Due Diligence for Deforestation-Free Supply Chains with Copernicus Sentinel-2 Imagery and Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Software Development and Image Analysis
2.3. Model Training
2.4. Pilot Operational Application
3. Results
3.1. Median Image Composite Creation
3.2. Near-Real-Time Image Query and Download Functionality
3.3. Random Forest Classifications
3.4. Post-Classification Change Detection
3.5. dNDVI Change Thresholding to Create Hybrid Change Detections
3.6. Time-Series Analysis and Aggregation into the Analyst Report
- Layer 1 ‘First_Change_Date’: The acquisition date of the Sentinel-2 image in which a change of interest (i.e., forest loss) was first detected. This is expressed as the number of days since 1 January 2000;
- Layer 2 ‘Total_Change_Detection_Count’: The total number of times when a change was detected since the First_Change_Date for each pixel;
- Layer 3 ‘Total_NoChange_Detection_Count’: The total number of times when no change was detected since the First_Change_Date for each pixel;
- Layer 4 ‘Total_Classification_Count’: The total number of times when a land cover class was identified for each pixel, taking into account partial satellite orbit coverage and cloud cover;
- Layer 5 ‘Percentage_Change_Detection’: The computed ratio of Layer 2 to Layer 4 expressed as a percentage. This indicates the consistency of a detected change once it has first been detected and thus the confidence that it is a permanent change rather than, for example, seasonal agricultural variation or periodic flooding;
- Layer 6 ‘Change_Detection_Decision’: A computed binary layer that is set to 1 to indicate regions that pass a change detection threshold and so allows regions of significant change to be rapidly identified over the large spatial area of a tile. Currently, the decision criterion is that ((Layer 2 >= 5) and (Layer 5 >= 50)), i.e., that at least five land cover changes of interest were detected and that the change was present in at least 50% of the change detection images;
- Layer 7 ‘Change_Detection_Date_Mask’: A subset of First_Change_Date only showing those areas where the change decision criteria were met. It is the product of Layer 1 and Layer 6. This allows regions where land use change is expanding over time to be more easily identified over the large spatial area of a tile.
3.7. Validation of the Forest Loss Detections
3.8. Independent Validation of Farm-Scale Change Detection Accuracy
- PyEO Forest Loss—this study, University of Leicester (7 February 2019–22 February 2021);
- Global Forest Loss—University of Maryland (2017–2020).
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakravarty, S.; Ghosh, S.; Suresh, C.; Dey, A.; Shukla, G. Deforestation: Causes, Effects and Control Strategies. Glob. Perspect. Sustain. For. Manag. 2012, 1, 1–26. [Google Scholar]
- European Commission Green Deal: EU Agrees Law to Fight Global Deforestation and Forest Degradation Driven by EU Production and Consumption 2022. Available online: https://environment.ec.europa.eu/news/green-deal-new-law-fight-global-deforestation-and-forest-degradation-driven-eu-production-and-2023-06-29_en (accessed on 28 September 2023).
- US Congress Forest Act of 2021. 2021. Available online: https://www.congress.gov/bill/117th-congress/senate-bill/2950 (accessed on 28 September 2023).
- UK Government: Government Sets out Plans to Clean up the UK’s Supply Chains to Help Protect Forests. 2020. Available online: https://www.gov.uk/government/news/government-sets-out-plans-to-clean-up-the-uks-supply-chains-to-help-protect-forests (accessed on 28 September 2023).
- Tucker, C.J.; Townshend, J.R. Strategies for Monitoring Tropical Deforestation Using Satellite Data. Int. J. Remote Sens. 2000, 21, 1461–1471. [Google Scholar] [CrossRef]
- Herold, M.; Johns, T. Linking Requirements with Capabilities for Deforestation Monitoring in the Context of the UNFCCC-REDD Process. Environ. Res. Lett. 2007, 2, 045025. [Google Scholar] [CrossRef]
- Finer, M.; Novoa, S.; Weisse, M.J.; Petersen, R.; Mascaro, J.; Souto, T.; Stearns, F.; Martinez, R.G. Combating Deforestation: From Satellite to Intervention. Science 2018, 360, 1303–1305. [Google Scholar] [CrossRef] [PubMed]
- Schoene, D.; Killmann, W.; von Lüpke, H.; Wilkie, M.L. Definitional Issues Related to Reducing Emissions from Deforestation in Developing Countries. For. Clim. Chang. Work. 2007, 5. Available online: https://www.uncclearn.org/wp-content/uploads/library/fao44.pdf (accessed on 28 September 2023).
- Wadsworth, R.; Balzter, H.; Gerard, F.; George, C.; Comber, A.; Fisher, P. An Environmental Assessment of Land Cover and Land Use Change in Central Siberia Using Quantified Conceptual Overlaps to Reconcile Inconsistent Data Sets. J. Land Use Sci. 2008, 3, 251–264. [Google Scholar] [CrossRef]
- Watanabe, M.; Koyama, C.; Hayashi, M.; Kaneko, Y.; Shimada, M. Development of Early-Stage Deforestation Detection Algorithm (Advanced) with PALSAR-2/ScanSAR for JICA-JAXA Program (JJ-FAST). In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2446–2449. [Google Scholar]
- Reiche, J.; Mullissa, A.; Slagter, B.; Gou, Y.; Tsendbazar, N.-E.; Odongo-Braun, C.; Vollrath, A.; Weisse, M.J.; Stolle, F.; Pickens, A.; et al. Forest Disturbance Alerts for the Congo Basin Using Sentinel-1. Environ. Res. Lett. 2021, 16, 024005. [Google Scholar] [CrossRef]
- Portillo-Quintero, C.; Hernández-Stefanoni, J.L.; Reyes-Palomeque, G.; Subedi, M.R. The Road to Operationalization of Effective Tropical Forest Monitoring Systems. Remote Sens. 2021, 13, 1370. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Roberts, J.F.; Mwangi, R.; Mukabi, F.; Njui, J.; Nzioka, K.; Ndambiri, J.K.; Bispo, P.C.; Espirito-Santo, F.D.B.; Gou, Y.; Johnson, S.C.M.; et al. Pyeo: A Python Package for near-Real-Time Forest Cover Change Detection from Earth Observation Using Machine Learning. Comput. Geosci. 2022, 167, 105192. [Google Scholar] [CrossRef]
- Pacheco-Pascagaza, A.M.; Gou, Y.; Louis, V.; Roberts, J.F.; Rodríguez-Veiga, P.; da Conceição Bispo, P.; Espírito-Santo, F.D.B.; Robb, C.; Upton, C.; Galindo, G.; et al. Near Real-Time Change Detection System Using Sentinel-2 and Machine Learning: A Test for Mexican and Colombian Forests. Remote Sens. 2022, 14, 707. [Google Scholar] [CrossRef]
- Reiche, J.; Hamunyela, E.; Verbesselt, J.; Hoekman, D.; Herold, M. Improving Near-Real Time Deforestation Monitoring in Tropical Dry Forests by Combining Dense Sentinel-1 Time Series with Landsat and ALOS-2 PALSAR-2. Remote Sens. Environ. 2018, 204, 147–161. [Google Scholar] [CrossRef]
- Doblas Prieto, J.; Lima, L.; Mermoz, S.; Bouvet, A.; Reiche, J.; Watanabe, M.; Sant Anna, S.; Shimabukuro, Y. Inter-Comparison of Optical and SAR-Based Forest Disturbance Warning Systems in the Amazon Shows the Potential of Combined SAR-Optical Monitoring. Int. J. Remote Sens. 2023, 44, 59–77. [Google Scholar] [CrossRef]
- Chiteculo, V.; Abdollahnejad, A.; Panagiotidis, D.; Surovỳ, P.; Sharma, R.P. Defining Deforestation Patterns Using Satellite Images from 2000 and 2017: Assessment of Forest Management in Miombo Forests—A Case Study of Huambo Province in Angola. Sustainability 2018, 11, 98. [Google Scholar] [CrossRef]
- Roberts, J.; Balzter, H.; Gou, Y.; Louis, V.; Robb, C. Pyeo: Automated Satellite Imagery Processing; Zenodo: Meyrin, Switzerland, 2020; Available online: https://zenodo.org/records/3689674 (accessed on 10 December 2020).
- Balzter, H.; Roberts, J.F.; Robb, C.; Alonso Rueda Rodriguez, D.; Zaheer, U. Clcr/Pyeo: ForestMind Extensions (v0.8.0). 2023. Available online: https://zenodo.org/records/8116761 (accessed on 3 November 2023).
- QGIS Development Team. QGIS Geographic Information System Version 3.28.15; QGIS Association: Bern, Switzerland, 2022; Available online: https://www.qgis.org/ (accessed on 20 September 2022).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Cochran, W.G. Sampling Techniques; John Wiley & Sons: Hoboken, NJ, USA, 1977. [Google Scholar]
- Arévalo, P.; Olofsson, P.; Woodcock, C.E. Continuous Monitoring of Land Change Activities and Post-Disturbance Dynamics from Landsat Time Series: A Test Methodology for REDD+ Reporting. Remote Sens. Environ. 2020, 238, 111051. [Google Scholar] [CrossRef]
- Olofsson, P.; Arévalo, P.; Espejo, A.B.; Green, C.; Lindquist, E.; McRoberts, R.E.; Sanz, M.J. Mitigating the Effects of Omission Errors on Area and Area Change Estimates. Remote Sens. Environ. 2020, 236, 111492. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Olofsson, P. Monitoring Tropical Forest Degradation Using Spectral Unmixing and Landsat Time Series Analysis. Remote Sens. Environ. 2020, 238, 110968. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making Better Use of Accuracy Data in Land Change Studies: Estimating Accuracy and Area and Quantifying Uncertainty Using Stratified Estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Vargas, C.; Montalban, J.; Leon, A.A. Early Warning Tropical Forest Loss Alerts in Peru Using Landsat. Environ. Res. Commun. 2019, 1, 121002. [Google Scholar] [CrossRef]
- Watanabe, M.; Koyama, C.; Hayashi, M.; Nagatani, I.; Tadono, T.; Shimada, M. Trial of Detection Accuracies Improvement for JJ-FAST Deforestation Detection Algorithm Using Deep Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 2911–2914. [Google Scholar]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 2017, 67, 534–545. [Google Scholar] [CrossRef] [PubMed]
Class Number | Description |
---|---|
1 | Primary forest |
2 | Plantation forest |
3 | Bare soil |
4 | Crops |
5 | Grassland |
6 | Open water |
7 | Burn scar |
8 | Cloud |
9 | Cloud shadow |
10 | Haze |
11 | Sparse woodland |
12 | Dense woodland |
Granule ID |
---|
T21LTD |
T21LTE |
T21LTF |
T21LTG |
T21LUD |
T21LUE |
T21LUF |
T21LUG |
T21LVD |
T21LVE |
T21LVF |
T21LVG |
Reference Class → | |||||||
---|---|---|---|---|---|---|---|
Predicted Class ↓ | 1 | 3 | 4 | 5 | 11 | 12 | UA ↓ |
1 | 84,955 | 2 | 210 | 56 | 4650 | 9 | 94.5% |
3 | 0 | 87,159 | 1092 | 109 | 1017 | 524 | 96.9% |
4 | 73 | 1332 | 85,147 | 1977 | 611 | 1250 | 94.2% |
5 | 53 | 93 | 2000 | 11,005 | 959 | 272 | 76.5% |
11 | 4730 | 650 | 374 | 545 | 84,214 | 87 | 93.0% |
12 | 53 | 871 | 2958 | 534 | 508 | 4110 | 45.5% |
PA → | 94.5% | 96.7% | 92.8% | 77.4% | 91.6% | 65.7% | OA = 92.8% |
Class | Band | Min | Max | Mean | Stdev |
---|---|---|---|---|---|
1 | 2 | 74 | 668 | 207.49 | 31.83 |
3 | 130 | 1130 | 398.40 | 57.63 | |
4 | 86 | 1352 | 229.00 | 49.20 | |
8 | 912 | 5144 | 2726.92 | 371.26 | |
3 | 2 | 211 | 2113 | 477.09 | 216.21 |
3 | 391 | 2655 | 741.56 | 279.71 | |
4 | 323 | 3348 | 1034.24 | 453.30 | |
8 | 1160 | 4087 | 2246.23 | 632.23 | |
4 | 2 | 203 | 1872 | 415.48 | 97.21 |
3 | 411 | 2334 | 724.29 | 145.90 | |
4 | 267 | 2837 | 621.16 | 241.67 | |
8 | 1723 | 5684 | 3644.23 | 646.96 | |
5 | 2 | 184 | 771 | 429.65 | 106.77 |
3 | 340 | 1129 | 771.52 | 154.28 | |
4 | 214 | 1393 | 746.34 | 237.52 | |
8 | 1742 | 4003 | 2813.10 | 311.96 | |
11 | 2 | 146 | 626 | 300.66 | 55.23 |
3 | 298 | 914 | 536.95 | 62.15 | |
4 | 176 | 1214 | 430.51 | 145.68 | |
8 | 1530 | 4324 | 2468.49 | 289.34 | |
12 | 2 | 189 | 906 | 466.51 | 99.30 |
3 | 361 | 1336 | 774.15 | 133.53 | |
4 | 225 | 1798 | 815.29 | 240.96 | |
8 | 1320 | 4628 | 2897.72 | 362.87 |
Guatemala OA = 86.3% κ = 0.71 | No Change | Change | User Accuracy |
No Change | 193 | 7 | 96.5% |
Change | 48 | 152 | 76% |
Producer Accuracy | 80.1% | 95.6% | |
Mato Grosso, Brazil OA = 85.5% κ = 0.72 | No Change | Change | User Accuracy |
No Change | 187 | 13 | 93.5% |
Change | 45 | 155 | 77.5% |
Producer Accuracy | 80.6% | 92.3% |
Period | Total Number of Farms | Deforestation-Free Farms | Farms with Deforestation < 0.1 ha | Farms with Deforestation > 0.1 ha |
---|---|---|---|---|
Jan 2020–Jan 2022 (Baseline Update) | 263 | 155 | 94 | 14 |
Jan 2022–Aug 2022 | 263 | 149 | 113 | 1 |
Jan 2020–Aug 2022 (Whole Monitoring Period) | 263 | 105 | 136 | 22 |
Dataset | Overall Accuracy | Rate of Commission | Rate of Omission |
---|---|---|---|
PyEO forest loss— Soy Brazil | 83% | 18% | 1% |
PyEO forest loss— Coffee Guatemala | 80% | 21% | 3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reading, I.; Bika, K.; Drakesmith, T.; McNeill, C.; Cheesbrough, S.; Byrne, J.; Balzter, H. Due Diligence for Deforestation-Free Supply Chains with Copernicus Sentinel-2 Imagery and Machine Learning. Forests 2024, 15, 617. https://doi.org/10.3390/f15040617
Reading I, Bika K, Drakesmith T, McNeill C, Cheesbrough S, Byrne J, Balzter H. Due Diligence for Deforestation-Free Supply Chains with Copernicus Sentinel-2 Imagery and Machine Learning. Forests. 2024; 15(4):617. https://doi.org/10.3390/f15040617
Chicago/Turabian StyleReading, Ivan, Konstantina Bika, Toby Drakesmith, Chris McNeill, Sarah Cheesbrough, Justin Byrne, and Heiko Balzter. 2024. "Due Diligence for Deforestation-Free Supply Chains with Copernicus Sentinel-2 Imagery and Machine Learning" Forests 15, no. 4: 617. https://doi.org/10.3390/f15040617
APA StyleReading, I., Bika, K., Drakesmith, T., McNeill, C., Cheesbrough, S., Byrne, J., & Balzter, H. (2024). Due Diligence for Deforestation-Free Supply Chains with Copernicus Sentinel-2 Imagery and Machine Learning. Forests, 15(4), 617. https://doi.org/10.3390/f15040617