CH4 and N2O Emissions of Undrained and Drained Nutrient-Rich Organic Forest Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. GHG Emission Sampling and Analysis
2.3. GHG Emission Estimation
2.4. Data Evaluation
3. Results
3.1. Instantaneous CH4 Emissions
3.2. Uncertainty of the Instantaneous CH4 Emissions
3.3. CH4 Emission-Affecting Factors
3.4. Annual Soil CH4 Emissions
3.5. Soil N2O Emissions
4. Discussion
4.1. Instantaneous Soil CH4 Emissions and Affecting Factors
4.2. Uncertainty of Soil CH4 Emissions
4.3. Annual Soil CH4 Emissions and Issues of Interpretation and Upscaling
4.4. Soil N2O Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hugelius, G.; Tarnocai, C.; Broll, G.; Canadell, J.G.; Kuhry, P.; Swanson, D.K. The Northern Circumpolar Soil Carbon Database: Spatially Distributed Datasets of Soil Coverage and Soil Carbon Storage in the Northern Permafrost Regions. Earth Syst. Sci. Data 2013, 5, 3–13. [Google Scholar] [CrossRef][Green Version]
- Hiraishi, T.; Krug, T.; Tanabe, K.; Srivastava, N.; Baasansuren, J.; Fukuda, M.; Troxler, T. (Eds.) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Viru, B.; Veber, G.; Jaagus, J.; Kull, A.; Maddison, M.; Muhel, M.; Espenberg, M.; Teemusk, A.; Mander, Ü. Wintertime Greenhouse Gas Fluxes in Hemiboreal Drained Peatlands. Atmosphere 2020, 11, 731. [Google Scholar] [CrossRef]
- Huang, J.; Mendoza, B.; Daniel, J.S.; Nielsen, C.J.; Rotstayn, L.; Wild, O. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013—The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; Volume 9781107057, pp. 659–740. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Truu, J.; Espenberg, M.; Mander, Ü.; Smith, P. Emissions of Methane from Northern Peatlands: A Review of Management Impacts and Implications for Future Management Options. Ecol. Evol. 2016, 6, 7080–7102. [Google Scholar] [CrossRef][Green Version]
- Wofsy, S.C.; Zhang, X.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B. Couplings Between Changes in the Climate System and Biogeochemistry. Carbon N. Y. 2007, 21, 499–587. [Google Scholar]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Jauhiainen, J.; Alm, J.; Bjarnadottir, B.; Callesen, I.; Christiansen, J.R.; Clarke, N.; Dalsgaard, L.; He, H.; Jordan, S.; Kazanavičiūtė, V.; et al. Reviews and Syntheses: Greenhouse Gas Exchange Data from Drained Organic Forest Soils—A Review of Current Approaches and Recommendations for Future Research. Biogeosci. Discuss. 2019, 16, 4687–4703. [Google Scholar] [CrossRef][Green Version]
- Bušs, K. Forest Ecology and Typology; Zinātne: Rīga, Latvija, 1981. [Google Scholar]
- Butlers, A.; Lazdiņš, A.; Kalēja, S.; Bārdule, A. Carbon Budget of Undrained and Drained Nutrient-Rich Organic Forest Soil. Forests 2022, 13, 1790. [Google Scholar] [CrossRef]
- Cools, N.; De Vos, B. Sampling and Analysis of Soil, Manual Part X; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2010; ISBN 9783865761620. [Google Scholar]
- ISO/IEC 17025:2017; General Requirements for the Competence pf Testing and Calibration Laboratories. ISO/CASCO: Geneva, Switzerland, 2017.
- Latvia’s Climate. Available online: https://videscentrs.lvgmc.lv/lapas/latvijas-klimats (accessed on 1 December 2022).
- Pavelka, M.; Acosta, M.; Kiese, R.; Altimir, N.; Brümmer, C.; Crill, P.; Darenova, E.; Fuß, R.; Gielen, B.; Graf, A.; et al. Standardisation of Chamber Technique for CO2, N2O and CH4 Fluxes Measurements from Terrestrial Ecosystems. Int. Agrophys. 2018, 32, 569–587. [Google Scholar] [CrossRef]
- Loftfield, N.; Flessa, H.; Augustin, J.; Beese, F. Automated Gas Chromatographic System for Rapid Analysis of the Atmospheric Trace Gases Methane, Carbon Dioxide, and Nitrous Oxide. J. Environ. Qual. 1997, 26, 560–564. [Google Scholar] [CrossRef]
- Williams, C.J.; Yavitt, J.B. Temperate Wetland Methanogenesis: The Importance of Vegetation Type and Root Ethanol Production. Soil Sci. Soc. Am. J. 2010, 74, 317–325. [Google Scholar] [CrossRef]
- Serrano-Silva, N.; Sarria-Guzmán, Y.; Dendooven, L.; Luna-Guido, M. Methanogenesis and Methanotrophy in Soil: A Review. Pedosphere 2014, 24, 291–307. [Google Scholar] [CrossRef]
- Hanson, R.S.; Hanson, T.E. Methanotrophic Bacteria. Microbiol. Rev. 1996, 60, 439–471. [Google Scholar] [CrossRef] [PubMed]
- Laanbroek, H.J. Methane Emission from Natural Wetlands: Interplay between Emergent Macrophytes and Soil Microbial Processes. A Mini-Review. Ann. Bot. 2010, 105, 141–153. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fritz, C.; Pancotto, V.A.; Elzenga, J.T.M.; Visser, E.J.W.; Grootjans, A.P.; Pol, A.; Iturraspe, R.; Roelofs, J.G.M.; Smolders, A.J.P. Zero Methane Emission Bogs: Extreme Rhizosphere Oxygenation by Cushion Plants in Patagonia. New Phytol. 2011, 190, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Couwenberg, J.; Fritz, C. Towards Developing IPCC Methane ‘Emission Factors’ for Peatlands (Organic Soils). Mires Peat 2012, 10, 1–17. [Google Scholar]
- Knorr, K.H.; Blodau, C. Impact of Experimental Drought and Rewetting on Redox Transformations and Methanogenesis in Mesocosms of a Northern Fen Soil. Soil Biol. Biochem. 2009, 41, 1187–1198. [Google Scholar] [CrossRef]
- Cooper, M.D.A.; Evans, C.D.; Zielinski, P.; Levy, P.E.; Gray, A.; Peacock, M.; Norris, D.; Fenner, N.; Freeman, C. Infilled Ditches Are Hotspots of Landscape Methane Flux Following Peatland Re-Wetting. Ecosystems 2014, 17, 1227–1241. [Google Scholar] [CrossRef]
- Glaser, P.H.; Chanton, J.P.; Morin, P.; Rosenberry, D.O.; Siegel, D.I.; Ruud, O.; Chasar, L.I.; Reeve, A.S. Surface Deformations as Indicators of Deep Ebullition Fluxes in a Large Northern Peatland. Global Biogeochem. Cycles 2004, 18, GB1003. [Google Scholar] [CrossRef][Green Version]
- Hoffmann, M.; Schulz-Hanke, M.; Alba, J.; Jurisch, N.; Hagemann, U.; Sachs, T.; Sommer, M.; Augustin, J. A Simple Calculation Algorithm to Separate High-Resolution CH4 Flux Measurements into Ebullition and Diffusion-Derived Components. Atmos. Meas. Tech. 2018, 2018, 383–411. [Google Scholar] [CrossRef]
- Whalen, S.C. Natural Wetlands and the Atmosphere. Environ. Eng. Sci. 2005, 22, 73–94. [Google Scholar] [CrossRef]
- Askaer, L.; Elberling, B.; Glud, R.N.; Kühl, M.; Lauritsen, F.R.; Joensen, H.P. Soil Heterogeneity Effects on O2 Distribution and CH4 Emissions from Wetlands: In Situ and Mesocosm Studies with Planar O2 Optodes and Membrane Inlet Mass Spectrometry. Soil Biol. Biochem. 2010, 42, 2254–2265. [Google Scholar] [CrossRef]
- Pearce, D.M.E.; Clymo, R.S. Methane Oxidation in a Peatland Core the Ambient Air: 13CH4 Was Added at the Water Appeared in the Gas Space Before Each Headspace Gas Sampling • the Fan Was Turned On. Glob. Biogeochem. Cycles 2001, 15, 709–720. [Google Scholar] [CrossRef]
- Hornibrook, E.R.C.; Bowes, H.L.; Culbert, A.; Gallego-Sala, A.V. Methanotrophy Potential versus Methane Supply by Pore Water Diffusion in Peatlands. Biogeosciences 2009, 6, 1491–1504. [Google Scholar] [CrossRef][Green Version]
- Watson, A.; Stephen, K.D.; Nedwell, D.B.; Arah, J.R.M. Oxidation of Methane in Peat: Kinetics of CH4 and O2 Removal and the Role of Plant Roots. Soil Biol. Biochem. 1997, 29, 1257–1267. [Google Scholar] [CrossRef]
- Segers, R. Methane Production and Methane Consumption: A Review of Processes Underlying Wetland Methane Fluxes. Biogeochemistry 1998, 41, 23–51. [Google Scholar] [CrossRef]
- Horz, H.P.; Rich, V.; Avrahami, S.; Bohannan, B.J.M. Methane-Oxidizing Bacteria in a California Upland Grassland Soil: Diversity and Response to Simulated Global Change. Appl. Environ. Microbiol. 2005, 71, 2642–2652. [Google Scholar] [CrossRef][Green Version]
- van Winden, J.F.; Reichart, G.J.; McNamara, N.P.; Benthien, A.; Damsté, J.S.S. Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment. PLoS ONE 2012, 7, e39614. [Google Scholar] [CrossRef][Green Version]
- Bender, M.; Conrad, R. Effect of CH4 Concentrations and Soil Conditions on the Induction of CH4 Oxidation Activity. Soil Biol. Biochem. 1995, 27, 1517–1527. [Google Scholar] [CrossRef]
- Kip, N.; Van Winden, J.F.; Pan, Y.; Bodrossy, L.; Reichart, G.J.; Smolders, A.J.P.; Jetten, M.S.M.; Damsté, J.S.S.; Op Den Camp, H.J.M. Global Prevalence of Methane Oxidation by Symbiotic Bacteria in Peat-Moss Ecosystems. Nat. Geosci. 2010, 3, 617–621. [Google Scholar] [CrossRef]
- Sachs, T.; Giebels, M.; Boike, J.; Kutzbach, L. Environmental Controls on CH4 Emission from Polygonal Tundra on the Microsite Scale in the Lena River Delta, Siberia. Glob. Chang. Biol. 2010, 16, 3096–3110. [Google Scholar] [CrossRef]
- Gong, J.; Kellomäki, S.; Wang, K.; Zhang, C.; Shurpali, N.; Martikainen, P.J. Modeling CO2 and CH4 Flux Changes in Pristine Peatlands of Finland under Changing Climate Conditions. Ecol. Model. 2013, 263, 64–80. [Google Scholar] [CrossRef]
- Bohn, T.J.; Podest, E.; Schroeder, R.; Pinto, N.; McDonald, K.C.; Glagolev, M.; Filippov, I.; Maksyutov, S.; Heimann, M.; Chen, X.; et al. Modeling the Large-Scale Effects of Surface Moisture Heterogeneity on Wetland Carbon Fluxes in the West Siberian Lowland. Biogeosciences 2013, 10, 6559–6576. [Google Scholar] [CrossRef][Green Version]
- Gong, J.; Wang, K.; Kellomäki, S.; Zhang, C.; Martikainen, P.J.; Shurpali, N. Modeling Water Table Changes in Boreal Peatlands of Finland under Changing Climate Conditions. Ecol. Modell. 2012, 244, 65–78. [Google Scholar] [CrossRef]
- Shi, X.; Thornton, P.E.; Ricciuto, D.M.; Hanson, P.J.; Mao, J.; Sebestyen, S.D.; Griffiths, N.A.; Bisht, G. Representing Northern Peatland Microtopography and Hydrology within the Community Land Model. Biogeosciences 2015, 12, 6463–6477. [Google Scholar] [CrossRef][Green Version]
- Ojanen, P.; Minkkinen, K.; Penttilä, T. The Current Greenhouse Gas Impact of Forestry-Drained Boreal Peatlands. For. Ecol. Manag. 2013, 289, 201–208. [Google Scholar] [CrossRef]
- Cresto Aleina, F.; Runkle, B.R.K.; Brücher, T.; Kleinen, T.; Brovkin, V. Upscaling Methane Emission Hotspots in Boreal Peatlands. Geosci. Model Dev. 2016, 9, 915–926. [Google Scholar] [CrossRef][Green Version]
- Drösler, M. Trace Gas Exchange and Climatic Relevance of Bog Ecosystems. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2005. [Google Scholar]
- Ivanovs, J.; Lupikis, A. Identification of Wet Areas in Forest Using Remote Sensing Data. Agron. Res. 2018, 16, 2049–2055. [Google Scholar] [CrossRef]
- Stals, T.; Ivanovs, J. Identification of Wet Areas in Agricultural Lands Using Remote Sensing Data. Res. Rural Dev. 2019, 1, 140–145. [Google Scholar] [CrossRef]
- Ivanovs, J.; Stals, T.; Kaleja, S. Impact of the Use of Existing Ditch Vector Data on Soil Moisture Predictions. Res. Rural Dev. 2020, 35, 248–251. [Google Scholar] [CrossRef]
- Kettunen, A.; Kaitala, V.; Lehtinen, A.; Lohila, A.; Alm, J.; Silvola, J.; Martikainen, P.J. Methane Production and Oxidation Potentials in Relation to Water Table Fluctuations in Two Boreal Mires. Soil Biol. Biochem. 1999, 31, 1741–1749. [Google Scholar] [CrossRef]
- Kip, N.; Fritz, C.; Langelaan, E.S.; Pan, Y.; Bodrossy, L.; Pancotto, V.; Jetten, M.S.M.; Smolders, A.J.P.; Op Den Camp, H.J.M. Methanotrophic Activity and Diversity in Different Sphagnum Magellanicum Dominated Habitats in the Southernmost Peat Bogs of Patagonia. Biogeosciences 2012, 9, 47–55. [Google Scholar] [CrossRef][Green Version]
- Wilson, D.; Blain, D.; Couwenber, J.; Evans, C.; Murdiyarso, D.; Page, S.; Renou-Wilson, F.; Rieley, J.; Strack, M.; Tuittila, E.S. Greenhouse Gas Emission Factors Associated with Rewetting of Organic Soils. Mires Peat 2016, 17, 1–28. [Google Scholar] [CrossRef]
- Klemedtsson, L.; Von Arnold, K.; Weslien, P.; Gundersen, P. Soil CN Ratio as a Scalar Parameter to Predict Nitrous Oxide Emissions. Glob. Chang. Biol. 2005, 11, 1142–1147. [Google Scholar] [CrossRef][Green Version]
- Ernfors, M.; Rütting, T.; Klemedtsson, L. Increased Nitrous Oxide Emissions from a Drained Organic Forest Soil after Exclusion of Ectomycorrhizal Mycelia. Plant Soil 2011, 343, 161–170. [Google Scholar] [CrossRef]
- Ernfors, M.; Von Arnold, K.; Stendahl, J.; Olsson, M.; Klemedtsson, L. Nitrous Oxide Emissions from Drained Organic Forest Soils—An up-Scaling Based on C:N Ratios. Biogeochemistry 2008, 89, 29–41. [Google Scholar] [CrossRef]
- Gundersen, P.; Emmett, B.A.; Kjønaas, O.J.; Koopmans, C.J.; Tietema, A. Impact of Nitrogen Deposition on Nitrogen Cycling in Forests: A Synthesis of NITREX Data. For. Ecol. Manag. 1998, 101, 37–55. [Google Scholar] [CrossRef]
- Ollinger, S.V.; Smith, M.L.; Martin, M.E.; Hallett, R.A.; Goodale, C.L.; Aber, J.D. Regional Variation in Foliar Chemistry and N Cycling among Forests of Diverse History and Composition. Ecology 2002, 83, 339–355. [Google Scholar] [CrossRef][Green Version]
- Bühlmann, T.; Caprez, R.; Hiltbrunner, E.; Körner, C.; Niklaus, P.A. Nitrogen Fixation by Alnus Species Boosts Soil Nitrous Oxide Emissions. Eur. J. Soil Sci. 2017, 68, 740–748. [Google Scholar] [CrossRef]
- Kou-Giesbrecht, S.; Menge, D.N.L. Nitrogen-Fixing Trees Increase Soil Nitrous Oxide Emissions: A Meta-Analysis. Ecology 2021, 102, 1–8. [Google Scholar] [CrossRef] [PubMed]
Parameter | Undrained Forest Sites | Drained Forest Sites | ||||||
---|---|---|---|---|---|---|---|---|
Spruce | Birch | Alder | Clearcut | Spruce | Birch | Alder | Clearcut | |
Number of study sites | 1 | 3 | 5 | 1 | 12 | 3 | 2 | 4 |
Age, years | 67 | 21–77 | 10–80 | 14–86 | 18–60 | 26–53 | ||
Diameter, cm | 31 | 12–29 | 4–23 | 2–27 | 9–27 | 17–24 | ||
Height, m | 28 | 12–28 | 4–29 | 2–24 | 9–22 | 17–26 | ||
Basal area, m2 ha−1 | 61 | 17–71 | 8–57 | 8–72 | 19–60 | 32–56 | ||
Growing stock, m3 ha−1 | 335 | 78–365 | 35–325 | 7–521 | 38–210 | 123–254 | ||
Thickness of peat layer, cm | 68 | 31–52 | 30–99 | 47 | 37–99 | 25–75 | 60–70 | 63–99 |
Dominant Tree Species | Drained | Undrained |
---|---|---|
Birch | −2.3 ± 2.7 | −4.9 ± 3.7 |
Spruce | −7.3 ± 1.3 | −3.2 ± 1.6 |
Black alder | 9.1 ± 22.1 | 266.4 ± 524.3 |
Black alder excl. outlier study site | - | −1.2 ± 0.5 |
Black alder outlier study site | - | 1354.9 ± 1177.7 |
Clearcut | −6.3 ± 1.3 | 9.2 ± 8.3 |
Mean | −4.6 ± 1.3 | 134.1 ± 134.7 |
Dominant Tree Species | Drained | Undrained |
---|---|---|
Birch | 1.4 ± 0.9 | 4.2 ± 4.9 |
Spruce | 1.6 ± 1.4 | 0.9 ± 0.5 |
Black alder | 0.9 ± 0.9 | 5.2 ± 6.3 |
Clearcut | 2.4 ± 2.0 | 0.0 ± 0.2 |
Mean | 1.7 ± 0.6 | 4.1 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butlers, A.; Lazdiņš, A.; Kalēja, S.; Purviņa, D.; Spalva, G.; Saule, G.; Bārdule, A. CH4 and N2O Emissions of Undrained and Drained Nutrient-Rich Organic Forest Soil. Forests 2023, 14, 1390. https://doi.org/10.3390/f14071390
Butlers A, Lazdiņš A, Kalēja S, Purviņa D, Spalva G, Saule G, Bārdule A. CH4 and N2O Emissions of Undrained and Drained Nutrient-Rich Organic Forest Soil. Forests. 2023; 14(7):1390. https://doi.org/10.3390/f14071390
Chicago/Turabian StyleButlers, Aldis, Andis Lazdiņš, Santa Kalēja, Dana Purviņa, Gints Spalva, Guntis Saule, and Arta Bārdule. 2023. "CH4 and N2O Emissions of Undrained and Drained Nutrient-Rich Organic Forest Soil" Forests 14, no. 7: 1390. https://doi.org/10.3390/f14071390