Effects of Plasma Treatment on the Surface Characteristics and Bonding Performance of Pinus massoniana Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pinus massoniana Wood with Plasma Treatment
2.3. Preparation and Performance Test of Glued-Wood
2.4. Permeability Test of Wood Surface
2.5. Wettability Test of Wood Surface
2.6. Fourier Transform-Infrared Spectroscopy (FT-IR) Test
2.7. Differential Scanning Calorimetry (DSC) Test
2.8. X-ray Diffraction (XRD) Test
2.9. Scanning Electron Microscope (SEM) Test
3. Results and Discussion
3.1. Effect of Plasma Treatment of MUF Permeation on Pinus massoniana Wood Surface
3.2. Effect of Plasma Treatment on the Bonding Performance of Pinus massoniana Glued Wood
3.3. Wettability Analysis of Pinus massoniana Wood Surface
3.4. FT-IR Analysis of Surface Wood of Pinus massoniana
3.5. Analysis of Cross-Linking Reaction between Pinus massoniana Wood and MUF
3.6. Crystallinity Analysis of Pinus massoniana Surface Wood
3.7. SEM Analysis of Pinus massoniana wood
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, M.; Ding, M.; Cai, Q. The transcriptomic responses of Pinus massoniana to drought stress. Forests 2018, 9, 326. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Li, K.; Peng, X.; Huang, Z.; Liu, S.; Zhang, Q. The mechanism for exclusion of Pinus massoniana during the succession in subtropical forest ecosystems: Light competition or stoichiometric homoeostasis? Sci. Rep. 2015, 5, 10994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, N.; Ding, G.; Chen, H.; Nong, Y.; Huang, D. Relationship between resin yield and tree factors of Pinus massoniana. J. Northwest For. Univ. 2018, 33, 106–110. [Google Scholar]
- Wang, Z.; Lin, L.; Fu, F.; Zhou, Y.; Li, S.; Peng, L.; Yi, S. Research progress on high-intensity microwave treatment and failure mechanism of wood. J. For. Eng. 2022, 7, 13–21. [Google Scholar]
- Yuan, G.; Yang, T.; Zhang, M.; Li, H.; Wang, C.; Deng, Z.; Wang, Z. Research on the functional modification of plantation wood by inspiring of biomimetic mineralization. J. For. Eng. 2023, 8, 21–29. [Google Scholar]
- Yu, L.; Tian, M.; Li, L.; Wu, Z.; Chen, S.; Chen, J.; Xi, X. Study of nano colloidal silica sol based protectant on the prevention of masson pine. Wood Res. 2020, 65, 797–808. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, H.; Tan, J.; Feng, Y.; Huang, Y. Selection of superior families of Pinus massoniana in southern China for large-diameter construction timber. J. For. Res. 2020, 31, 475–484. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, L.; Zhang, Q.; Li, D.; Tu, Y.; Xiao, G.; Wu, Z.; Liang, J. Effects of fire retardants on mechanical properties and water resistance of Pinus massoniana particleboard. Wood Res. 2022, 67, 411–422. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, X.; Li, L.; Xi, X.; Tian, M.; Yu, L.; Zhang, B. Effects of heat treatment on interfacial properties of Pinus Massoniana wood. Coatings 2021, 11, 543. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Yang, Z.; Qin, L. Effect of pretreatment on surface roughness and wettability of preservative treated Masson pine. J. For. Eng. 2023, 8, 53–58. [Google Scholar]
- Xu, W.; Zhou, J. Fundamental research and application progress of transparent wood interface. J. For. Eng. 2023, 8, 1–9. [Google Scholar]
- Qiao, J. Study on drying characteristics of Masson Pine deresination wood. Appl. Mech. Mater. 2014, 654, 31–34. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Li, X. Resin removal from Pinus massoniana lumber by microwave technology. China Wood Ind. 2018, 32, 40–43. [Google Scholar]
- Cheng, X.; Liu, Y.; Quan, P.; Wei, Y.; Li, Y.; Xiong, X.; Xie, J.; Li, X. Study on drying and degreasing characteristics with atmospheric pressure steam for Masson pine wood. J. Cent. South Univ. For. Technol. 2017, 37, 108–113. [Google Scholar]
- Liu, Y.; Li, X.; Fu, F.; Wu, Y.; Hu, Y.; Peng, W.; Yang, X. Microwave deresination of Masson pine: Model formulation and solution. Sci. Silvae Sci. 2010, 46, 115–118. [Google Scholar]
- Wang, P.; Zhou, D. Surface characteristics of an alkaline degreasing treatment on Pinus massoniana veneer. J. Zhejiang A&F Univ. 2012, 29, 778–782. [Google Scholar]
- Yang, Z.; Xie, L.; Peng, W. Strong alkaline degreasing technology of Masson pine veneer. J. For. Eng. 2004, 18, 39–40. [Google Scholar]
- Li, S.; Liu, W. Effect of joint methods on the structural strength of Pinus massoniana furniture. J. Northwest For. Univ. 2014, 29, 169–173. [Google Scholar]
- Wei, P.; Huang, S.; Zhou, D. Study on property change of Pinus massoniana veneer before and after degreasing treatment. J. Southwest For. Univ. 2012, 32, 86–89. [Google Scholar]
- Tian, M.; Zhang, B.; Wu, Z.; Yu, L.; Li, L.; Xi, X. Effects of steam heat-treatment on properties of Pinus massoniana wood and its bonding performance. J. Renew. Mater. 2021, 9, 789–801. [Google Scholar] [CrossRef]
- Qu, G.; Liang, D.; Qu, D.; Huang, Y.; Liu, T.; Mao, H.; Ji, P.; Huang, D. Simultaneous removal of cadmium ions and phenol from water solution by pulsed corona discharge plasma combined with activated carbon. Chem. Eng. J. 2013, 228, 28–35. [Google Scholar] [CrossRef]
- Georg, A.; Evelyn, H.; Andrey, L.; Holger, M.; Wolfgang, V.; Arndt, W. Plasma treatment of wood and wood-based materials to generate hydrophilic or hydrophobic surface characteristics. Wood Mater. Sci. Eng. 2009, 4, 52–60. [Google Scholar]
- Sokołowska, A.; Szawłowski, J.; Frąckowiak, I.; Rudnicki, J.; Boruszewski, P.; Beer, P.; Olszyna, A. Plasma-chemical surface engineering of wood. J. Achiev. Mater. Manuf. Eng. 2009, 37, 694–697. [Google Scholar]
- Arndt, W.; Georg, A.; Evelyn, H.; Holger, M.; Wolfgang, V. Plasma treatment of wood–plastic composites to enhance their adhesion properties. J. Adhes. Sci. Technol. 2008, 22, 2025–2037. [Google Scholar]
- Du, G.; Hua, Y.; Wang, Z. Surface performance of Chinese fir wood treated by microwave plasma. China Wood Ind. 1998, 12, 17–20. [Google Scholar]
- Du, G.; Hua, Y.; Wang, Z. Wood surface ablation under microwave plasma. Sci. Silvae Sci. 1999, 35, 95–99. [Google Scholar]
- Du, G.; Yang, Z.; Qiu, J. Study on Alnus nepalensis surface treated by microwave plasma with ESR and XPS. Sci. Silvae Sci. 2004, 40, 148–151. [Google Scholar]
- Du, G.; Hua, Y.; Cui, Y.; Wang, Z. X-ray photoelectron spectroscopic (XPS) analysis of wood surface treatment with microwave plasma. Sci. Silv. 1999, 35, 104–109. [Google Scholar]
- Du, G.; Sun, Z.; Huang, L. Effect of microwave plasma on surface wettability of common teak wood. J. Northeast For. Univ. 2007, 35, 31–33. [Google Scholar]
- Du, G.; Yang, Z.; Qiu, J.; Huang, L. ESR analysis of wood surface activated by microwave plasma. J. For. Eng. 2002, 16, 28–30. [Google Scholar]
- Fang, Q.; Cui, H.; Du, G. Surface wettability, surface free energy, and surface adhesion of microwave plasma-treated Pinus yunnanensis wood. Wood Sci. Technol. 2015, 50, 285–296. [Google Scholar] [CrossRef]
- Duan, Z.; Hu, M.; Jiang, S.; Du, G.; Zhou, X.; Li, T. Cocuring of epoxidized soybean oil-based wood adhesives and the enhanced bonding performance by plasma treatment of wood surfaces. ACS Sustain. Chem. Eng. 2022, 10, 3363–3372. [Google Scholar] [CrossRef]
- GB/T 26899-2011; Test Method for Structural Glued Laminated Timber. Beijing Forestry University: Beijing, China, 2011.
- Zhang, B.; Wu, Z.; Liang, J.; Yu, L.; Xi, X.; Lei, H.; Du, G. Effects of polyethylene glycol on the flexibility of cold-setting melamine-urea-formaldehyde resin. Eur. J. Wood Wood Prod. 2022, 80, 975–984. [Google Scholar] [CrossRef]
- Žigon, J. Interactions of a waterborne coating with plasma pre-treated densified beech wood. Eur. J. Wood Wood Prod. 2021, 79, 1383–1394. [Google Scholar] [CrossRef]
- Wu, Z.; Xi, X.; Lei, H.; Du, G.; Zhang, B.; Wang, X.; Wang, H. Modification of tannin-soy based coordination with plasma in plywood. J. Southwest For. Univ. 2017, 37, 199–205. [Google Scholar]
- Yang, F.; Jin, C.; Wang, S.; Wang, Y.; Wei, L.; Zheng, L.; Gu, H.; Lam, S.; Naushad, M.; Li, C. Bamboo-based magnetic activated carbon for efficient removal of sulfadiazine: Application and adsorption mechanism. Chemosphere 2023, 323, e138245. [Google Scholar] [CrossRef]
- Cuadro, P.; Belt, T.; Kontturi, K.S.; Reza, M.; Kontturi, E.; Vuorinen, T.; Hughes, M. Cross-linking of cellulose and poly(ethyleneglycol) with citric acid. React. Funct. Polym. 2015, 90, 21–24. [Google Scholar] [CrossRef]
- Talviste, R.; Galmiz, O.; Stupavská, M.; Ráhel, J. Effect of DCSBD plasma treatment distance on surface characteristics of wood and thermally modified wood. Wood Sci. Technol. 2020, 54, 651–665. [Google Scholar] [CrossRef]
- Cavalcante Cordeiro, R.; Villela Pacheco, L.; Schierl, S.; Víana, H.; AntounSimão, R. Effects of different plasma treatments of short fibers on the mechanical properties of polypropylene-wood composites. Polym. Compos. 2016, 39, 1468–1479. [Google Scholar] [CrossRef]
- Avramidis, G.; Wascher, R.; Militz, H.; Viöl, W. Impact of air-plasma treatment at atmospheric pressure on wood and wood extractives. Int. Wood Prod. J. 2016, 25, 76–79. [Google Scholar] [CrossRef]
- Altgen, D.; Bellmann, M.; Wascher, R.; Mai, C. Enhanced urea-formaldehyde adhesive spreading on plasma treated wood particles. Eur. J. Wood Wood Prod. 2016, 74, 617–620. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, S.; Liang, J.; Li, L.; Xi, X.; Deng, X.; Zhang, B.; Lei, H. Plasma treatment induced chemical changes of alkali lignin to enhance the performances of lignin-phenol-formaldehyde resin adhesive. J. Renew. Mater. 2021, 9, 1959–1972. [Google Scholar] [CrossRef]
- Xiao, G.; Liang, J.; Li, D.; Tu, Y.; Zhang, B.; Gong, F.; Gu, W.; Tang, M.; Ding, X.; Wu, Z.; et al. Fully bio-based adhesive from tannin and sucrose for plywood manufacturing with high performances. Materials 2022, 15, 8725. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ye, H.; Ge, S.; Yao, Y.; Ashok, B.; Hariram, N.; Liu, H.; Tian, H.; He, Y.; Guo, G. Fabrication and properties of antimicrobial flexible nanocomposite polyurethane foams with in situ generated copper nanoparticles. J. Mater. Res. Technol. 2022, 19, 3603–3615. [Google Scholar] [CrossRef]
- Li, C.; Tang, Y.; Wang, Y.; Yuan, X.; Zhang, B.; Wu, Z.; Tian, H. A novel environment-friendly adhesive based on recycling of Broussonetia papyrifera leaf forestry waste protein. Forests 2022, 13, 291. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Q.; Xi, X.; Lei, H.; Cao, M.; Du, G.; Wu, Z. Tannin-based wood adhesive with good water resistance crosslinked by hexanediamine. Int. J. Biol. Macromol. 2023, 234, 123644. [Google Scholar] [CrossRef]
- Xiao, G.; Liang, J.; Wu, Z.; Lei, H.; Gong, F.; Gu, W.; Tu, Y.; Li, D. A composite whole-biomass tannin-sucrose-soy protein wood adhesive with high performance. Forests 2023, 14, 1250. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Xie, W.; Tang, Y.; Yang, F.; Gong, C.; Wang, C.; Li, X.; Li, C. Preparation and characterization of soybean protein adhesives modified with an environmental-friendly tannin-based resin. Polymers 2023, 15, 2289. [Google Scholar] [CrossRef]
- Dong, Y.; Tan, Y.; Wang, K.; Cai, Y.; Li, J.; Sonn, E.C.; Li, C. Reviewing wood-based solar-driven interfacial evaporators for desalination. Water Res. 2022, 223, e119011. [Google Scholar] [CrossRef]
- Gu, H.; Yan, J.; Liu, Y.; Yu, X.; Feng, Y.; Yang, X.; Lam, S.; Naushad, M.; Li, C.; Sonne, C. Autochthonous bioaugmentation accelerates phenanthrene degradation in acclimated soil. Environ. Res. 2023, 224, e115543. [Google Scholar] [CrossRef]
- Žigon, J.; Kovač, J.; Zaplotnik, R.; Saražin, J.; Šernek, M.; Petrič, M.; Dahle, S. Correction to: Enhancement of strength of adhesive bond between wood and metal using atmospheric plasma treatment. Cellulose 2020, 27, 6411–6424. [Google Scholar] [CrossRef]
- Safin, R.; Khasanshin, R.; Galyavetdinov, N.; Salimgaraeva, R.; Mukhametzyanov, S.; Safina, A.; Kraysman, N. Improving the physical and mechanical performance of laminated wooden structures by low-temperature plasma treatment. Coatings 2021, 11, 918. [Google Scholar] [CrossRef]
- Žigon, J.; Saražin, J.; Šernek, M.; Kovač, J.; Dahle, S. The effect of ageing on bonding performance of plasma treated beech wood with urea-formaldehyde adhesive. Cellulose 2021, 28, 2461–2478. [Google Scholar] [CrossRef]
- Gumowska, A.; Kowaluk, G. Bonding of birch solid wood of sawmill surface roughness with use of selected thermoplastic biopolymers. Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2019, 106, 9–15. [Google Scholar] [CrossRef]
Plasma Processing Time/min | Peeling Rate in Boiling Water for 4 h/% | Peeling Rate in Room Temperature Water for 24 h/% | ||
---|---|---|---|---|
Total | Maximum at Glue Line | Total | Maximum at Glue Line | |
0 | 18.77 | 37.62 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 |
Samples | Heating Rate K/min | Ti/°C | Tp/°C | Tf/°C | ΔH/(J/g) |
---|---|---|---|---|---|
Control | 10 | 87.0 | 112.4 | 131.7 | 305.6 |
15 | 96.2 | 118.1 | 138.2 | 350.6 | |
20 | 105.2 | 126.8 | 148.9 | 495.5 | |
Plasma treatment | 10 | 94.8 | 115.5 | 134.0 | 356.7 |
15 | 102.3 | 120.2 | 139.9 | 513.9 | |
20 | 108.0 | 126.0 | 148.2 | 552.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, Y.; Liang, J.; Yu, L.; Wu, Z.; Xi, X.; Zhang, B.; Tian, M.; Li, D.; Xiao, G. Effects of Plasma Treatment on the Surface Characteristics and Bonding Performance of Pinus massoniana Wood. Forests 2023, 14, 1346. https://doi.org/10.3390/f14071346
Tu Y, Liang J, Yu L, Wu Z, Xi X, Zhang B, Tian M, Li D, Xiao G. Effects of Plasma Treatment on the Surface Characteristics and Bonding Performance of Pinus massoniana Wood. Forests. 2023; 14(7):1346. https://doi.org/10.3390/f14071346
Chicago/Turabian StyleTu, Yuan, Jiankun Liang, Liping Yu, Zhigang Wu, Xuedong Xi, Bengang Zhang, Meifen Tian, De Li, and Guoming Xiao. 2023. "Effects of Plasma Treatment on the Surface Characteristics and Bonding Performance of Pinus massoniana Wood" Forests 14, no. 7: 1346. https://doi.org/10.3390/f14071346