Exploring the Spatial Dynamics of Endangered Nothofagus alesandrii and Its Relationship with Geomorphometric Variables and Native Tree Species in a Stand of Its Northern Distribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Identification of Tree Species and Survey of Points with Total Station
2.3. Creation of Maps (Slope-Orientation) and Preparation of the Attribute Table
2.4. Spatial Analysis by Distance Index for the Creation of Aggregation Maps, and for the Association between Nothofagus alessandrii and Other Native Tree Species
3. Results
3.1. Total and Local Aggregation Analysis for Nothofagus alessandrii and Accompanying Tree Species
3.2. Association between Areas with the Presence of Nothofagus alessandrii and Geomorphometric Variables (Slope, Elevation, and Exposure) and Association between Nothofagus alessandrii and Accompanying Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barstow, M.; Echeverría, C.; Baldwin, H.; Rivers, M.C. Nothofagus alessandrii. The IUCN Red List of Threatened Species 2017: E.T32033A2808995. Available online: http://www.iucnredlist.org/details/32033/0 (accessed on 2 March 2022).
- Santelices, R.; Drake, F.; Navarro-Cerrillo, R.M. Establishment of a Nothofagus alessandrii plantation using different levels of shade and weed control methods in Talca province, central Chile. South For. 2012, 74, 71–76. [Google Scholar] [CrossRef]
- Valencia, D.; Saavedra, J.; Brull, J.; Santelices, R. Severidad del daño causado por los incendios forestales en los bosques remanentes de Nothofagus alessandrii Espinosa en la región del Maule de Chile. Gayana Bot. 2018, 75, 531–534. [Google Scholar] [CrossRef]
- Santelices, R.; Navarro-Cerrillo, R.M.; Drake, F. Caracterización del material forestal de reproducción de cinco procedencias de Nothofagus alessandrii Espinosa una especie en peligro de extinción. Interciencia 2009, 34, 113–119. [Google Scholar]
- Nuñez, M.A.; Pauchard, A.; Langdon, B.; Jimenez, A.; Cavieres, L.A.; Peña, E. Pináceas invasoras en el sur de Sudamérica: Patrones, mecanismos e impactos potenciales. In Invasiones Biológicas en Chile: Causas Globales e Impactos Locales; Jaksic, F., Castro, S., Eds.; Ediciones UC: Santiago, Chile, 2014; pp. 283–308. [Google Scholar]
- Olivares, P.; San Martín, J.; Santelices, R. Ruil (Nothofagus alessandrii): Estado del Conocimiento y Desafíos Para su Conservación; Comisión Nacional del Medioambiente (CONAMA): Talca, Chile, 2005; p. 55. [Google Scholar]
- Weber, S. Estado de Desarrollo de Nothofagus alessandrii Espinosa, Nothofagus glauca (Phil.) Krasser y Nothofagus leonii Espinosa Ex–Situ, en Valdivia; Ingeniería Forestal, Universidad Austral de Chile: Valdivia, Chile, 2004. [Google Scholar]
- San Martín, J.; Santelices, R.; Henríquez, R. Nothofagus alessandrii Espinosa, Ruil. Familia: Nothofagaceae. In Las Especies Arbóreas de los Bosques Templados de Chile y Argentina: Autoecología, 2nd ed.; Donoso, C., Ed.; Marisa Cuneo Ediciones: Valdivia, Chile, 2013; pp. 391–401. [Google Scholar]
- Zunino, M.; Zullini, A. Biogeografía: La Dimensión Espacial de la Evolución; Fondo de Cultura Económica: México, Mexico, 2003; p. 359. [Google Scholar]
- Montero, D.; García, Ó. Análisis espacial por indices de distancia (SADIE) de Lophophora williamsii en tres parcelas con diferentes grado de perturbación en San Luis de Potosí. In Proceedings of the VII Simposio Internacional sobre la Flora Silvestre en Zonas Áridas Ecología, Manejo y Conservación, Sonora, Mexico, 17–19 March 2010; p. 14. [Google Scholar]
- Ambiente, M.d.M. Aprueba, Reglamento Para la Elaboración de Planes de Recuperación, Conservación y Gestión de Especies. Available online: https://www.bcn.cl/leychile/navegar?i=1066896&f=2014-09-22&p= (accessed on 5 April 2023).
- Law, R.; Illian, J.; Burslem, D.F.R.P.; Gratzer, G.; Gunatilleke, C.V.S.; Gunatilleke, I.A.U.N. Ecological information from spatial patterns of plants: Insights from point process theory. J. Ecol. 2009, 97, 616–628. [Google Scholar] [CrossRef]
- Perry, G.L.W.; Miller, B.P.; Enright, N.J. A Comparison of Methods for the Statistical Analysis of Spatial Point Patterns in Plant Ecology. Plant Ecol. 2006, 187, 59–82. [Google Scholar] [CrossRef]
- Getzin, S.; Dean, C.; He, F.; Trofymow, J.A.; Wiegand, K.; Wiegand, T. Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography 2006, 29, 671–682. [Google Scholar] [CrossRef]
- Nathan, R.; Muller-Landau, H.C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 2000, 15, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Vásquez Fernández, I.A. Patrones Espaciales de Reclutamiento y Dispersión de Semillas del Árbol Persea lingue (Miers ex Bertero) Ness en el Bosque del Valle del Sur de Chile, Efectos del Hábitat y un Corredor; Universidad de Chile: Santiago, Chile, 2011. [Google Scholar]
- Ne’eman, G.; Lahav, H.; Izhaki, I. Spatial pattern of seedlings 1 year after fire in a Mediterranean pine forest. Oecologia 1992, 91, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Dale, M.R.T. Spatial Pattern Analysis in Plant Ecology; Cambridge University Press: Cambridge, UK, 1999; p. 326. [Google Scholar]
- Lara-Romero, C.; de la Cruz, M.; Escribano-Ávila, G.; García-Fernández, A.; Iriondo, J.M. What causes conspecific plant aggregation? Disentangling the role of dispersal, habitat heterogeneity and plant–plant interactions. Oikos 2016, 125, 1304–1313. [Google Scholar] [CrossRef]
- McAuliffe, J.R. Landscape Evolution, Soil Formation, and Ecological Patterns and Processes in Sonoran Desert Bajadas. Ecol. Monogr. 1994, 64, 112–148. [Google Scholar] [CrossRef]
- Valverde, P.L.; Zavala-Hurtado, J.A.; Montaña, C.; Ezcurra, E. Numerical analyses of vegetation based on environmental relationships in the southern Chihuahuan Desert. Southw Nat. 1996, 41, 424–433. [Google Scholar]
- Otto, R.; Fernández-Palacios, J.M.; Krüsi, B.O. Variation in Species Composition and Vegetation Structure of Succulent Scrub on Tenerife in Relation to Environmental Variation. J. Veg. Sci. 2001, 12, 237–248. [Google Scholar] [CrossRef]
- Fernández-Palacios, J.M.; de Nicolás, J.P. Altitudinal Pattern of Vegetation Variation on Tenerife. J. Veg. Sci. 1995, 6, 183–190. [Google Scholar] [CrossRef]
- Abd El-Ghani, M.; Soliman, A.; Abd El-Fattah, R. Spatial distribution and soil characteristics of the vegetation associated with common succulent plants in Egypt. Turk. J. Bot. 2014, 38, 550–565. [Google Scholar] [CrossRef]
- Maestre, F.T.; Quero, J.L. Análisis espacial mediante índices de distancia. In Introducción al Análisis Espacial de Datos en Ecología y Ciencias Ambientales: Métodos y Aplicaciones; Maestre, F.T., Escudero, A., Bonet, A., Eds.; Universidad Rey Juan Carlos: Madrid, Spain, 2008; pp. 130–182. [Google Scholar]
- Zúñiga, B.; Malda, G.; Suzán, Y.H. Interacciones Planta-Nodriza en Lophophora diffusa (Cactaceae) en un Desierto Subtropical de México. Biotropica 2005, 37, 351–356. [Google Scholar] [CrossRef]
- Sánchez-Cuesta, R.; Navarro-Cerrillo, R.M.; Quero, J.L.; Ruiz-Gómez, F.J. Small-Scale Abiotic Factors Influencing the Spatial Distribution of Phytophthora cinnamomi under Declining Quercus ilex Trees. Forests 2020, 11, 375. [Google Scholar] [CrossRef]
- Sánchez-Cuesta, R.; González-Moreno, P.; Cortés-Márquez, A.; Navarro-Cerrillo, R.M.; Ruiz-Gómez, F.J. Soil distribution of Phytophthora cinnamomi inoculum in oak afforestation depends on site characteristics rather than host availability. New For. 2022. [Google Scholar] [CrossRef]
- Xu, X.; Madden, L.V. Interrelationships Among SADIE Indices for Characterizing Spatial Patterns of Organisms. Phytopathology 2005, 95, 874–883. [Google Scholar] [CrossRef]
- Perry, J.N.; Winder, L.; Holland, J.M.; Alston, R.D. Red–blue plots for detecting clusters in count data. Ecol. Lett. 1999, 2, 106–113. [Google Scholar] [CrossRef]
- Maestre, F.T.; Cortina, J. Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant Soil 2002, 241, 279–291. [Google Scholar] [CrossRef]
- González-Rodríguez, V.; Villar, R.; Casado, R.; Suárez-Bonnet, E.; Quero, J.L.; Navarro-Cerrillo, R.M. Spatio-temporal heterogeneity effects on seedling growth and establishment in four Quercus species. Ann. For. Sci. 2011, 68, 1217–1232. [Google Scholar] [CrossRef]
- Donoso, C.; Landaeta, E. Ruil (Nothofagus alessandrii), a threatened Chilean tree species. Environ. Conserv. 1983, 10, 159–162. [Google Scholar] [CrossRef]
- Scharf, H. Local Indicators of Spatial Association (LISA). In Wiley StatsRef: Statistics Reference Online; Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F., Teugels, J., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
- Soto, D.P.; Salas, C.; Donoso, P.J.; Uteau, D. Heterogeneidad estructural y espacial de un bosque mixto dominado por Nothofagus dombeyi después de un disturbio parcial. Rev. Chil. Hist. Nat. 2010, 83, 335–347. [Google Scholar] [CrossRef]
- Doll, U.; Araya, P.; Soto-Cerda, L.; Aedo, D.; Vizcarra, G. Producción y composición de la hojarasca en un renoval pre andino de Nothofagus glauca de la región del Maule. Bosque 2018, 39, 151–156. [Google Scholar] [CrossRef]
- Litton, C.M.; Orellana, M.; Bustamante, E. Estudio de la vegetación arbórea de una población relicto de Nothofagus alpina (P. et E.) Oerst. en la precordillera andina de la VII Región de Chile. Rev. Cien. For. 2000, 14–15, 38–49. [Google Scholar]
- Santelices-Moya, R.; Vergara, R.; Cabrera-Ariza, A.; Espinoza-Meza, S.; Silva-Flores, P. Variación intra-específica en Nothofagus glauca una especie endémica de los bosques mediterráneos de Chile. Bosque 2020, 41, 221–231. [Google Scholar] [CrossRef]
- Litton, C.M.; Santelices, R. Comparación de las comunidades vegetales en bosques de Nothofagus glauca (Phil.) Krasser en la Séptima Región de Chile. Bosque 1996, 17, 77–86. [Google Scholar] [CrossRef]
- Santelices, R.; Riquelme, M. Antecedentes dasométricos de Nothofagus alessandrii de la procedencia Coipué. Bosque 2007, 28, 281–287. [Google Scholar] [CrossRef]
- Torres-Díaz, C.; Valladares, M.A.; Acuña-Rodríguez, I.S.; Ballesteros, G.I.; Barrera, A.; Atala, C.; Molina-Montenegro, M.A. Symbiotic Interaction Enhances the Recovery of Endangered Tree Species in the Fragmented Maulino Forest. Front. Plant Sci. 2021, 12, 663017. [Google Scholar] [CrossRef]
- Puértolas, J.; Oliet, J.A.; Jacobs, D.F.; Benito, L.F.; Peñuelas, J.L. Is light the key factor for success of tube shelters in forest restoration plantings under Mediterranean climates? For. Ecol. Manag. 2010, 260, 610–617. [Google Scholar] [CrossRef]
- Oliet, J.A.; Blasco, R.; Valenzuela, P.; Melero de Blas, M.; Puértolas, J. Should we use meshes or solid tube shelters when planting in Mediterranean semiarid environments? New For. 2019, 50, 267–282. [Google Scholar] [CrossRef]
- Donoso, C. Bosques Templados de Chile y Argentina. Variación, Estructura y Dinámica; Editorial Universitaria: Santiago, Chile, 1993; p. 484. [Google Scholar]
- Silva, H. Análisis de la Distribución Espacial de los Árboles en los Bosques de Belloto del Norte (Beilschmiedia Miersii (Gay) Kosterm.) en el Cordón de Cantillana, Región Metropolitana, Chile; Universidad de Chile: Santiago, Chile, 2014. [Google Scholar]
- Bustamante, R.; Grez, A. Consecuencias ecológicas de la fragmentación de los bosques nativos. Ambiente y Desarrollo 1995, 11, 58–63. [Google Scholar]
- Acevedo, M.; Álvarez, C.; Cartes, E.; Dumroese, R.K.; González, M. Production and establishment techniques for the restoration of Nothofagus alessandrii, an endangered keystone species in a Mediterranean forest. New For. 2019, 51, 159–174. [Google Scholar] [CrossRef]
Tree Species | Ia (p-Value) | vi (p-Value) | vj (p-Value) | |||
---|---|---|---|---|---|---|
Nothofagus alessandrii | 1.170 | (0.1446) | 1.164 | (0.154) | −1.176 | (0.1384) |
Nothofagus glauca | 1.847 | (0.0013) | 1.903 | (0.001) | −1.902 | (0.0007) |
Cryptocarya alba | 1.942 | (0.0002) | 2.001 | (0) | −2.041 | (0) |
Lithraea caustica | 1.112 | (0.2278) | 1.127 | (0.2177) | −1.103 | (0.2497) |
Peumus boldus | 1.229 | (0.1057) | 1.262 | (0.0907) | −1.232 | (0.1051) |
Azara dentata | 1.179 | (0.1513) | 1.193 | (0.1473) | −1.172 | (0.1634) |
Luma apiculata | 0.983 | (0.4694) | 0.985 | (0.4604) | −0.979 | (0.4781) |
Aextoxicon punctatum | 1.051 | (0.3501) | 0.993 | (0.8882) | −1.058 | (0.3402) |
Lomatia hirsuta | 1.483 | (0.0169) | 1.486 | (0.0213) | −1.478 | (0.0183) |
Variables | χ (p-Value) | |
---|---|---|
Slope | 0.9089 | (<0.0065) |
Elevation | 0.9998 | (<0.0065) |
Exposure | 0.9123 | (<0.0065) |
Variables (Species) | χ (p) | |
---|---|---|
Nothofagus glauca | −0.3567 | (0.0065) |
Crytocarya alba | −0.4188 | (0.0065) |
Lithraea caustica | −0.2973 | (0.0065) |
Peumus boldus | −0.2641 | (0.0065) |
Azara dentata | −0.2400 | (0.0065) |
Luma apiculata | −0.1498 | (0.0325) |
Aextoxicon punctatum | −0.0744 | (0.1753) |
Lomatia hirsuta | −0.2272 | (0.0065) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovando-Mena, S.; Mora-Poblete, F.; Santelices-Moya, R.; Palacios-Rojas, C.; Cabrera-Ariza, A.M. Exploring the Spatial Dynamics of Endangered Nothofagus alesandrii and Its Relationship with Geomorphometric Variables and Native Tree Species in a Stand of Its Northern Distribution. Forests 2023, 14, 1128. https://doi.org/10.3390/f14061128
Ovando-Mena S, Mora-Poblete F, Santelices-Moya R, Palacios-Rojas C, Cabrera-Ariza AM. Exploring the Spatial Dynamics of Endangered Nothofagus alesandrii and Its Relationship with Geomorphometric Variables and Native Tree Species in a Stand of Its Northern Distribution. Forests. 2023; 14(6):1128. https://doi.org/10.3390/f14061128
Chicago/Turabian StyleOvando-Mena, Soledad, Freddy Mora-Poblete, Rómulo Santelices-Moya, Carlos Palacios-Rojas, and Antonio M. Cabrera-Ariza. 2023. "Exploring the Spatial Dynamics of Endangered Nothofagus alesandrii and Its Relationship with Geomorphometric Variables and Native Tree Species in a Stand of Its Northern Distribution" Forests 14, no. 6: 1128. https://doi.org/10.3390/f14061128
APA StyleOvando-Mena, S., Mora-Poblete, F., Santelices-Moya, R., Palacios-Rojas, C., & Cabrera-Ariza, A. M. (2023). Exploring the Spatial Dynamics of Endangered Nothofagus alesandrii and Its Relationship with Geomorphometric Variables and Native Tree Species in a Stand of Its Northern Distribution. Forests, 14(6), 1128. https://doi.org/10.3390/f14061128