Bark Beetle Attacks Reduce Survival of Wood Ant Nests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Processing and Statistical Evaluation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hlásny, T.; Zimová, S.; Merganičová, K.; Štěpánek, P.; Modlinger, R.; Turčáni, M. Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. For. Ecol. Manag. 2021, 490, 119075. [Google Scholar] [CrossRef]
- Liška, J.; Knížek, M.; Véle, A. Evaluation of insect pest occurrence in areas of calamitous mortality of Scots pine. Cent. Eur. For. J. 2021, 67, 85–90. [Google Scholar] [CrossRef]
- Miścicki, S.; Grodzki, W. Can sanitation cutting contribute to reduced mortality of Norway spruce Picea abies (L.) H. Karst., due to infestation by Ips typographus (L.)? Sylwan 2022, 165, 749–762. [Google Scholar]
- MZe. Zpráva o Stavu Lesa a Lesního Hospodářství České Republiky v Roce 2021, 1st ed.; Ministerstvo Zemědělstí: Prague, Czech Republic, 2022; pp. 5–10. [Google Scholar]
- Act of 3 November 1995 No 289/1995 Coll., on forests and amendments to some acts (the Forest Act) 1995.
- Hais, M.; Kučera, T. Surface temperature change of spruce forest as a result of bark beetle attack: Remote sensing and GIS approach. Eur. J. For. Res. 2008, 127, 327–336. [Google Scholar] [CrossRef]
- Olchev, A.; Radler, K.; Sogachev, A.; Panferov, O.; Gravenhorst, G. Application of a three-dimensional model for assessing effects of small clear-cuttings on radiation and soil temperature. Ecol. Model. 2009, 220, 3046–3056. [Google Scholar] [CrossRef]
- Beudert, B.; Bässler, C.; Thorn, S.; Noss, R.; Schröder, B.; Dieffenbach-Fries, H.; Foullois, N.; Müller, J. bark beetles increase biodiversity while maintaining drinking water quality. Conserv. Lett. 2015, 8, 272–281. [Google Scholar] [CrossRef]
- Jokela, J.; Siitonen, J.; Koivula, M. Short-term effects of selection, gap, patch and clear cutting on the beetle fauna in boreal spruce-dominated forests. For. Ecol. Manag. 2019, 446, 29–37. [Google Scholar] [CrossRef]
- Lóšková, J.; Ľuptáčik, P.; Miklisová, D.; Kováč, Ľ. The Effect of Clear-Cutting and Wildfire on Soil Oribatida (Acari) in Windthrown Stands of the High Tatra Mountains (Slovakia). Eur. J. Soil Biol. 2013, 55, 131–138. [Google Scholar] [CrossRef]
- Przepióra, F.; Loch, J.; Ciach, M. Bark beetle infestation spots as biodiversity hotspots: Canopy gaps resulting from insect outbreaks enhance the species richness, diversity and abundance of birds breeding in coniferous forests. For. Ecol. Manag. 2020, 473, 118280. [Google Scholar] [CrossRef]
- Jonášová, M.; Prach, K. The Influence of bark beetles outbreak vs. salvage logging on ground layer vegetation in Central European mountain spruce forests. Biol. Conserv. 2008, 141, 1525–1535. [Google Scholar] [CrossRef]
- Sorvari, J.; Hakkarainen, H. Wood ants are wood ants: Deforestation causes population declines in the polydomous wood ant Formica aquilonia. Ecol. Entomol. 2007, 32, 707–711. [Google Scholar] [CrossRef]
- Véle, A.; Holuša, J.; Frouz, J.; Konvicka, O. Local and landscape drivers of ant and carabid beetle communities during spruce forest succession. Eur. J. Soil Biol. 2011, 47, 349–356. [Google Scholar] [CrossRef]
- Jílková, V.; Matějíček, L.; Frouz, J. Changes in the pH and other soil chemical parameters in soil surrounding wood ant (Formica polyctena) Nests. Eur. J. Soil Biol. 2011, 47, 72–76. [Google Scholar] [CrossRef]
- Lavelle, P.; Bignell, D.; Lepage, M.; Wolters, V.; Roger, P.; Ineson, P.; Heal, O.; Dhillion, S.P. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Sci. 1997, 33, 159–193. [Google Scholar]
- Rubashko, G.E.; Khanina, L.G.; Smirnov, V.E. The dynamics of vegetation on and around Formica rufa Nests. Entmol. Rev. 2011, 91, 169–176. [Google Scholar] [CrossRef]
- Parmentier, T.; Dekoninck, W.; Wenseleers, T. A highly diverse microcosm in a hostile world: A review on the associates of red wood ants (Formica rufa group). Insect. Soc. 2014, 61, 229–237. [Google Scholar] [CrossRef]
- Jílková, V.; Frouz, J.; Mudrák, O.; Vohník, M. Effects of nutrient-rich substrate and ectomycorrhizal symbiosis on spruce seedling biomass in abandoned nests of the wood ant (Formica polyctena): A laboratory experiment. Geoderma 2015, 259–260, 56–61. [Google Scholar] [CrossRef]
- Sondej, I.; Domisch, T. Abandoned wood ant nests as sites for seedling germination. Forests 2022, 13, 764. [Google Scholar] [CrossRef]
- Maňák, V.; Nordenhem, H.; Björklund, N.; Lenoir, L.; Nordlander, G. Ants protect conifer seedlings from feeding damage by the pine weevil Hylobius abietis. Agric. For. Entomol. 2013, 15, 98–105. [Google Scholar] [CrossRef]
- Sorvari, J. Foraging distances and potentiality in forest pest insect control: An example with two candidate ants (Hymenoptera: Formicidae). Myrmecol. News 2009, 12, 211–215. [Google Scholar]
- Trigos-Peral, G.; Juhász, O.; Kiss, P.J.; Módra, G.; Tenyér, A.; Maák, I. Wood ants as biological control of the forest pest beetles Ips spp. Sci. Rep. 2021, 11, 17931. [Google Scholar] [CrossRef]
- Véle, A.; Dobrosavljević, J. Formica rufa ants have a limited effect on the abundance of the parasitic fly Ernestia rudis in Scots pine plantations. Sociobiology 2021, 68, e7286. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 15th ed.; Pearson Education: London, UK, 2016; pp. 135–136. [Google Scholar]
- Day, K.R.; Leather, S.R. Threats to Forestry by Insect Pests in Europe. In Forests and Insects; Watt, A.D., Ed.; Springer Science & Business Media: London, UK, 1997; pp. 177–205. [Google Scholar]
- Risch, A.C.; Ellis, S.; Wiswell, H. Where and why? Wood ant population ecology. In Wood Ant Ecology and Conservation; Stockan, J.A., Robinson, E.J.H., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 81–105. [Google Scholar]
- Balzani, P.; Dekoninck, W.; Feldhaar, H.; Freitag, A.; Frizzi, F.; Frouz, J.; Masoni, A.; Robinson, E.; Sorvari, J.; Santini, G. Challenges and a Call to Action for Protecting European Red Wood Ants. Conserv. Biol. 2022, 36, e13959. [Google Scholar] [CrossRef]
- Robinson, E.J.; Stockan, J.; Iason, G.R. Wood Ants and their interaction with other organisms. In Wood Ant Ecology and Conservation; Stockan, J.A., Robinson, E.J.H., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 177–206. [Google Scholar]
- Fitzpatrick, B.R.; Baltensweiler, A.; Düggelin, C.; Fraefel, M.; Freitag, A.; Vandegehuchte, M.L.; Wermelinger, B.; Risch, A.C. The distribution of a group of keystone species is not associated with anthropogenic habitat disturbance. Divers. Distrib. 2021, 27, 572–584. [Google Scholar] [CrossRef]
- Żmihorski, M. Distribution of red wood ants (Hymenoptera: Formicidae) in the clear-cut areas of a managed forest in Western Poland. J. For. Res. 2010, 15, 145–148. [Google Scholar] [CrossRef]
- Trubin, A.; Mezei, P.; Zabihi, K.; Surový, P.; Jakuš, R. Northernmost European spruce bark beetle Ips typographus outbreak: Modelling tree mortality using remote sensing and climate data. For. Ecol. Manag. 2022, 505, 119829. [Google Scholar] [CrossRef]
- Daďourek, M. O vybraných lokalitách lesních mravenců na Moravě I. Formica—Zprav. Pro Apl. Výzkum A Ochr. Lesn. Mravenců 2001, 4, 37–44. [Google Scholar]
- Miles, P.; Nešpor, J. Inventarizace a mapování mravenišť v Blanském lese (jižní Čechy). Formica—Zprav. Pro Apl. Výzkum A Ochr. Lesn. Mravenců 2003, 6, 37–42. [Google Scholar]
- Nešporová, M. Inventarizace a výzkum lesních mravenců druhu Formica polyctena Förster, 1850 v lokalitě u Babolek. Formica—Zprav. Pro Apl. Výzkum A Ochr. Lesn. Mravenců 2003, 6, 20–28. [Google Scholar]
- Véle, A. Zpráva z mapování hnízd lesních mravenců na území PP Rohovec; KÚ Ostravského kraje: Ostrava, Czech Republic, 2005; pp. 2–35. [Google Scholar]
- Mabelis, A.A.; Korczyńska, J. Long-term impact of agriculture on the survival of wood ants of the Formica rufa group (Formicidae). J. Insect. Conserv. 2016, 20, 621–628. [Google Scholar] [CrossRef]
- Sokal, R.; Rohlf, F. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; Freeman: New York, USA, 2013; pp. 551–801. [Google Scholar]
- Kilpeläinen, J.; Punttila, P.; Finér, L.; Niemelä, P.; Domisch, T.; Jurgensen, M.F.; Neuvonen, S.; Ohashi, M.; Risch, A.C.; Sundström, L. Distribution of ant species and mounds (Formica) in different-aged managed spruce stands in eastern Finland. J. Appl. Entomol. 2008, 132, 315–325. [Google Scholar] [CrossRef]
- Sorvari, J.; Huhta, E.; Hakkarainen, H. Survival of transplanted nests of the red wood ant Formica aquilonia (Hymenoptera: Formicidae): The effects of intraspecific competition and forest clear-cutting. Insect Sci. 2013, 21, 486–492. [Google Scholar] [CrossRef]
- Sorvari, J.; Hakkarainen, H. Deforestation reduces nest mound size and decreases the production of sexual offspring in the wood ant Formica aquilonia. Ann. Zool. Fenn. 2005, 42, 259–267. [Google Scholar]
- Radler, K.; Oltchev, A.; Panferov, O.; Klinck, U.; Gravenhorst, G. Radiation and temperature responses to a small clear-cut in a spruce forest. Open Geogr. J. 2010, 3, 103–114. [Google Scholar] [CrossRef]
- Domisch, T.; Finér, L.; Jurgensen, M.F. Red Wood Ant Mound Densities in Managed Boreal Forests. Ann. Zool. Fenn. 2005, 42, 277–282. [Google Scholar]
- Sonohat, G.; Balandier, P.; Ruchaud, F. Predicting Solar Radiation Transmittance in the Understory of Even-Aged Coniferous Stands in Temperate Forests. Ann. For. Sci. 2004, 61, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Antonova, V.; Marinov, M.P. Red wood ants in Bulgaria: Distribution and density related to habitat characteristics. J. Hymenopt. Res. 2021, 85, 135–159. [Google Scholar] [CrossRef]
- Czechowski, W.; Radchenko, A.; Czechowska, W.; Vepsäläinen, K. The Ants of Poland; with Reference to the Myrmecofauna of Europe, 1st ed.; PAS: Warszawa, Poland, 2012; pp. 71–74. [Google Scholar]
- Mabelis, A.A. Flying as a Survival strategy for wood ants in a fragmented landscape (Hymenoptera, Formicidae). Memorab. Zool. 1994, 48, 147–170. [Google Scholar]
- Véle, A.; Holuša, J. Impact of vegetation removal on the temperature and moisture content of red wood ant nests. Insectes Soc. 2008, 55, 364–369. [Google Scholar] [CrossRef]
- Kadochová, Š.; Frouz, J. Thermoregulation strategies in ants in comparison to other social insects, with a focus on red wood ants (Formica rufa group). F1000Res 2014, 2, 280. [Google Scholar] [CrossRef]
- Jones, J.C.; Oldroyd, B.P. Nest Thermoregulation in Social Insects. Adv. Insect Phys. 2006, 33, 153–191. [Google Scholar]
- Sorvari, J. Wood Ants: Threats, Conservation and Habitat Management. In Wood Ant Ecology and Conservation; Stockan, J.A., Robinson, E.J.H., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 264–286. [Google Scholar]
- Rosengren, R.; Fortelius, W.; Lindström, K.; Luther, A. Phenology and causation of nest heating and thermoregulation in red wood ants of the Formica rufa group studied in coniferous forest habitats in southern Finland. Ann. Zool. Fenn. 1987, 24, 147–155. [Google Scholar]
- Lenoir, L. Response of the foraging behavior of red wood ants (Formica rufa group) to exclusion from trees. Agric. For. Entomol. 2003, 5, 183–189. [Google Scholar] [CrossRef]
- Domisch, T.; Finer, L.; Neuvonen, S.; Niemelä, P.; Risch, A.C.; Kilpeläinen, J.; Ohashi, M.; Jurgensen, M.F. Foraging activity and dietary spectrum of wood ants (Formica rufa group) and their role in nutrient fluxes in boreal forests. Ecol. Entomol. 2009, 34, 369–377. [Google Scholar] [CrossRef]
- Gibb, H.; Johansson, T. Forest succession and harvesting of Hemipteran honeydew by boreal ants. Ann. Zool. Fenn. 2010, 47, 99–110. [Google Scholar] [CrossRef]
- Johansson, T.; Gibb, H. Forestry alters foraging efficiency and crop contents of aphid-tending red wood ants, Formica aquilonia. PLoS ONE 2012, 7, e32817. [Google Scholar] [CrossRef] [Green Version]
- Juhász, O.; Mikó, Á.; Tenyér, A.; Somogyi, A.; Aguilon, D.J.; Kiss, P.; Bátori, Z.; Elek, M. Consequences of climate change-induced habitat conversions on red wood ants in a Central European mountain: A case study. Animals 2020, 10, 1677. [Google Scholar] [CrossRef]
- Gibb, H.; Andersson, J.; Johansson, T. Foraging loads of red wood ants: Formica aquilonia (Hymenoptera: Formicidae) in relation to tree characteristics and stand age. PeerJ 2016, 4, e2049. [Google Scholar] [CrossRef] [Green Version]
- Sorvari, J.; Hakkarainen, H. The role of food and colony size in sexual offspring production in a social insect: An experiment. Ecol. Entomol. 2007, 32, 11–14. [Google Scholar] [CrossRef]
- Véle, A.; Modlinger, R. Body size of wood ant workers affects their work division. Sociobiology 2019, 66, 614–618. [Google Scholar] [CrossRef]
- Sorvari, J.; Hakkarainen, H.; Rantala, M.J. Immune defense of ants is associated with changes in habitat characteristics. Environ. Entomol. 2008, 37, 51–56. [Google Scholar] [CrossRef]
- Brütsch, T.; Chapuisat, M. Wood ants protect their brood with tree resin. Anim. Behav. 2014, 93, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Lubojacký, J.; Knížek, M. Výskyt lesních škodlivých činitelů v roce 2020 a jejich očekávaný stav v roce 2021. Zprav. Ochr. Lesa. Suppl. 2021, 24, 35–45. [Google Scholar]
- Inglesfield, C. Pyrethroids and terrestrial non-target organisms. Pestic. Sci. 1989, 27, 387–428. [Google Scholar] [CrossRef]
- Zahradník, P.; Zahradníková, M. Metodická Příručka Integrované Ochrany Rostlin Pro Lesní Porosty. Příloha 1. Seznam Povolených Přípravků a Dalších Prostředků na Ochranu Lesa; Lesnická práce: Kostelec nad Černými lesy, Czech Republic, 2022. [Google Scholar]
- Berberich, G.M.; Berberich, M.B.; Gibhardt, M. Red wood ants (Formica rufa-group) prefer mature pine forests in Variscan granite environments (Hymenoptera: Formicidae). Fragm. Entomol. 2022, 54, 1–18. [Google Scholar]
- Toro, I.D.; Berberich, G.M.; Ribbons, R.R.; Berberich, M.B.; Sanders, N.J.; Ellison, A.M. Nests of red wood ants (Formica rufa-group) are positively associated with tectonic faults: A double-blind test. PeerJ 2017, 5, e3903. [Google Scholar] [CrossRef] [Green Version]
- Berberich, G.; Grumpe, A.; Berberich, M.; Klimetzek, D.; Wöhler, C. Are red wood ants (Formica rufa-group) tectonic indicators? A statistical approach. Ecol. Indic. 2016, 61, 968–979. [Google Scholar] [CrossRef]
- Berberich, G.M.; Klimetzek, D.; Paraschiv, M.; Stancioiu, P.T.; Grumpe, A. Biogeostatistics confirm: Even a low total number of red wood ant nests provide new information on tectonics in the East Carpathian Orogen (Romania). Ecol. Indic. 2019, 101, 486–500. [Google Scholar] [CrossRef]
- Sorvari, J.; Haatanen, M.-K.; Vesterlund, S.-R. Combined effects of overwintering temperature and habitat degradation on the survival of boreal wood ant. J. Insect. Conserv. 2011, 15, 727–731. [Google Scholar] [CrossRef]
- Mabelis, A.A. Wood Ant Wars. The relationship between aggression and predation in the red wood ant (Formica polyctena Foerst). Neth. J. Zool. 1979, 23, 451–620. [Google Scholar]
- Buggenum, V. Presence after three decades of red wood ants (Formica rufa group; Hymenoptera: Formicidae) in forests in an agricultural landscape. Eur. J. Entomol. 2022, 119, 85–91. [Google Scholar] [CrossRef]
- Sondej, I.; Domisch, T.; Finér, L.; Czechowski, W. Wood ants prefer conifers to broadleaved trees in mixed temperate forests. Agric. For. Entomol. 2020, 23, 287–296. [Google Scholar] [CrossRef]
Forest Status | Formica s. str. | F. polyctena | F. rufa | |||
---|---|---|---|---|---|---|
Perished | Survived | Perished | Survived | Perished | Survived | |
no bark beetle (control) | 113 | 557 | 71 | 354 | 42 | 20 |
bark beetle present (treatment) | 154 | 246 | 98 | 213 | 74 | 12 |
Formica s. str. | Bark Beetle | Nest Veg. Coverage | Nest Veg. Height | Tree Coverage |
---|---|---|---|---|
nest survival | −0.29 | −0.77 | −0.45 | 0.12 |
nest veg. coverage | 0.41 | 0.63 | −0.36 | |
nest veg. height | 0.42 | −0.04 | −0.42 | |
tree coverage | −0.79 | −0.36 | −0.42 | |
F. polyctena | ||||
nest survival | −0.17 | −0.71 | −0.24 | 0.03 |
nest veg. coverage | 0.32 | 0.54 | −0.32 | |
nest veg. height | 0.28 | 0.54 | −0.31 | |
tree coverage | −0.77 | −0.32 | −0.31 | |
F. rufa | ||||
nest survival | −0.22 | −0.76 | −0.51 | 0.02 |
nest veg. coverage | 0.38 | 0.65 | −0.29 | |
nest veg. height | 0.70 | 0.65 | −0.67 | |
tree coverage | −0.89 | −0.67 | −0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Véle, A.; Frouz, J. Bark Beetle Attacks Reduce Survival of Wood Ant Nests. Forests 2023, 14, 199. https://doi.org/10.3390/f14020199
Véle A, Frouz J. Bark Beetle Attacks Reduce Survival of Wood Ant Nests. Forests. 2023; 14(2):199. https://doi.org/10.3390/f14020199
Chicago/Turabian StyleVéle, Adam, and Jan Frouz. 2023. "Bark Beetle Attacks Reduce Survival of Wood Ant Nests" Forests 14, no. 2: 199. https://doi.org/10.3390/f14020199
APA StyleVéle, A., & Frouz, J. (2023). Bark Beetle Attacks Reduce Survival of Wood Ant Nests. Forests, 14(2), 199. https://doi.org/10.3390/f14020199