and Stand Volume Equations
2.3. Model Evaluation
2.4. Construction of Stand Density Management Diagrams
3. Results
3.1. Results and Evaluation of the Self-Thinning Models
3.2. Dominant Height and Stand Volume Equations
3.3. Stand Density Management Diagrams
3.4. Simulated Management Scenarios of Different Stand Types of Chinese Fir
4. Discussion
4.1. Self-Thinning Models of Different Chinese Fir Stand Types
4.2. Comparison of Management Potential Based on Density Regulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, A. Forest stand structure and functioning: Current knowledge and future challenges. Ecol. Indic. 2019, 98, 665–677. [Google Scholar] [CrossRef]
- Noormets, A.; Epron, D.; Domec, J.C.; McNulty, S.G.; Fox, T.; Sun, G.; King, J.S. Effects of forest management on productivity and carbon sequestration: A review and hypothesis. For. Ecol. Manag. 2015, 355, 124–140. [Google Scholar] [CrossRef]
- Chivhenge, E.; Ray, D.G.; Weiskittel, A.R.; Woodall, C.W.; D’Amato, A.W. Evaluating the development and application of stand density index for the management of complex and adaptive forests. Curr. For. Rep. 2024, 10, 133–152. [Google Scholar] [CrossRef]
- Pretzsch, H.; Schütze, G. Tree species mixing can increase stand productivity, density and growth efficiency and attenuate the trade-off between density and growth throughout the whole rotation. Ann. Bot. 2021, 128, 767–786. [Google Scholar] [CrossRef]
- Semper, C.C.; Zobel, J.M.; Scherer, S.S.; Reinikainen, M.R.; Russell, M.B.; Gifford, T.S.; Windmuller-Campione, M.A. The perfect pairing: Early stand dynamics in conventional aspen and mixedwood forests in Northern Minnesota, USA. J. For. 2025, 123, 547–569. [Google Scholar] [CrossRef]
- Wang, T.; Dong, L.; Liu, Z. Stand structure is more important for forest productivity stability than tree, understory plant and soil biota species diversity. Front. For. Glob. Change 2024, 7, 1354508. [Google Scholar] [CrossRef]
- Thurm, E.A.; Pretzsch, H. Growth–density relationship in mixed stands—Results from long-term experimental plots. For. Ecol. Manag. 2021, 483, 118909. [Google Scholar] [CrossRef]
- Del Río, M.; Bravo-Oviedo, A.; Pretzsch, H.; Löf, M.; Ruiz-Peinado, R. A review of thinning effects on Scots pine stands: From growth and yield to new challenges under global change. For. Syst. 2017, 26, R3S. [Google Scholar] [CrossRef]
- Li, Y.; Niu, Q.; Meng, J. Development of stand density management diagram for carbon storage management for Masson Pine plantations. For. Res. 2024, 37, 136–145. [Google Scholar] [CrossRef]
- Long, J.N.; Shaw, J.D. A density management diagram for even-aged Sierra Nevada mixed-conifer stands. West. J. Appl. For. 2012, 27, 187–195. [Google Scholar] [CrossRef]
- Askarieh, A.; Ruano, I.; Bravo, F. Is it needed to integrate mixture degree in stand density management diagram (SDMD)? iForest Biogeosci. For. 2023, 16, 274–281. [Google Scholar] [CrossRef]
- Yang, S.; Brandeis, T.J. Estimating maximum stand density for mixed-hardwood forests among various physiographic zones in the eastern US. For. Ecol. Manag. 2022, 521, 120420. [Google Scholar] [CrossRef]
- Forrester, D.I. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. For. Ecol. Manag. 2014, 312, 282–292. [Google Scholar] [CrossRef]
- Mo, X.; Lu, J.; Lin, J.; Huo, C.; Zhang, W. The effect of mixed plantations on Chinese fir productivity: A meta-analysis. Forests 2025, 16, 105. [Google Scholar] [CrossRef]
- Mao, S.; Ouyang, X.; Pan, P.; Zhu, T.; Zheng, Y. Basal area growth model of Pinus massoniana forest based on mixed effect. Acta Agric. Univ. Jiangxiensis 2025, 47, 980–991. [Google Scholar] [CrossRef]
- Meng, X. Forest Mensuration, 3rd ed.; China Forestry Publishing House: Beijing, China, 2006; p. 45. [Google Scholar]
- Castedo-Dorado, F.; Crecente-Campo, F.; Alvarez-Alvarez, P.; Barrio-Anta, M. Development of a stand density management diagram for radiata pine stands including assessment of stand stability. Forestry 2009, 82, 1–16. [Google Scholar] [CrossRef]
- Chen, C.; Si, F. Tree height-diameter models of Chinese fir plantations in Dagangshan, Jiangxi Province. For. Sci. Technol. 2018, 11, 16–18. [Google Scholar] [CrossRef]
- Du, Z.; Gan, S. Height-diameter models for Cunninghamia lanceolata and Pinus massoniana based on BP neural network. Cent. South For. Invent. Plan. 2017, 36, 36–39. [Google Scholar] [CrossRef]
- Lin, H. Comparison and selection of the basal tree models for optimum tree height curve of Schima superb. J. Fujian For. Sci. Technol. 2018, 45, 103–107. [Google Scholar] [CrossRef]
- Reineke, L.H. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 1933, 46, 627–638. [Google Scholar]
- Solomon, D.S.; Zhang, L. Maximum size-density relationships for mixed softwoods in the northeastern USA. For. Ecol. Manag. 2002, 155, 163–170. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P. Fertilization modifies forest stand growth but not stand density: Consequences for modelling stand dynamics in a changing climate. For. Int. J. For. Res. 2022, 95, 187–200. [Google Scholar] [CrossRef]
- Xu, X.; Lyu, Y.; Wang, J. Density management diagrams for Larix gmelinii plantations in Daxing’an Mountains. Nat. Prot. Areas 2023, 4, 79–88. [Google Scholar]
- Vacchiano, G.; Derose, R.J.; Shaw, J.D.; Svoboda, M.; Motta, R. A density management diagram for Norway spruce in the temperate European montane region. Eur. J. For. Res. 2013, 132, 535–549. [Google Scholar] [CrossRef]
- Gyenge, J.; Lupi, A.; Ferrere, P.; Milione, G.; Martínez-Meier, A.; Caballé, G.; Daguer, D.D.; Fernández, M.E. Stand density management diagrams of Eucalyptus viminalis: Predicting stem volume, biomass and canopy cover for different production purposes. Cerne 2019, 25, 463–472. [Google Scholar] [CrossRef]
- Legendre, P.; Oksanen, J. Package ‘lmodel2’: Model II Regression. R Package Version 1.7-4. 2024. Available online: https://cran.r-project.org/web/packages/lmodel2/index.html (accessed on 30 September 2025).
- Yoda, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants XI). J. Biol. Osaka City 1963, 14, 107–129. [Google Scholar]
- Morin, X.; Toigo, M.; Fahse, L.; Guillemot, J.; Cailleret, M.; Bertrand, R.; Cateau, E.; de Coligny, F.; García Valdés, R.; Ratcliffe, S.; et al. More species, more trees: The role of tree packing in promoting forest productivity. J. Ecol. 2025, 113, 371–386. [Google Scholar] [CrossRef]
- Pretzsch, H.; Zenner, E.K. Toward managing mixed-species stands: From parametrization to prescription. For. Ecosyst. 2017, 4, 19. [Google Scholar] [CrossRef]
- Han, Y.; Wang, B.; Sun, H. Effects of species mixing on maximum size-density relationships in Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.)-dominated mixed forests converted from even-aged pure stands. Front. Plant Sci. 2024, 15, 1342307. [Google Scholar] [CrossRef]
- Qian, P.; Han, Y.; Li, X.; Jin, S. Ecological benefits and structure of mixed vs. pure forest plantations in subtropical China. Forests 2025, 16, 738. [Google Scholar] [CrossRef]
- Wang, L.; Wei, F.; Tagesson, T.; Fang, Z.; Svenning, J. Transforming forest management through rewilding: Enhancing biodiversity, resilience, and biosphere sustainability under global change. One Earth 2025, 8, 101195. [Google Scholar] [CrossRef]
- West, P.W.; Ratkowsky, D.A. Do stands self-thin through a common point? An additional concept for the self-thinning rule. Forests 2025, 16, 199. [Google Scholar] [CrossRef]
- Liu, J.; Ouyang, X.; Pan, P.; Ning, J.; Guo, Y. Modeling stand mortality of Chinese fir plantations in subtropical China using mixed-effects zero-inflated negative binomial models. For. Ecol. Manag. 2024, 565, 122016. [Google Scholar] [CrossRef]
- LaManna, J.A.; Mangan, S.A.; Alonso, A.; Bourg, N.A.; Brockelman, W.Y.; Bunyavejchewin, S.; Chang, L.; Chiang, J.; Chuyong, G.B.; Clay, K.; et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 2017, 356, 1389–1392. [Google Scholar] [CrossRef]
- Versace, S.; Garfì, V.; Dalponte, M.; Febbraro Mirko, D.; Frizzera, L.; Gianelle, D.; Tognetti, R. Species interactions in pure and mixed-species stands of silver fir and European beech in Mediterranean mountains. iForest Biogeosci. For. 2021, 14, 3476. [Google Scholar] [CrossRef]
- Pretzsch, H.; Hilmers, T. Structural diversity and carbon stock of forest stands: Tradeoff as modified by silvicultural thinning. Eur. J. For. Res. 2024, 144, 775–796. [Google Scholar] [CrossRef]
- Moreau, G.; Auty, D.; Pothier, D.; Shi, J.; Lu, J.; Achim, A.; Xiang, W. Long-term tree and stand growth dynamics after thinning of various intensities in a temperate mixed forest. For. Ecol. Manag. 2020, 473, 118311. [Google Scholar] [CrossRef]
- Gao, W.; Lin, G.; Yan, Y.; Zheng, Z.; Zheng, Q. Effects of broad-leaved cultivation on soil carbon and nitrogen transformation in Pinus massoniana plantation. J. Nanjing Norm. Univ. 2025, 48, 63–72. [Google Scholar] [CrossRef]
- Tang, L.; Mao, L.; Wang, Z.; Ye, S.; Wang, S. Mixed with broadleaf tree species improved soil aggregate stability in Chinese fir (Cunninghamia lanceolata) plantations: Based on the le bissonnais method. J. Soil Sci. Plant Nut. 2023, 23, 2110–2121. [Google Scholar] [CrossRef]
- West, P.W. A review of the growth behaviour of stands and trees in even-aged, monospecific forest. Ann. For. Sci. 2024, 81, 34. [Google Scholar] [CrossRef]
- Warner, E.; Cook-Patton, S.C.; Lewis, O.T.; Brown, N.; Koricheva, J.; Eisenhauer, N.; Ferlian, O.; Gravel, D.; Hall, J.S.; Jactel, H.; et al. Young mixed planted forests store more carbon than monocultures-a meta-analysis. Front. For. Glob. Change 2023, 6, 1226514. [Google Scholar] [CrossRef]
- Sun, K.; Sun, H.; Lu, G.; Fang, L.; Wan, Z.; Tan, Z. Study on the effects of stand density management of Chinese fir plantation in Northern China. Front. Plant Sci. 2023, 14, 1130299. [Google Scholar] [CrossRef] [PubMed]



| Variable | Stand Type | Mean | Min | Max | SD |
|---|---|---|---|---|---|
| V (m3·ha−1) | CF | 76.54 | 0.54 | 403.33 | 62.61 |
| CFC | 61.74 | 0.66 | 276.19 | 9.01 | |
| CFB | 79.44 | 2.29 | 286.41 | 55.77 | |
| N (trees·ha−1) | CF | 1983 | 125 | 7238 | 1180 |
| CFC | 1687 | 125 | 4963 | 951 | |
| CFB | 1862 | 163 | 5563 | 919 | |
| QMD (cm) | CF | 10.5 | 5.5 | 24.8 | 3.1 |
| CFC | 10.3 | 5.9 | 22.9 | 2.6 | |
| CFB | 10.9 | 6.0 | 19.8 | 2.5 | |
| HD (m) | CF | 11.6 | 6.5 | 16.0 | 1.9 |
| CFC | 12.5 | 7.0 | 18.1 | 2.2 | |
| CFB | 13.7 | 8.0 | 17.3 | 1.6 | |
| AG (yr) | CF | 12 | 3 | 35 | 6 |
| CFC | 17 | 4 | 36 | 7 | |
| CFB | 18 | 3 | 38 | 7 |
| Stand Type | Slope | |||
|---|---|---|---|---|
| Maximum Density Line | 60% of Maximum | 30% of Maximum | 20% of Maximum | |
| Chinese fir pure | 12.156 | 11.645 | 10.952 | 10.547 |
| Chinese fir–conifer mixed | 12.049 | 11.538 | 10.845 | 10.440 |
| Chinese fir–broadleaf mixed | 11.761 | 11.250 | 10.557 | 10.152 |
| Equation | Stand Type | Parameter | Coefficient (Std. Error) | RMSE | R2adj | MAE |
|---|---|---|---|---|---|---|
| Dominant height equation | CF | a1 | 3.443(0.084) *** | 0.769 | 0.843 | 0.635 |
| b1 | 0.506(0.009) *** | |||||
| c1 | 0.061(0.004) *** | |||||
| CFC | a1 | 2.611(0.104) *** | 0.731 | 0.892 | 0.576 | |
| b1 | 0.654(0.016) *** | |||||
| c1 | 0.123(0.006) *** | |||||
| CFB | a1 | 4.675(0.142) *** | 0.70 | 0.817 | 0.564 | |
| b1 | 0.432(0.012) *** | |||||
| c1 | 0.105(0.005) *** | |||||
| Stand volume equation | CF | a2 | 0.066(0.002) *** | 4.591 | 0.995 | 2.815 |
| b2 | 2.657(0.011) *** | |||||
| c2 | 1.004(0.006) *** | |||||
| CFC | a2 | 0.059(0.002) *** | 2.332 | 0.998 | 1.695 | |
| b2 | 2.718(0.011) *** | |||||
| c2 | 1.006(0.005) *** | |||||
| CFB | a2 | 0.071(0.002) *** | 3.681 | 0.995 | 2.478 | |
| b2 | 2.654(0.011) *** | |||||
| c2 | 0.998(0.006) *** |
| Stand Type | Management Scenario | QMD (cm) | N (Trees·ha−1) | HD (m) | V (m3·ha−1) | Mortality (m3·ha−1) | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| Before | After | Before | After | Before | After | Before | After | |||
| Chinese fir pure | 0→I | 10 | 13.43 | 2000 | 2000 | 11.5 | 13.4 | 60.09 | 131.55 | |
| III | 23.36 | 845 | 16.8 | 241.07 | 109.52 | |||||
| V | 40 | 366 | 20.9 | 434.46 | 193.39 | |||||
| Chinese fir–conifer mixed | 0→I | 10 | 14.62 | 2000 | 2000 | 12.8 | 16.4 | 61.9 | 173.63 | |
| III | 27.95 | 772 | 22.3 | 388.3 | 214.67 | |||||
| V | 40 | 456 | 26.5 | 605.72 | 217.42 | |||||
| Chinese fir–broadleaf mixed | 0→I | 10 | 14.29 | 2000 | 2000 | 13.6 | 15.8 | 63.93 | 164.98 | |
| III | 30.1 | 720 | 19.6 | 429.46 | 264.48 | |||||
| V | 40 | 487 | 21.3 | 618.78 | 189.32 | |||||
| Stand Type | Management Scenario | QMD (cm) | N (Trees·ha−1) | HD (m) | V (m3·ha−1) | Harvest (m3·ha−1) | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| Before | After | Before | After | Before | After | Before | After | |||
| Chinese fir pure | 0→I | 10 | 13.43 | 2000 | 2000 | 11.5 | 13.4 | 60.09 | 131.55 | |
| I→II | 13.43 | 14.97 | 2000 | 845 | 13.4 | 13.4 | 131.55 | 73.9 | 57.64 | |
| II→III | 14.97 | 23.36 | 845 | 845 | 13.4 | 16.8 | 73.9 | 241.07 | ||
| III→IV | 23.36 | 25.84 | 845 | 366 | 16.8 | 16.8 | 241.07 | 136.06 | 105.01 | |
| IV→V | 25.84 | 40 | 366 | 366 | 16.8 | 20.9 | 136.06 | 434.46 | ||
| Chinese fir–conifer mixed | 0→I | 10 | 14.62 | 2000 | 2000 | 12.8 | 16.4 | 61.9 | 173.63 | |
| I→II | 14.62 | 17.43 | 2000 | 772 | 16.4 | 16.4 | 173.63 | 107.61 | 66.02 | |
| II→III | 17.43 | 27.95 | 772 | 772 | 16.4 | 22.3 | 107.61 | 388.3 | ||
| III→IV | 27.95 | 33.36 | 772 | 456 | 22.3 | 23.5 | 388.3 | 369.94 | 18.36 | |
| IV→V | 33.36 | 40 | 456 | 456 | 23.5 | 26.5 | 369.94 | 605.72 | ||
| Chinese fir–broadleaf mixed | 0→I | 10 | 14.29 | 2000 | 2000 | 13.6 | 15.8 | 63.93 | 164.98 | |
| I→II | 14.29 | 18.15 | 2000 | 720 | 15.8 | 15.8 | 164.98 | 112.15 | 52.84 | |
| II→III | 18.15 | 30.1 | 720 | 720 | 15.8 | 19.6 | 112.15 | 429.46 | ||
| III→IV | 30.1 | 32.92 | 720 | 487 | 19.6 | 19.6 | 429.46 | 368.85 | 60.61 | |
| IV→V | 32.92 | 40 | 487 | 487 | 19.6 | 21.3 | 368.85 | 618.78 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Ouyang, X.; Pan, P.; Liu, J.; Liu, C. Construction of Stand Density Management Diagrams and Silvicultural Simulation for Different Stand Types of Chinese Fir in the Mid-Subtropics. Forests 2025, 16, 1543. https://doi.org/10.3390/f16101543
Guo Y, Ouyang X, Pan P, Liu J, Liu C. Construction of Stand Density Management Diagrams and Silvicultural Simulation for Different Stand Types of Chinese Fir in the Mid-Subtropics. Forests. 2025; 16(10):1543. https://doi.org/10.3390/f16101543
Chicago/Turabian StyleGuo, Yang, Xunzhi Ouyang, Ping Pan, Jun Liu, and Chang Liu. 2025. "Construction of Stand Density Management Diagrams and Silvicultural Simulation for Different Stand Types of Chinese Fir in the Mid-Subtropics" Forests 16, no. 10: 1543. https://doi.org/10.3390/f16101543
APA StyleGuo, Y., Ouyang, X., Pan, P., Liu, J., & Liu, C. (2025). Construction of Stand Density Management Diagrams and Silvicultural Simulation for Different Stand Types of Chinese Fir in the Mid-Subtropics. Forests, 16(10), 1543. https://doi.org/10.3390/f16101543
