Future Climate Effects on Basal Stem Rot of Conventional and Modified Oil Palm in Indonesia and Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basal Stem Rot Incidence
2.2. Mortality from Basal Stem Rot
2.3. Yield of Palm Oil Resulting from Basal Stem Rot
2.4. Determination of the Numbers of Oil Palm Affected and Yield Values
2.5. Costs
- Cost from infection rate per year
- 2.
- Cost from number of oil palms
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Corley, R.H.V.; Tinker, P.B. The Oil Palm; Wiley Blackwell: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ghini, R.; Bettiol, W.; Hamada, E.D. Diseases in tropical and plantation crops as affected by climate changes: Current knowledge and perspectives. Plant Pathol. 2011, 60, 122–132. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Lima, N. Climate change affecting oil palm agronomy, and oil palm cultivation increasing climate change, require amelioration. Ecol. Evol. 2018, 8, 452–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dislich, C.; Keyel, A.C.; Salecker, J.; Kisel, Y.; Meyer, K.M.; Auliya, M.; Barnes, A.D.; Corre, M.D.; Darras, K.; Faust, H.; et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol. Rev. 2017, 49, 1539–1569. [Google Scholar] [CrossRef] [PubMed]
- Gibb, R.; Redding, D.W.; Chin, K.Q.; Donnelly, C.A.; Blackburn, T.M.; Newbold, T.; Jones, K.E. Zoonotic host diversity increases in human-dominated ecosystems. Nature 2020, 584, 398–402. [Google Scholar] [CrossRef]
- Lam, W.Y.; Kulak, M.; Sim, S.; King, H.; Huijbregts, M.; Chaplin-Kramer, R. Greenhouse gas footprints of palm oil production in Indonesia over space and time. Sci. Total Environ. 2019, 688, 827–837. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Kumar, L.; Taylor, S.; Lima, N. Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia. Sci. Rep. 2015, 5, 14457. [Google Scholar] [CrossRef] [Green Version]
- Paterson, R.R.M.; Kumar, L.; Shabani, F.; Lima, N. World climate suitability projections to 2050 and 2100 for growing oil palm. J. Agric. Sci. 2017, 155, 689–702. [Google Scholar] [CrossRef]
- Paterson, R.R.M. Ganoderma boninense disease of oil palm is expected to significantly reduce production after 2050 in Sumatra if projected climate change occurs. Microorganisms 2019, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Paterson, R.R.M. Ganoderma boninense disease deduced from simulation modelling with large data sets of future Malaysian oil palm climate. Phytoparasitica 2019, 47, 255–262. [Google Scholar] [CrossRef]
- Paterson, R.R.M. Future scenarios for oil palm mortality and infection by Phytophthora palmivora in Colombia, Ecuador and Brazil, extrapolated to Malaysia and Indonesia. Phytoparasitica 2020, 48, 513–523. [Google Scholar] [CrossRef]
- Paterson, R.R.M. Oil palm survival under climate change in Kalimantan and alternative SE Asian palm oil countries with future basal stem rot assessments. For. Pathol. 2020, 50, e12604. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Begum, R.A.; Pereira, J.J. Impacts of climate change on oil palm production in Malaysia. Environ. Sci. Pollut. R 2020, 27, 9760–9770. [Google Scholar] [CrossRef] [PubMed]
- Rianto, B. Overview of Palm Oil Industry in Indonesia. Pricewaterhouse Coopers Indonesia. 2010. Available online: https://www.pwc.com/id/en/publications/assets/palm-oil-plantation.pdf (accessed on 14 May 2023).
- Ommnela, B.G.; Jennifer, A.N.; Chong, K.P. The potential of chitosan in suppressing Ganoderma boninense infection in oil-palm seedlings. J. Sustain. Sci. Manag. 2012, 7, 186–192. [Google Scholar]
- Paterson, R.R.M.; Lima, N. Ecology and biotechnology of thermophilic fungi on crops under global warming. In Fungi in Extreme Environments: Ecological Role and Biotechnological Significance; Springer: Cham, Germany, 2019; pp. 81–96. [Google Scholar]
- Flood, J.; Hasan, Y.; Turner, P.D.; O’Grady, E. The spread of Ganoderma from infective sources in the field and its implications for management of the disease in oil palm. In Ganoderma Diseases of Perennial Crops; Flood, J., Bridge, P.D., Holderness, M., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 101–112. [Google Scholar]
- Paterson, R.R.M. Depletion of Indonesian oil palm plantations implied from modeling oil palm mortality and Ganoderma boninense rot under future climate. AIMS Environ. Sci. 2020, 7, 366–379. [Google Scholar] [CrossRef]
- Siddiqui, Y.; Surendran, A.; Paterson, R.R.M.; Ali, A.; Ahmad, K. Current strategies and perspectives in detection and control of basal stem rot of oil palm. Saudi J. Biol. Sci. 2021, 28, 2840–2849. [Google Scholar] [CrossRef]
- Flood, J.; Bridge, P.D.; Pilotti, C.A. Basal stem rot of oil palm revisited. Ann. Appl. Biol. 2022, 181, 160–181. [Google Scholar] [CrossRef]
- Zakaria, L. Basal stem rot of oil palm: The pathogen, disease incidence, and control methods. Plant Dis. 2023, 107, 603–615. [Google Scholar] [CrossRef]
- Bharudin, I.; Ab Wahab, A.F.F.; Abd Samad, M.A.; Xin Yie, N.; Zairun, M.A.; Abu Bakar, F.D.; Abdul Murad, A.M. Review Update on the Life Cycle, Plant–Microbe Interaction, Genomics, Detection and Control Strategies of the Oil Palm Pathogen Ganoderma boninense. Biology 2022, 11, 251. [Google Scholar] [CrossRef]
- Paterson, R.R.M. Longitudinal trends of future suitable climate for conserving oil palm indicates refuges in tropical south-east Asia with comparisons to Africa and South America. Pac. Conserv. Biol. 2022, 28, 57–67. [Google Scholar] [CrossRef]
- Ariffin, D.; Idris, A.S. Status of Ganoderma in oil palm. In Ganoderma Diseases of Perennial Crops; Flood, J., Bridge, P.D., Holderness, M., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 49–68. [Google Scholar]
- Turner, P.D. The incidence of Ganoderma disease of oil palms in Malaya and its relation to previous crop. Ann. Appl. Biol. 1965, 55, 417–423. [Google Scholar] [CrossRef]
- Paterson, R.R.M. In response to Fleiss et al. (2022), climate change will affect palm oil yields in Malaysia very detrimentally by 2100 and less so before that date. CABI Agric. Biosci. 2022, 3, 71. [Google Scholar] [CrossRef]
- Zhou, L.; Yarra, R.; Jin, L.; Cao, H. Genome-wide identification and expression analysis of MYB gene family in oil palm (Elaeis guineensis Jacq.) under abiotic stress conditions. Environ. Exp. Bot. 2020, 180, 104245. [Google Scholar] [CrossRef]
- Fryssouli, V.; Zervakis, G.I.; Polemis, E.; Typas, M.A. A global meta-analysis of ITS rDNA sequences from material belonging to the genus Ganoderma (Basidiomycota, Polyporales) including new data from selected taxa. MycoKeys 2020, 75, 71–143. [Google Scholar] [CrossRef] [PubMed]
- Merciere, M.; Boulord, R.; Carasco-Lacombe, C.; Klopp, C.; Lee, Y.-P.; Tan, J.-S.; Syed Alwee, S.S.R.; Zaremski, A.; Franqueville, H.D.; Breton, F.; et al. About Ganoderma boninense in oil palm plantations of Sumatra and peninsular Malaysia: Ancient population expansion, extensive gene flow and large scale dispersion ability. Fungal Biol. 2017, 121, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.M.; Sariah, M.; Lima, N. How will climate change affect oil palm fungal diseases? Crop. Prot. 2013, 46, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, F. Spatial and sequential mapping of the incidence of basal stem rot of oil palms (Elaeis guineensis) on a former coconut (Cocus nucifera) plantation. In Ganoderma Diseases of Perennial Crops; Flood, J., Bridge, P.D., Holderness, M., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 183–194. [Google Scholar]
- Clercq, M.D.; Vats, A.; Biel, A. The World Government Summit. Agriculture 4.0—The Future of Farming Technology|Agribusiness Coach. 2018. Available online: https://www.worldgovernmentsummit.org (accessed on 16 May 2023).
- Xu, J.; Huang, E.; Hsieh, L.; Lee, L.H.; Jia, Q.-S.; Chen, C.-H. Simulation optimization in the era of industrial 4.0 and the industrial internet. J. Simul. 2017, 10, 310–320. [Google Scholar] [CrossRef]
- John Martin, J.J.; Yarra, R.; Wei, L.; Cao, H. Oil palm breeding in the modern era: Challenges and opportunities. Plants 2022, 11, 1395. [Google Scholar] [CrossRef]
- Murphy, D.J.; Goggin, K.; Paterson, R.R.M. Oil palm in the 2020s and beyond: Challenges and solutions. CABI Agric Biosci. 2021, 2, 39. [Google Scholar] [CrossRef]
- Baillo, E.H.; Kimotho, R.N.; Zhang, Z.; Xu, P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 2019, 10, 771. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; john Martin, J.J.; Zhang, H.; Zhang, R.; Cao, H. Problems and prospects of improving abiotic stress tolerance and pathogen resistance of oil palm. Plants 2021, 10, 2622. [Google Scholar] [CrossRef]
- Fook-Hwa, L.; Abd Rasid, O.; Idris, A.S.; As’wad, A.W.M.; Vadamalai, G.; Parveez, G.K.A.; Wong, M.-Y. Induced expression of Ganoderma boninense Lanosterol 14α-Demethylase (ERG11) during interaction with oil palm. Mol. Biol. Rep. 2023, 50, 2367–2379. [Google Scholar] [CrossRef]
- Yono, D.; Purwanti, E.; Sahara, A.; Nugroho, A.Y.; Tanjung, A.Z.; Aditama, R.; Dewi, C.E.; Sihotang, A.; Utomo, C.; Liwang, T. Physiology and genotyping of adaptive and sensitive oil palm progenies under unwatered stress condition. IOP Conf. Ser. Earth Environ. Sci. 2019, 293, 012012. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Moen, S.; Lima, N. The feasibility of producing oil palm with altered lignin content to control Ganoderma disease. J. Phytopathol. 2009, 157, 649–656. [Google Scholar] [CrossRef]
- Govender, N.T.; Mahmood, M.; Seman, I.A.; Wong, M.-Y. The phenylpropanoid pathway and lignin in defense against Ganoderma boninense colonized root tissues in oil palm (Elaeis guineensis Jacq.). Front. Plant Sci. 2017, 8, 1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterson, R.R.M. Future Climate Effects on Yield and Mortality of Conventional versus Modified Oil Palm in SE Asia. Plants 2023, 12, 2236. [Google Scholar] [CrossRef]
Year | ||
---|---|---|
2070 | 2100 | |
A. BSR of OP | Number of OP | Number of OP |
Indonesia | 5.0 | 16.0 |
Thailand | 1.0 | 3.0 |
B. Mortality from BSR | Number of OP | Number of OP |
Indonesia | 3.0 | 8.0 |
Thailand | 1.0 | 1.0 |
C. Yields after BSR infection | Yield | Yield |
Indonesia | 10.0 | 60.0 |
Thailand | 1.0 | 1.0 |
Year | ||||
---|---|---|---|---|
CT | 2070 | 2100 | ||
Indonesia | Costs of BSR for cOP | 376 | 789 | 1314 |
Costs of BSR for mOP | 376 | 676 | 995 | |
Savings from using mOP | 113 | 319 | ||
Thailand | Costs of BSR for cOP | 19 | 115 | 182 |
Costs of BSR for mOP | 19 | 97 | 132 | |
Savings from using mOP | 18 | 50 |
Hectares | Number OP | Yield | |
---|---|---|---|
Indonesia | 6.50 | 91.0 | 298.3 |
Malaysia | 4.36 | 61.0 | 209.5 |
Africa | 1.25 | 17.5 | 24.3 |
South America | 0.71 | 9.9 | 21.9 |
Thailand | 0.64 | 9.0 | 18.5 |
Central America | 0.29 | 4.1 | 12.4 |
PNG | 0.14 | 2.0 | 5.6 |
India | 0.08 | 1.1 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paterson, R.R.M. Future Climate Effects on Basal Stem Rot of Conventional and Modified Oil Palm in Indonesia and Thailand. Forests 2023, 14, 1347. https://doi.org/10.3390/f14071347
Paterson RRM. Future Climate Effects on Basal Stem Rot of Conventional and Modified Oil Palm in Indonesia and Thailand. Forests. 2023; 14(7):1347. https://doi.org/10.3390/f14071347
Chicago/Turabian StylePaterson, Robert Russell Monteith. 2023. "Future Climate Effects on Basal Stem Rot of Conventional and Modified Oil Palm in Indonesia and Thailand" Forests 14, no. 7: 1347. https://doi.org/10.3390/f14071347
APA StylePaterson, R. R. M. (2023). Future Climate Effects on Basal Stem Rot of Conventional and Modified Oil Palm in Indonesia and Thailand. Forests, 14(7), 1347. https://doi.org/10.3390/f14071347