Evaluation of Soil Loss Tolerance and Tree Growth Features Based on Planting Ground Methods in the Alpine Center, Degraded Forestland in the Republic of Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Establishment of Study and Treatment Areas
2.2. Soil Physicochemical Investigation
2.3. Soil Loss Investigation
2.4. Growth Characteristics
2.5. Chlorophyll and Carotenoid Content
2.6. Photosynthesis Response
2.7. Chlorophyll a Fluorescence
2.8. Data Analysis
3. Results and Discussion
3.1. Meteorological Environment and Growth-Based Characteristics
3.2. Amount of Soil Loss
3.3. Soil Physicochemical Changes
3.4. Growth Characteristics
3.5. Chlorophyll and Carotenoid Content
3.6. Photosynthesis Response
3.7. Chlorophyll a Fluorescence Response
3.8. Principle Component Analysis (PCA)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, J.; Choi, W.; Lee, S.; Choi, J. Forest Degradation and Spatial Distribution of Forest Land Development. J. Korean Soc. Environ. Restor. Technol. 2016, 19, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.M.; Choi, S.H.; Kim, D.H.; Song, J.T. A Study on the Restoration Effects of Vegetation Restoration Types. Korean J. Environ. Ecol. 2017, 31, 174–187. [Google Scholar] [CrossRef]
- Jung, T.J.; Kim, Y.G.; Kim, Y.J.; Jung, M.H.; Park, K.H.; Shin, C.K.; Park, S.; Kim, Y.S. A Change of Vegetation at the Ecological Restoration Area of Simwon Valley in Jirisan National Park. Korean J. Environ. Ecol. 2021, 35, 294–304. [Google Scholar] [CrossRef]
- Choi, I.K.; Lee, E.H. The Suggestion of Applicable Concepts and Directions for the Effective Management on Biotope Types. J. Korean Soc. Environ. Restor. Technol. 2011, 14, 1–10. [Google Scholar]
- Cha, D.S.; Oh, J.H.; Ji, B.Y.; Cho, K.H.; Lee, H.J. Development of the Soil Bioengineering Techniques for Restoring of Degraded Forest Area (V)-Pull-out Resistance Characteristics of Shrubs’ roots. J. For. Environ. Sci. 2008, 24, 111–118. [Google Scholar]
- Kim, N.C. A Study on the Seeding Timing of Several Herbaceous Plants for the Slope Revegetation Works. J. Korea Inst. Landsc. Archit. 1997, 25, 62–72. [Google Scholar]
- Nam, S.J.; Yeo, H.J.; Choi, J.Y.; Kim, N. Development of Revegetation Method Using Forest Topsoils for Ecological Restoration of the Slopes (I). J. Korean Soc. Environ. Restor. Technol. 2004, 7, 110–119. [Google Scholar]
- Kim, J.J.; Lee, J.K. Restoration of the Cut-Slopes by Native Plant Seeding-Application on the Rock Exposed Cut-Slopes at East Valley Country Club. J. Korean Soc. Environ. Restor. Technol. 2002, 5, 70–79. [Google Scholar]
- Kim, M.; Choi, Y.; Lee, S.; Kim, H.; Kim, S.; Kim, Y. Polyacrylamide, Its Beneficial Application of Soil Erosion Control from Sloped Agricultural Fields. J. Korean Soc. Agric. Eng. 2015, 57, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Park, E.J.; Kang, K.Y.; Yi, S.R. The status of soil exposure and management practices for soil conservation in urban watersheds. Gyeonggi Res. Inst. 2008, 6, 3–22. [Google Scholar]
- Kim, W.T. Compare physicochemical properties of topsoil from forest ecosystems damage patterns. Korean J. Environ. Ecol. 2015, 29, 923–928. [Google Scholar] [CrossRef]
- NIAST. Methods of Soil and Plant Analysis; National Institute of Agricultural Science and Technology: Wanju, Republic of Korea, 2000. [Google Scholar]
- SSSA. Methods of Soil Analysis Part 3: Chemical Methods; Soil Science Society of America: Madison, WI, USA, 2020. [Google Scholar]
- Hiscox, J.D.; Israelstam, G.F. A Method for the Extraction of Chlorophyll from Leaf Tissue Without Maceration. Can. J. Bot. 1979, 57, 1332–1334. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Lee, K.C.; Kweon, H.; Sung, J.W.; Kim, Y.S.; Song, Y.G.; Cha, S.; Koo, N. Physiological Response Analysis for the Diagnosis of Drought and Waterlogging Damage in Prunus Yedoensis. Forest Sci. Technol. 2022, 18, 14–25. [Google Scholar] [CrossRef]
- Zheng, W.P.; Wang, P.; Zhang, H.X.; Zhou, D. Photosynthetic Characteristics of the Cotyledon and First True Leaf of Castor (Ricinus communis L.). Aust. J. Corp. Sci. 2011, 5, 702–708. [Google Scholar]
- Xia, J.B.; Zhang, G.C.; Wang, R.R.; Zhang, S.Y. Effect of Soil Water Availability on Photosynthesis in Ziziphus Jujuba var. spinosus in a Sand Habitat Formed from Seashells: Comparison of Four Models. Photosynthetica 2014, 52, 253–261. [Google Scholar] [CrossRef]
- Sharkey, T.D.; Bernacchi, C.J.; Farquhar, G.D.; Singsaas, E.L. Fitting Photosynthetic Carbon Dioxide Response Curves for C(3) Leaves. Plant Cell Environ. 2007, 30, 1035–1040. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis: Mechanism, Regulation, and Adaptation; Yunus, M., Pathre, U., Mohanty, P., Eds.; Taylor and Francis: London, UK; New York, NY, USA, 2000; pp. 445–483. [Google Scholar]
- Jiang, H.X.; Chen, L.S.; Zheng, J.G.; Han, S.; Tang, N.; Smith, B.R. Aluminum-Induced Effects on Photosystem II Photochemistry in Citrus Leaves Assessed by the Chlorophyll A Fluorescence Transient. Tree Physiol. 2008, 28, 1863–1871. [Google Scholar] [CrossRef]
- Wang, Z.X.; Chen, L.; Ai, J.; Qin, H.Y.; Liu, Y.X.; Xu, P.L.; Jiao, Z.Q.; Zhao, Y.; Zhang, Q.T. Photosynthesis and Activity of Photosystem II in Response to Drought Stress in Amur Grape(Vitis amurensisRupr.). Photosynthetica 2012, 50, 189–196. [Google Scholar] [CrossRef]
- Chung, D.J.; Shin, M.Y. Growth Properties and Characteristics of Water Relation Parameters for a Forest of Quercus variabilis by Enviromental Factors. Korean J. Agric. For. Meteorol. 2003, 5, 233–237. [Google Scholar]
- Ugawa, S.; Inagaki, Y.; Karibu, F.; Tateno, R. Effects of soil compaction by a forestry machine and slash dispersal on soil N mineralization in Cryptomeria japonica plantations under high precipitation. New For. 2020, 51, 887–907. [Google Scholar] [CrossRef]
- Jang, S.J.; Lee, Y.T.; Lee, K.Y.; Kim, K.N.; Lee, J.H.; Chun, K.W. A study of disaster prevention and characteristics of landslides triggered by the 2019 typhoon Mitag in Samcheok. J. Korean Soc. Hazard Mitig. 2020, 20, 221–227. [Google Scholar] [CrossRef]
- SaGong, D.H.; Lee, S.J.; Han, S.G.; Yoon, T.M. The Influence of Materials for Surface Mulching on Soil Temperature and Vegetative Growth of Apple Nursery Trees. Korean J. Agric. For. Meteorol. 2011, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.G.; Choung, Y.S.; Joo, K.Y.; Lee, K.S. Effects of Hillslope Treatments for Vegetation Development and Soil Conservation in Burned Forests. J. Ecol. Environ. 2006, 29, 295–303. [Google Scholar]
- Choi, B.S.; Lim, J.E.; Choi, Y.B.; Lim, K.J.; Choi, J.D.; Joo, J.H.; Yang, J.; Ok, Y.S. Applicability of PAM (Polyacrylamide) in Soil Erosion Prevention: Rainfall Simulation Experiments. Korean J. Environ. Agric. 2009, 28, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Jien, S.H.; Wang, C.S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 2013, 110, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, F.; Yang, M.; Zhang, J.; Xie, Y. Impacts of biochar application rates and particle sizes on runoff and soil loss in small cultivated loess plots under simulated rainfall. Sci. Total Environ. 2019, 649, 1403–1413. [Google Scholar] [CrossRef]
- Robichaud, P.; MacDonald, L.; Freeouf, J.; Neary, D.; Martin, D.; Ashmun, L. Postfire rehabilitation of the Hayman Fire. In Hayman Fire Case Study; RMRS-GTR-114; USDA, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2003; pp. 293–313. [Google Scholar]
- Entry, J.A.; Sojka, R.E.; Watwood, M.; Ross, C. Polyacrylamide Preparations for Protection of Water Quality Threatened by Agricultural Runoff Contaminants. Environ. Pollut. 2002, 120, 191–200. [Google Scholar] [CrossRef]
- Jung, P.K. Soil and Water Conservation. Korean J. Soil Sci. Fert. 1998, 31, 27–35. [Google Scholar]
- Benik, S.R.; Wilson, B.N.; Biesboser, D.D.; Hansen, B.; Stenlund, D. Evaluation of Erosion Control Products Using Natural Rainfall Events. J. Soil Water Conserv. 2003, 58, 98–105. [Google Scholar]
- Oktavia, D.; Setiadi, Y.; Hilwan, I. The Comparison of Soil Properties in Heath Forest and Post-Tin Mined Land: Basic for Ecosystem Restoration. Procedia Environ. Sci. 2015, 28, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Lee, J.J.; Kim, Y.S.; Lee, G.J. Changes of Physicochemical Properties of Root Zone and Early Growth of Perennialrye Grass in the Soil Treated with Leaf Mold. Weed Turfgrass Sci. 2021, 10, 409–416. [Google Scholar]
- Zhang, D.; Hui, D.; Luo, Y.; Zhou, G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. Plant Ecol. 2008, 1, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to Improve Soil Fertility. A Review. Agron. Sustain. Dev. 2016, 36, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Baiamonte, G.; De Pasquale, C.; Marsala, V.; Cimò, G.; Alonzo, G.; Crescimanno, G.; Conte, P. Structure Alteration of a Sandy clay Soil by Biochar Amendments. J. Soils Sediments 2015, 15, 816–824. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of Biochar Amendments on the Quality of a Typical Midwestern Agricultural Soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.L.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.H.; Murphy, D.V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 2012, 45, 113–124. [Google Scholar] [CrossRef]
- Lentz, R.D.; Sojka, R.E. Long-term polyacrylamide formulation effects on soil erosion, water infiltration, and yields of furrow-irrigated crops. Agron. J. 2009, 101, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.M.; Ko, S.C.; Kim, J.C.; Moon, B.Y.; Park, M.C.; Park, H.B.; Park, I.H.; Lee, Y.S.; Lee, I.H.; Lee, J.S.; et al. Plant Physiology; Academy book: Seoul, Republic of Korea, 2003; pp. 156–157. [Google Scholar]
- Lee, K.C.; Noh, H.S.; Kim, J.W.; Ahn, S.Y.; Han, S.S. Changes of Characteristics Related to Photosynthesis in Synurus deltoides Under Different Shading Treatments. Korean J. Med. Crop Sci. 2012, 20, 320–330. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 4th ed.; Sinauer Associates: Sunderland, MA, USA, 2006; pp. 672–705. [Google Scholar]
- Singh, B.; Singh, G. Biomass Partitioning and Gas Exchange in Dalbergia Sissoo Seedlings Under Water Stress. Photosynthetica 2003, 41, 407–414. [Google Scholar] [CrossRef]
- Tsonev, T.; Wahbi, S.; Sun, P.; Sorrentino, G.; Centritto, M. Gas Exchange, Water Relations and Their Relationships with Photochemical Reflectance Index in Quercus ilex Plants During Water Stress and Recovery. Int. J. Agric. Biol. 2014, 16, 335–341. [Google Scholar]
- Hopkins, W.G.; Hüner, N.P.A. Introduction to Plant Physiology, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 223–230. [Google Scholar]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll A Fluorescence as a Tool to Monitor Physiological Status of Plants Under Abiotic Stress Conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
- Boureima, S.; Oukarroum, A.; Diouf, M.; Cisse, N.; Van Damme, P. Screening for Drought Tolerance in Mutant Germplasm of Sesame (Sesamum indicum) Probing by Chlorophyll A Fluorescence. Environ. Exp. Bot. 2012, 81, 37–43. [Google Scholar] [CrossRef]
- Zushi, K.; Kajiwara, S.; Matsuzoe, N. Chlorophyll A Fluorescence OJIP Transient as a Tool to Characterize and Evaluate Response to Heat and Chilling Stress in Tomato Leaf and Fruit. Sci. Hortic. 2012, 148, 39–46. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence; Springer: Dordrecht, Germany, 2004; pp. 321–362. [Google Scholar]
- Yao, X.; Li, C.; Li, S.; Zhu, Q.; Zhang, H.; Wang, H.; Yu, C.; St Martin, S.K.; Xie, F. Effect of Shade on Leaf Photosynthetic Capacity, Light-Intercepting, Electron Transfer and Energy Distribution of Soybeans. Plant Growth Regul. 2017, 83, 409–416. [Google Scholar] [CrossRef]
- Holland, V.; Koller, S.; Brüggemann, W. Insight into the Photosynthetic Apparatus in Evergreen and Deciduous European Oaks during Autumn Senescence Using OJIP Fluorescence Transient Analysis. Plant Biol. 2014, 16, 801–808. [Google Scholar] [CrossRef]
- Begović, L.; Galić, V.; Abičić, I.; Lončarić, Z.; Lalić, A.; Mlinarić, S. Implications of Intra-seasonal Climate Variations on Chlorophyll A Fluorescence and Biomass in Winter Barley Breeding Program. Photosynthetica 2020, 58, 995–1008. [Google Scholar] [CrossRef]
Control | Biochar | Leaf-Mold | Mulching | Tillage | PAM | |
---|---|---|---|---|---|---|
Elevation (m) | 619 | 619 | 619 | 619 | 619 | 619 |
Slope (°) | 13 | 11 | 14 | 13 | 15 | 12 |
Soil hardness (mm) | 21.7 | 22.7 | 22.0 | 19.7 | 21.3 | 20.7 |
Year | Treatment | Soil Texture | pH (1:5) | CEC (cmolc/kg) | T–N (g/kg) | OM (g/kg) | Avail.−P2O5 (mg/kg) | ||
---|---|---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | |||||||
2021 | Control | 49 | 25 | 26 | 7.46 | 9.8 | 0.04 | 6.70 | 28.7 |
Biochar | 38 | 34 | 29 | 6.21 | 9.1 | 0.13 | 8.30 | 26.3 | |
Leaf-mold | 35 | 33 | 32 | 6.08 | 10.1 | 0.18 | 11.30 | 13.8 | |
Mulching | 56 | 28 | 16 | 7.35 | 8.5 | 0.10 | 9.00 | 28.9 | |
Tillage | 71 | 19 | 10 | 7.64 | 6.1 | 0.34 | 4.40 | 25.0 | |
PAM | 70 | 20 | 10 | 7.68 | 9.9 | 0.37 | 5.00 | 19.8 | |
2022 | Control | 58 | 29 | 13 | 7.18 | 8.9 | 0.92 | 10.00 | 49.8 |
Biochar | 30 | 44 | 26 | 6.43 | 10.4 | 0.93 | 7.40 | 23.3 | |
Leaf-mold | 52 | 32 | 16 | 6.10 | 11.2 | 1.43 | 20.10 | 66.6 | |
Mulching | 63 | 24 | 13 | 7.12 | 10.6 | 0.94 | 10.90 | 41.6 | |
Tillage | 69 | 21 | 10 | 7.41 | 7.2 | 0.70 | 3.70 | 36.0 | |
PAM | 60 | 24 | 16 | 7.31 | 7.8 | 0.82 | 6.20 | 38.8 |
Species | Treatment | Chl (mg·g−1) | Car (mg·g−1) | Chl a/b | T Chl/Car | ||
---|---|---|---|---|---|---|---|
a | b | a + b | |||||
P. densiflora | Control | 9.1 ns | 2.2 ns | 11.3 ns | 2.9 c | 4.1 ns | 3.9 a |
Biochar | 7.5 | 2.0 | 9.5 | 2.3 a | 3.7 | 4.1 abc | |
Leaf-mold | 8.6 | 2.3 | 10.9 | 2.5 ab | 3.7 | 4.5 bc | |
Mulching | 9.5 | 2.4 | 11.9 | 2.6 b | 4.0 | 4.6 c | |
Tillage | 8.6 | 2.2 | 10.8 | 2.6 b | 4.0 | 4.1 abc | |
PAM | 8.5 | 2.1 | 10.6 | 2.7 bc | 4.1 | 4.0 ab | |
L. kaempferi | Control | 6.0 ns | 1.6 ns | 7.6 ns | 1.6 ns | 3.6 a | 4.7 b |
Biochar | 4.9 | 1.3 | 6.2 | 1.4 | 3.8 ab | 4.4 ab | |
Leaf-mold | 6.0 | 1.6 | 7.7 | 1.8 | 3.7 a | 4.4 ab | |
Mulching | 6.9 | 1.7 | 8.6 | 2.1 | 4.0 bc | 4.1 a | |
Tillage | 6.3 | 1.5 | 7.8 | 1.8 | 4.1 c | 4.3 ab | |
PAM | 6.8 | 1.7 | 8.5 | 2.1 | 4.0 bc | 4.2 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Song, Y.; Koo, H.; Kim, H.; Kweon, H.; Koo, N. Evaluation of Soil Loss Tolerance and Tree Growth Features Based on Planting Ground Methods in the Alpine Center, Degraded Forestland in the Republic of Korea. Forests 2023, 14, 200. https://doi.org/10.3390/f14020200
Lee K, Song Y, Koo H, Kim H, Kweon H, Koo N. Evaluation of Soil Loss Tolerance and Tree Growth Features Based on Planting Ground Methods in the Alpine Center, Degraded Forestland in the Republic of Korea. Forests. 2023; 14(2):200. https://doi.org/10.3390/f14020200
Chicago/Turabian StyleLee, Kyeongcheol, Yeonggeun Song, Haeun Koo, Hyeonhwa Kim, Hyeongkeun Kweon, and Namin Koo. 2023. "Evaluation of Soil Loss Tolerance and Tree Growth Features Based on Planting Ground Methods in the Alpine Center, Degraded Forestland in the Republic of Korea" Forests 14, no. 2: 200. https://doi.org/10.3390/f14020200
APA StyleLee, K., Song, Y., Koo, H., Kim, H., Kweon, H., & Koo, N. (2023). Evaluation of Soil Loss Tolerance and Tree Growth Features Based on Planting Ground Methods in the Alpine Center, Degraded Forestland in the Republic of Korea. Forests, 14(2), 200. https://doi.org/10.3390/f14020200