GWAS on the Attack by Aspen Borer Saperda calcarata on Black Cottonwood Trees Reveals a Response Mechanism Involving Secondary Metabolism and Independence of Tree Architecture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial Description
2.2. Assessment of Wood Borer Attack and Number of Stems
2.3. Wood Metabolite Data Analysis
2.4. Genotyping and SNP Data Processing
2.5. Association Analysis
2.6. Linkage Disequilibrium Analysis
2.7. Gene Ontology
3. Results
3.1. Presence of Wood Borer and Number of Stems
3.2. Association Analysis on S. calcarata Attack
3.3. LD Analysis
3.4. Genotype Effects
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geraldes, A.; Pang, J.; Thiessen, N.; Cezard, T.; Moore, R.; Zhao, Y.; Tam, A.; Wang, S.; Friedmann, M.; Birol, I.; et al. SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing. Mol. Ecol. Resour. 2011, 11, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.P.; Richards, J.H.; Fiehn, O.; Famula, R.; Stanton, B.J.; Shuren, R.; Sykes, R.; Davis, M.F.; Neale, D.B. Analysis of the genetic variation in growth, ecophysiology, and chemical and metabolomic composition of wood of Populus trichocarpa provenances. Tree Genet. Genomes 2016, 12, 1–16. [Google Scholar] [CrossRef]
- AHB. Advances Hardwood Biofuels Northwest. Available online: https://hardwoodbiofuels.org/topics/fuel-and-chemicals/ (accessed on 20 December 2020).
- Moreno-Cortés, A.; Ramos-Sánchez, J.M.; Hernández-Verdeja, T.; González-Melendi, P.; Alves, A.; Simões, R.; Rodrigues, J.C.; Guijarro, M.; Canellas, I.; Allona, I. Impact of RAV1-engineering on poplar biomass production: A short-rotation coppice field trial. Biotechnol. Biofuels 2017, 10, 110. [Google Scholar] [CrossRef]
- Xu, D.; Qi, X.; Li, J.; Han, X.; Wang, J.; Jiang, Y.; Tian, Y.; Wang, Y. PzTAC and PzLAZY from a narrow-crown poplar contribute to regulation of branch angles. Plant Physiol. Biochem. 2017, 118, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Tuskan, G.A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; et al. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313, 1596–1604. [Google Scholar] [CrossRef]
- Aukema, J.E.; Leung, B.; Kovacs, K.; Chivers, C.; Britton, K.O.; Englin, J.; Frankel, S.J.; Haight, R.G.; Holmes, T.P.; Liebhold, A.M.; et al. Economic Impacts of Non-Native Forest Insects in the Continental United States. PLoS ONE 2011, 6, e24587. [Google Scholar] [CrossRef] [PubMed]
- Kundanati, L.; Chahare, N.R.; Jaddivada, S.; Karkisaval, A.G.; Sridhar, R.; Pugno, N.M.; Gundiah, N. Cutting mechanics of wood by beetle larval mandibles. J. Mech. Behav. Biomed. Mater. 2020, 112, 104027. [Google Scholar] [CrossRef]
- Coleman, T.W.; Poloni, A.L.; Chen, Y.; Thu, P.Q.; Li, Q.; Sun, J.; Rabaglia, R.J.; Man, G.; Seybold, S.J. Hardwood injury and mortality associated with two shot hole borers, Euwallacea spp., in the invaded region of southern California, USA, and the native region of Southeast Asia. Ann. For. Sci. 2019, 76, 61. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; Forest Service. Insect of Eastern Forests. N° 1426; U.S. Department of Agriculture: Washington, DC, USA, 1985; pp. 295–297. Available online: https://archive.org/details/insectsofeastern1426unit/page/n5/mode/2up (accessed on 15 January 2023).
- Tsankov, G.; Georgiev, G. Records on parasitoids of smaller poplar borer, Saperda populnea [Coleoptera, Cerambycidae] along the Danube in Bulgaria. Biocontrol 1991, 36, 493–498. [Google Scholar] [CrossRef]
- Ke, J.; Laskar, D.D.; Chen, S. Biodegradation of hardwood lignocellulosic by the western poplar clearwing borer, Paranthrene robiniae (Hy. Edwards). Biomacromolecules 2011, 12, 1610–1620. [Google Scholar] [CrossRef]
- Chamberlin, E.A.; Aarssen, L.W. The Cost of Apical Dominance in White Pine (Pinus strobus L.): Growth in Multi-Stemmed Versus Single-Stemmed Trees. Bull. Torrey Bot. Club 1996, 123, 268. [Google Scholar] [CrossRef]
- Stephens, A.E.A.; Westoby, M. Effects of insect attack to stems on plant survival, growth, reproduction and photosynthesis. Oikos 2014, 124, 266–273. [Google Scholar] [CrossRef]
- Puettmann, K.J.; Saunders, M.R. Patterns of growth compensation in eastern white pine (Pinus strobus L.): The influence of herbivory intensity and competitive environments. Oecologia 2001, 129, 376–384. [Google Scholar] [CrossRef]
- Pratt, P.D.; Rayamajhi, M.B.; Van, T.K.; Center, T.D.; Tipping, P.W. Herbivory alters resource allocation and compensation in the invasive tree Melaleuca quinquenervia. Ecol. Èntomol. 2005, 30, 316–326. [Google Scholar] [CrossRef]
- Whitham, T.G.; Mopper, S. Chronic Herbivory: Impacts on Architecture and Sex Expression of Pinyon Pine. Science 1985, 228, 1089–1091. [Google Scholar] [CrossRef]
- Sacchi, C.F.; Connor, E.F. Changes in Reproduction and Architecture in Flowering Dogwood, Cornus florida, after Attack by the Dogwood Club Gall, Resseliella clavula. Oikos 1999, 86, 138. [Google Scholar] [CrossRef]
- García-Cervigón, A.I.; García-López, M.A.; Pistón, N.; Pugnaire, F.I.; Olano, J.M. Co-ordination between xylem anatomy, plant architecture and leaf functional traits in response to abiotic and biotic drivers in a nurse cushion plant. Ann. Bot. 2021, 127, 919–929. [Google Scholar] [CrossRef]
- Sauter, J.J.; van Cleve, B. Seasonal variation of amino acids in the xylem sap of “Populus × canadensis” and its relation to protein body mobilization. Trees 1992, 7, 26–32. [Google Scholar] [CrossRef]
- Robinson, A.R.; Gheneim, R.; Kozak, R.A.; Ellis, D.D.; Mansfield, S.D. The potential of metabolite profiling as a selection tool for genotype discrimination in Populus. J. Exp. Bot. 2005, 56, 2807–2819. [Google Scholar] [CrossRef]
- Abreu, I.N.; Johansson, A.I.; Sokołowska, K.; Niittylä, T.; Sundberg, B.; Hvidsten, T.R.; Street, N.R.; Moritz, T. A metabolite roadmap of the wood-forming tissue in Populus tremula. New Phytol. 2020, 228, 1559–1572. [Google Scholar] [CrossRef]
- Chano, V.; Collada, C.; Soto, A. Transcriptomic analysis of wound xylem formation in Pinus canariensis. BMC Plant Biol. 2017, 17, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wegrzyn, J.L.; Eckert, A.J.; Choi, M.; Lee, J.M.; Stanton, B.J.; Sykes, R.; Davis, M.F.; Tsai, C.-J.; Neale, D.B. Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytol. 2010, 188, 515–532. [Google Scholar] [CrossRef] [PubMed]
- McKown, A.D.; Guy, R.D.; Quamme, L.; Klápště, J.; La Mantia, J.; Constabel, C.P.; El-Kassaby, Y.A.; Hamelin, R.C.; Zifkin, M.; Azam, M.S. Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs. Mol. Ecol. 2014, 23, 5771–5790. [Google Scholar] [CrossRef] [PubMed]
- McKown, A.D.; Klápště, J.; Guy, R.D.; Geraldes, A.; Porth, I.; Hannemann, J.; Friedmann, M.; Muchero, W.; Tuskan, G.A.; Ehlting, J.; et al. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytol. 2014, 203, 535–553. [Google Scholar] [CrossRef] [PubMed]
- Porth, I.; El-Kassaby, Y.A. Using Populus as a lignocellulosic feedstock for bioethanol. Biotechnol. J. 2015, 10, 510–524. [Google Scholar] [CrossRef]
- Guerra, F.P.; Suren, H.; Holliday, J.; Richards, J.H.; Fiehn, O.; Famula, R.; Stanton, B.J.; Shuren, R.; Sykes, R.; Davis, M.F.; et al. Exome resequencing and GWAS for growth, ecophysiology, and chemical and metabolomic composition of wood of Populus trichocarpa. BMC Genom. 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Chhetri, H.B.; Macaya-Sanz, D.; Kainer, D.; Biswal, A.K.; Evans, L.M.; Chen, J.G.; Collins, C.; Hunt, K.; Mohanty, S.S.; DiFazio, S.P.; et al. Multitrait genome-wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits. New Phytol. 2019, 223, 293–309. [Google Scholar] [CrossRef]
- Chhetri, H.; Furches, A.; Macaya-Sanz, D.; Walker, A.R.; Kainer, D.; Jones, P.; Harman-Ware, A.E.; Tschaplinski, T.J.; Jacobson, D.; Tuskan, G.A.; et al. Genome-Wide Association Study of Wood Anatomical and Morphological Traits in Populus trichocarpa. Front. Plant Sci. 2020, 11, 545748. [Google Scholar] [CrossRef] [PubMed]
- Mähler, N.; Schiffthaler, B.; Robinson, K.M.; Terebieniec, B.K.; Vučak, M.; Mannapperuma, C.; Street, N.R. Leaf shape in Populus tremula is a complex, omnigenic trait. Ecol. Evol. 2020, 10, 11922–11940. [Google Scholar] [CrossRef]
- Zhou, S.; Kremling, K.A.; Bandillo, N.; Richter, A.; Zhang, Y.K.; Ahern, K.R.; Artyukhin, A.B.; Hui, J.X.; Younkin, G.C.; Schroeder, F.C.; et al. Metabolome-Scale Genome-Wide Association Studies Reveal Chemical Diversity and Genetic Control of Maize Specialized Metabolites. Plant Cell 2019, 31, 937–955. [Google Scholar] [CrossRef]
- Wang, J.P.; Matthews, M.L.; Williams, C.M.; Shi, R.; Yang, C.; Tunlaya-Anukit, S.; Chen, H.-C.; Li, Q.; Liu, J.; Lin, C.-Y.; et al. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nat. Commun. 2018, 9, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Furches, A.; Kainer, D.; Weighill, D.; Large, A.; Jones, P.; Walker, A.; Romero, J.; Gazolla, J.G.F.M.; Joubert, W.; Shah, M.; et al. Finding New Cell Wall Regulatory Genes in Populus trichocarpa Using Multiple Lines of Evidence. Front. Plant Sci. 2019, 10, 1249. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Maranas, C.D. SNPeffect: Identifying functional roles of SNPs using metabolic networks. Plant J. 2020, 103, 512–531. [Google Scholar] [CrossRef] [PubMed]
- RStudio Team. RStudio: Integrated Development for R. RStudio; Posit Software, PBC formerly RStudio: Boston, MA, USA, 2020; Available online: https://posit.co/download/rstudio-desktop/ (accessed on 25 May 2023).
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Chen, H. GMMAT: Generalized linear Mixed Model Association Tests Version 1.3.2; The University of Texas Health Science Center at Houston: Huston, TX, USA, 2021; Available online: https://cran.r-project.org/web/packages/GMMAT/index.html/ (accessed on 10 December 2021).
- Chen, H.; Wang, C.; Conomos, M.P.; Stilp, A.M.; Li, Z.; Sofer, T.; Szpiro, A.A.; Chen, W.; Brehm, J.M.; Celedón, J.C.; et al. Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models. Am. J. Hum. Genet. 2016, 98, 653–666. [Google Scholar] [CrossRef]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Marron, N.; Ricciotti, L.; Bastien, C.; Beritognolo, I.; Gaudet, M.; Paolucci, I.; Fabbrini, F.; Salani, F.; Dillen, S.Y.; Ceulemans, R.; et al. Plasticity of growth and biomass production of an intraspecific Populus alba family grown at three sites across Europe during three growing seasons. Can. J. For. Res. 2010, 40, 1887–1903. [Google Scholar] [CrossRef]
- Samayoa, L.F.; Malvar, R.A.; Olukolu, B.A.; Holland, J.B.; Butrón, A. Genome-wide association study reveals a set of genes associated with resistance to the Mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel. BMC Plant Biol. 2015, 15, 35. [Google Scholar] [CrossRef]
- Tamiru, A.; Paliwal, R.; Manthi, S.J.; Odeny, D.A.; Midega, C.A.O.; Khan, Z.R.; Pickett, J.A.; Bruce, T.J.A. Genome wide association analysis of a stemborer egg induced “call-for-help” defence trait in maize. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Broberg, C.L.; Borden, J.H.; Humble, L.M. Distribution and abundance of Cryptorhynchus lapathi on Salix spp. in British Columbia. Can. J. For. Res. 2002, 32, 561–568. [Google Scholar] [CrossRef]
- Marfella, C.G.; Imbalzano, A.N. The Chd family of chromatin remodelers. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2007, 618, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, D.; Zhong, X.; Zhang, C.; Zhang, Q.; Zhou, D.-X. CHD3 protein recognizes and regulates methylated histone H3 lysines 4 and 27 over a subset of targets in the rice genome. Proc. Natl. Acad. Sci. USA 2012, 109, 5773–5778. [Google Scholar] [CrossRef]
- Hu, Y.; Lai, Y.; Zhu, D. Transcription regulation by CHD proteins to control plant development. Front. Plant Sci. 2014, 5, 223. [Google Scholar] [CrossRef]
- Perruc, E.; Kinoshita, N.; Lopez-Molina, L. The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination. Plant J. 2007, 52, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.C.; Baldauf, S. Evolution of Elongation Factor G and the Origins of Mitochondrial and Chloroplast Forms. Mol. Biol. Evol. 2010, 28, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Hsu, C.-C.; Du, Y.; Zhu, P.; Zhao, C.; Fu, X.; Zhang, C.; Paez, J.S.; Macho, A.P.; Tao, W.A.; et al. Mapping proteome-wide targets of protein kinases in plant stress responses. Proc. Natl. Acad. Sci. USA 2020, 117, 3270–3280. [Google Scholar] [CrossRef]
- Ma, L.; Li, G. FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) Family Proteins in Arabidopsis Growth and Development. Front. Plant Sci. 2018, 9, 692. [Google Scholar] [CrossRef]
- Klein, U.; Kresse, H.; Von Figura, K. Sanfilippo syndrome type C: Deficiency of acetyl-CoA: Alpha-glucosaminide N-acetyltransferase in skin fibroblasts. Proc. Natl. Acad. Sci. USA 1978, 75, 5185–5189. [Google Scholar] [CrossRef]
- Kim, K.; Choi, D.; Kim, S.-M.; Kwak, D.-Y.; Choi, J.; Lee, S.; Lee, B.-C.; Hwang, D.; Hwang, I. A Systems Approach for Identifying Resistance Factors to Rice stripe virus. Mol. Plant-Microbe Interact. 2012, 25, 534–545. [Google Scholar] [CrossRef]
- Swaminathan, S.; Das, A.; Assefa, T.; Knight, J.M.; Da Silva, A.F.; Carvalho, J.P.S.; Hartman, G.L.; Huang, X.; Leandro, L.F.; Cianzio, S.R.; et al. Genome wide association study identifies novel single nucleotide polymorphic loci and candidate genes involved in soybean sudden death syndrome resistance. PLoS ONE 2019, 14, e0212071. [Google Scholar] [CrossRef]
- Devoto, A.; Piffanelli, P.; Nilsson, I.; Wallin, E.; Panstruga, R.; von Heijne, G.; Schulze-Lefert, P. Topology, Subcellular Localization, and Sequence Diversity of the Mlo Family in Plants. J. Biol. Chem. 1999, 274, 34993–35004. [Google Scholar] [CrossRef]
- Kim, M.C.; Lee, S.H.; Kim, J.K.; Chun, H.J.; Choi, M.S.; Chung, W.S.; Cho, M.J. Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein: Isolation and characterization of a rice Mlo homologue. J. Biol. Chem. 2002, 277, 19304–19314. [Google Scholar] [CrossRef]
- Hughes, M.A. 1.31—Biosynthesis and Degradation of Cyanogenic Glycosides Eds: Sir Derek Barton, Koji Nakanishi, Otto Meth-Cohn; Comprehensive Natural Products Chemistry; Elsevier Science Ltd.: Oxford, UK, 1999. [Google Scholar]
- Bernal-Vicente, A.; Petri, C.; Hernández, J.A.; Diaz-Vivancos, P. Biochemical study of the effect of stress conditions on the mandelonitrile-associated salicylic acid biosynthesis in peach. Plant Biol. 2020, 22, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Halter, J.G.; Chen, W.D.; Hild, N.; Mora, C.A.; Stoessel, P.R.; Koehler, F.M.; Stark, W.J. Induced cyanogenesis from hydroxy nitrile lyase and mandelonitrile on wheat with polylactic acid multilayer-coating produces self-defending seeds. J. Mater. Chem. A 2014, 2, 853–858. [Google Scholar] [CrossRef]
- Lu, S.; Li, Z.; Gorfe, A.A.; Zheng, L. Intracellular Ca2+ regulation of H+/Ca2+ antiporter YfkE mediated by a Ca2+ mini-sensor. Proc. Natl. Acad. Sci. USA 2020, 117, 10313–10321. [Google Scholar] [CrossRef] [PubMed]
- Cristina, M.S.; Petersen, M.; Mundy, J. Mitogen-Activated Protein Kinase Signaling in Plants. Annu. Rev. Plant Biol. 2010, 61, 621–649. [Google Scholar] [CrossRef]
- Kishor, P.B.K.; Suravajhala, R.; Rajasheker, G.; Marka, N.; Shridhar, K.K.; Dhulala, D.; Scinthia, K.P.; Divya, K.; Doma, M.; Edupuganti, S.; et al. Lysine, Lysine-Rich, Serine, and Serine-Rich Proteins: Link Between Metabolism, Development, and Abiotic Stress Tolerance and the Role of ncRNAs in Their Regulation. Front. Plant Sci. 2020, 11, 546213. [Google Scholar] [CrossRef] [PubMed]
- Casatejada-Anchel, R.; Muñoz-Bertomeu, J.; Rosa-Téllez, S.; Anoman, A.D.; Nebauer, S.G.; Torres-Moncho, A.; Fernie, A.R.; Ros, R. Phosphoglycerate dehydrogenase genes differentially affect Arabidopsis metabolism and development. Plant Sci. 2021, 306, 110863. [Google Scholar] [CrossRef]
- Alves, L.R.; Goldenberg, S. RNA-binding proteins related to stress response and differentiation in protozoa. World J. Biol. Chem. 2016, 7, 78. [Google Scholar] [CrossRef]
- Broberg, C.L.; Inkster, J.A.H.; Borden, J.H. Phenological and chemical differences among hybrid poplar clones (Salicaceae) varying in resistance to Cryptorhynchus lapathi (L.) (Coleoptera: Curculionidae). Biochem. Syst. Ecol. 2010, 38, 29–48. [Google Scholar] [CrossRef]
Traits | Average ± S.D |
---|---|
Height (m) | 6.71 ± 0.60 |
Diameter at breast height (mm) | 53.38 ± 12.05 |
Specific leaf area (m2/kg DW) | 11.99 ± 2.03 |
Leaf C:N ratio (kg C/kg N) | 14.18 ± 1.69 |
Wood lignin (%) | 22.74 ± 1.27 |
Wood 5-carbon sugars (%) | 36.04 ± 2.54 |
Wood 6-carbon sugars (%) | 42.28 ± 3.90 |
Wood syringil:guayacil ratio (fold) | 1.91 ± 0.16 |
Marker | p-Value | q-Value | SNP | Variant Amino Acid | Gene Model (1) | Protein Description |
---|---|---|---|---|---|---|
Chr03_13378835 | 1.61 × 10−8 | 0.0304 | G/C | Arginine/Alanine | Potri.003G110100 | Chromodomain-helicase-DNA-binding family protein |
Chr10_22235609 | 3.35 × 10−8 | 0.0632 | T/A | Isoleucine/Aspartic acid | Potri.010G249501.1 | Mandelonitrile lyase/ Mandelonitrile benzaldehyde-lyase |
Chr10_1102388 | 8.54 × 10−8 | 0.1613 | T/A | Valine/Asparagine | Potri.010G009400.1 | Leucine-rich repeat protein/ Protein phosphatase 1, regulatory subunit, and related proteins |
Chr01_25433714 | 1.3 × 10−7 | 0.2453 | T/A | Non-coding | Intergenic region | Non-coding |
Chr14_15414732 | 1.83 × 10−7 | 0.3448 | C/G | Non-coding | Intergenic region | Non-coding |
Chr16_11507689 | 2.26 × 10−7 | 0.4278 | T/A | Leucine/Glutamine | Potri.016G112300.1 | DNAJ (HSP40) homolog, subfamily A, member 3A |
Chr10_22235623 | 3.35 × 10−7 | 0.6336 | A/T | Isoleucine/Aspartic acid | Potri.010G249501.1 | Mandelonitrile lyase/ Mandelonitrile benzaldehyde-lyase |
Chr03_20099007 | 3.36 × 10−7 | 0.6355 | A/T | Glutamic acid/Phenylalanine | Potri.003G198400 | Xenobiotic-transporting ATPase/ Steroid-transporting ATPase |
Chr11_18278826 | 5.08 × 10−7 | 0.9497 | G/C | Alanine/Arginine | Potri.011G166700.5 | Galactinol-sucrose galactosyltransferase 1-related |
Chr14_1120814 | 5.21 × 10−7 | 0.9836 | G/C | Non-coding | Intergenic region | Non-coding |
Markers | Gene Model | Protein | Distance (kbp) | p-Value | r2 |
---|---|---|---|---|---|
Chr03_13369635 | Potri.003G110100 | Chromodomain-helicase-DNA-binding family protein | 9.2 | 2.14 × 10−5 | 1 |
Chr03_13367759 | Potri.003G110100 | Chromodomain-helicase-DNA-binding family protein | 11.1 | 2.17 × 10−5 | 1 |
Chr03_13377096 | Potri.003G110100 | Chromodomain-helicase-DNA-binding family protein | 1.7 | 2.12 × 10−4 | 1 |
Chr03_17107069 | Potri.003G159200 | Heparan-alpha-glucosaminide N-acetyltransferase | 3728.2 | 2.09 × 10−5 | 0.368 |
Chr03_17107097 | Potri.003G159200 | Heparan-alpha-glucosaminide N-acetyltransferase | 3728.3 | 4.16 × 10−4 | 0.328 |
Chr03_389630 | - | Intergenic region | 12,989.2 | 5.15 × 10−4 | 0.327 |
Chr03_284474 | Potri.003G002500 | MLO-like Protein 3 | 13,094.4 | 6.23 × 10−4 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepúlveda, S.L.; Neale, D.B.; Holliday, J.A.; Famula, R.; Fiehn, O.; Stanton, B.J.; Guerra, F.P. GWAS on the Attack by Aspen Borer Saperda calcarata on Black Cottonwood Trees Reveals a Response Mechanism Involving Secondary Metabolism and Independence of Tree Architecture. Forests 2023, 14, 1129. https://doi.org/10.3390/f14061129
Sepúlveda SL, Neale DB, Holliday JA, Famula R, Fiehn O, Stanton BJ, Guerra FP. GWAS on the Attack by Aspen Borer Saperda calcarata on Black Cottonwood Trees Reveals a Response Mechanism Involving Secondary Metabolism and Independence of Tree Architecture. Forests. 2023; 14(6):1129. https://doi.org/10.3390/f14061129
Chicago/Turabian StyleSepúlveda, Sebastián L., David B. Neale, Jason A. Holliday, Randi Famula, Oliver Fiehn, Brian J. Stanton, and Fernando P. Guerra. 2023. "GWAS on the Attack by Aspen Borer Saperda calcarata on Black Cottonwood Trees Reveals a Response Mechanism Involving Secondary Metabolism and Independence of Tree Architecture" Forests 14, no. 6: 1129. https://doi.org/10.3390/f14061129
APA StyleSepúlveda, S. L., Neale, D. B., Holliday, J. A., Famula, R., Fiehn, O., Stanton, B. J., & Guerra, F. P. (2023). GWAS on the Attack by Aspen Borer Saperda calcarata on Black Cottonwood Trees Reveals a Response Mechanism Involving Secondary Metabolism and Independence of Tree Architecture. Forests, 14(6), 1129. https://doi.org/10.3390/f14061129