Experimental Characterization of Particulate and Gaseous Emissions from Biomass Burning of Six Mediterranean Species and Litter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Data Collection
2.2. Combustion Chamber
2.3. CO and CO2 Measurements
2.4. VOCs Sampling
2.5. Particulate Sampling
2.6. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy
2.7. Statistical Analysis and Principal Component Analysis
3. Results
3.1. Particle Size Distribution
3.2. Particles Chemical Composition: SEM-EDX Analysis
3.3. CO, CO2 and VOCs Emission
3.4. Principal Component Analysis
3.5. Main Particles Characterization
- KCl particles: Cl < 12%, K < 14%, elements mean ratio is Cl/K = 0.85, partially (<30% of particles) associated with Na (% < 2), their dimensions are mostly between 1 and 2.5 μm, and the morphology is characterized by single or agglomerates of square-shaped particles with sharp edges (Figure 6a).
- Fe-steel particles: 15% < Fe < 50%, always associated with Cr (% < 10) and Mn (% < 6), occasionally with Ni (% < 5), their dimensions vary between 0.3 and 10 μm nevertheless, they are mostly <2 μm (Figure 6b), and the morphology is irregular polygonal or stick shape and sharped edges.
- C-based: (a) spherical particles, 35% < C < 50%, usually associated with K and Si (% < 0.5), and the dimensions are mostly <2.5 μm; (b) soot agglomerates, C > 40%, usually associated with K, Si, Na and S (% < 0.5), and their dimensions vary between 1 and 10 μm and present irregular morphology (Figure 6c,d).
- N-based: always spherical particles, 25% < N <40%, always associated with K and less frequently with S, Cl, Si and Na, not necessarily all together; their dimensions are mostly <2.5 μm (Figure 6e).
- S particles: 1% < S < 5%, always associated with K, Cl and Ca (% < 0.5) and Si, P and Na (% < 0.3), irregular shaped, high dimensional and morphological variability, and they can reach large dimensions (even >10 μm) (Figure 6f).
- Si-based: 5%< Si <20%, almost always associated with Al, in ratios Al/Si included between 0.25 and 0.3, and K (% < 5), less frequently with Ca (% < 5), Na and Mg (% < 0.5), and with an irregular polygonal or rounded shape, always with smoothed edges and high dimensional variability (Figure 6g).
- Ca particles: 8% < Ca < 25%, usually associated with K (% < 0.5), Si and S (% < 0.3), irregular-rounded shape, and the dimensions vary between 1 and 10 μm (Figure 6h).
4. Discussion
4.1. Particle Size Distributions and Density
4.2. Particles Chemical Composition
4.3. CO, CO2 and VOCs Emission
4.4. PCA Analysis
5. Conclusions
- PM10 emissions from forest burning are related to species-specific characteristics of trees and shrubs but are also strongly influenced by local environment/regional conditions.
- A. saligna is notable for the highest number of particles emitted and remarkable values of KCl, which is likely related to a plant protection mechanism from salinity.
- The other high vegetation types analysed in our study, the tree species E. camaldulensis, C. equisetifolia and P. halepensis, are related to fine windblown particles: their canopies intercept PM10 and re-emit it during burning.
- Medium high plants observed in our study, the two shrub species, P. lentiscus and J. oxycedrus, are differentiated from other samples by the presence of resuspended particles from soil and/or roads.
- Litter samples demonstrated a homogenous accumulation of different kinds of elements and markers, which characterized the trees and shrubs in the study area.
- Benzene and toluene were the dominant aromatic compounds emitted.
- A. saligna (the highest number of particles emitted and medium values for gaseous emissions).
- P. lentiscus (high density of particles; anthropogenic particles, such as Fe, Steel and Road group; highest emissions for all gaseous compounds).
- C. equisetifolia (high density of particles; technology-related particles, such as Fe with the Steel group, although with the lowest emissions for gaseous compounds).
- We also indicate litter and P. lentiscus as the strongest contributors to greenhouse gas emissions in the atmosphere when compared to all species analysed, considering their significantly higher emissions of CO2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreae, M.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Knorr, W.; Lehsten, V.; Arneth, A. Determinants and predictability of global wildfire emissions. Atmos. Chem. Phys. 2012, 12, 6845–6861. [Google Scholar] [CrossRef] [Green Version]
- Adam, M.G.; Tran, P.T.M.; Bolan, N.; Balasubramanian, R. Biomass burning-derived airborne particulate matter in Southeast Asia: A critical review. J. Hazard. Mater. 2021, 407, 124760. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Han, Y.; Cao, J.; Chen, L.W.A.; Tian, J.; Wang, X.; Chow, J.C.; Watson, J.G.; Wang, Q.; Wang, P.; et al. Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China. Atmos. Environ. 2015, 123, 399–406. [Google Scholar] [CrossRef]
- Guo, L.; Ma, Y.; Tigabu, M.; Guo, X.; Zheng, W.; Guo, F. Emission of atmospheric pollutants during forest fire in boreal region of China. Environ. Pollut. 2020, 264, 114709. [Google Scholar] [CrossRef] [PubMed]
- Laumbach, R.; Kipen, H. Respiratory health effects of air pollution: Update on biomass smoke and traffic pollution. J. Allergy Clin. Immunol. 2012, 129, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, M.C.; Chen, L.W.A.; DuBois, D.W.; Molenar, J.V. Fine particulate matter and visibility in the Lake Tahoe Basin: Chemical characterization, trends, and source apportionment. J. Air Waste Manag. Assoc. 2012, 62, 953–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.K.; Agarwal, P.; Mandal, T.K.; Karapurkar, S.G.; Shenoy, D.M.; Peshin, S.K.; Gupta, A.; Saxena, M.; Jain, S.; Sharma, A.; et al. Study on Ambient Air Quality of Megacity Delhi, India During Odd–Even Strategy. Mapan J. Metrol. Soc. India 2017, 32, 155–165. [Google Scholar] [CrossRef]
- Keywood, M.; Kanakidou, M.; Stohl, A.; Dentener, F.; Grassi, G.; Meyer, C.P.; Torseth, K.; Edwards, D.; Thompson, A.M.; Lohmann, U.; et al. Fire in the air: Biomass burning impacts in a changing climate. Crit. Rev. Environ. Sci. Technol. 2013, 43, 40–83. [Google Scholar] [CrossRef]
- Peñuelas, J.; Llusià, J. BVOCs: Plant defense against climate warming? Trends Plant Sci. 2003, 8, 105–109. [Google Scholar] [CrossRef]
- Shen, G.; Wei, S.; Wei, W.; Zhang, Y.; Min, Y.; Wang, B.; Wang, R.; Li, W.; Shen, H.; Huang, Y.; et al. Emission factors, size distributions, and emission inventories of carbonaceous particulate matter from residential wood combustion in rural china. Environ. Sci. Technol. 2012, 46, 4207–4214. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, Z.; Su, H.; Ho, H.C.; Song, Y.; Zheng, H.; Hossain, M.Z.; Khan, M.A.; Bogale, D.; Zhang, H.; et al. Ambient particulate matter (PM1, PM2.5, PM10) and childhood pneumonia: The smaller particle, the greater short-term impact? Sci. Total Environ. 2021, 772, 145509. [Google Scholar] [CrossRef]
- Preisler, H.K.; Zhong, S.; Esperanza, A.; Brown, T.J.; Bytnerowicz, A.; Tarnay, L. Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California. Environ. Pollut. 2010, 158, 778–787. [Google Scholar] [CrossRef]
- Goldammer, J.G.; Statheropoulos, M.; Andreae, M.O. Impacts of Vegetation Fire Emissions on the Environment, Human Health, and Security: A Global Perspective. In Wildland Fires and Air 10 Pollution Developments in Environmental Science; Bytnerowicz, A., Arbaugh, M., Riebau, A., Andersen, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 8, pp. 3–36. ISBN 9780080556093. [Google Scholar]
- Evtyugina, M.; Calvo, A.I.; Nunes, T.; Alves, C.; Fernandes, A.P.; Tarelho, L.; Vicente, A.; Pio, C. VOC emissions of smouldering combustion from Mediterranean wildfires in central Portugal. Atmos. Environ. 2013, 64, 339–348. [Google Scholar] [CrossRef]
- Nayek, S.; Padhy, P.K. Personal exposure to VOCs (BTX) and women health risk assessment in rural kitchen from solid biofuel burning during cooking in West Bengal, India. Chemosphere 2020, 244, 125447. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Benzene; U.S. Public Health Service, U.S. Department of Health and Human Service: Atlanta, GA, USA, 2007.
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profiles for Toluene; U.S. Public Health Service, U.S. Department of Health and Human Service: Atlanta, GA, USA, 2017.
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profiles for Xylene; U.S. Public Health Service, U.S. Department of Health and Human Service: Atlanta, GA, USA, 2007.
- González-De Vega, S.; De las Heras, J.; Moya, D. Resilience of Mediterranean terrestrial ecosystems and fire severity in semiarid areas: Responses of Aleppo pine forests in the short, mid and long term. Sci. Total Environ. 2016, 573, 1171–1177. [Google Scholar] [CrossRef] [PubMed]
- García-Llamas, P.; Suárez-Seoane, S.; Taboada, A.; Fernández-Manso, A.; Quintano, C.; Fernández-García, V.; Fernández-Guisuraga, J.M.; Marcos, E.; Calvo, L. Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems. For. Ecol. Manag. 2019, 433, 24–32. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Mitsopoulos, I.D.; Kaliva, A. Short communication. comparing flammability traits among fire-stricken (low elevation) and non fire-stricken (high elevation) conifer forest species of Europe: A test of the mutch hypothesis. For. Syst. 2013, 22, 134–137. [Google Scholar] [CrossRef] [Green Version]
- Calvo, L.; Santalla, S.; Valbuena, L.; Marcos, E.; Tárrega, R.; Luis-Calabuig, E. Post-fire natural regeneration of a Pinus pinaster forest in NW Spain. Plant Ecol. 2008, 197, 81–90. [Google Scholar] [CrossRef]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef]
- Bo, M.; Mercalli, L.; Pognant, F.; Cat Berro, D.; Clerico, M. Urban air pollution, climate change and wildfires: The case study of an extended forest fire episode in northern Italy favoured by drought and warm weather conditions. Energy Rep. 2020, 6, 781–786. [Google Scholar] [CrossRef]
- Oros, D.R.; Simoneit, B.R.T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1. Temperate climate conifers. Appl. Geochem. 2001, 16, 1513–1544. [Google Scholar] [CrossRef]
- Vicente, A.; Alves, C.; Calvo, A.I.; Fernandes, A.P.; Nunes, T.; Monteiro, C.; Almeida, S.M.; Pio, C. Emission factors and detailed chemical composition of smoke particles from the 2010 wildfire season. Atmos. Environ. 2013, 71, 295–303. [Google Scholar] [CrossRef]
- Garcia-Hurtado, E.; Pey, J.; Borrás, E.; Sánchez, P.; Vera, T.; Carratalá, A.; Alastuey, A.; Querol, X.; Vallejo, V.R. Atmospheric PM and volatile organic compounds released from Mediterranean shrubland wildfires. Atmos. Environ. 2014, 89, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.A.; Vicente, E.D.; Evtyugina, M.; Vicente, A.; Pio, C.; Amado, M.F.; Mahía, P.L. Gaseous and speciated particulate emissions from the open burning of wastes from tree pruning. Atmos. Res. 2019, 226, 110–121. [Google Scholar] [CrossRef]
- Briggs, N.L.; Jaffe, D.A.; Gao, H.; Hee, J.R.; Baylon, P.M.; Zhang, Q.; Zhou, S.; Collier, S.C.; Sampson, P.D.; Cary, R.A. Particulate Matter, Ozone, and Nitrogen Species in Aged Wildfire Plumes Observed at the Mount Bachelor Observatory. Aerosol Air Qual. Res. 2017, 16, 3075–3087. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, C.; Samburova, V.; Sengupta, D.; Iaukea-Lum, M.; Watts, A.C.; Moosmüller, H.; Khlystov, A.Y. Physical and chemical characterization of aerosol in fresh and aged emissions from open combustion of biomass fuels. Aerosol Sci. Technol. 2018, 55, 1266–1282. [Google Scholar] [CrossRef]
- Balachandran, S.; Pachon, J.E.; Lee, S.; Oakes, M.M.; Rastogi, N.; Shi, W.; Tagaris, E.; Yan, B.; Davis, A.; Zhang, X.; et al. Particulate and gas sampling of prescribed fires in South Georgia, USA. Atmos. Environ. 2013, 81, 125–135. [Google Scholar] [CrossRef]
- Lusini, I.; Pallozzi, E.; Corona, P.; Ciccioli, P.; Calfapietra, C. Novel application of a combustion chamber for experimental assessment of biomass burning emission. Atmos. Environ. 2014, 94, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Pallozzi, E.; Lusini, I.; Cherubini, L.; Hajiaghayeva, R.A.; Ciccioli, P.; Calfapietra, C. Differences between a deciduous and a conifer tree species in gaseous and particulate emissions from biomass burning. Environ. Pollut. 2018, 234, 457–467. [Google Scholar] [CrossRef]
- Imbrenda, V.; Coluzzi, R.; Lanfredi, M.; Loperte, A.; Satriani, A.; Simoniello, T. Analysis of landscape evolution in a vulnerable coastal area under natural and human pressure. Geomat. Nat. Hazards Risk 2018, 9, 1249–1279. [Google Scholar] [CrossRef] [Green Version]
- Xanthopoulos, G.; Calfapietra, C.; Fernandes, P. Fire Hazard and Flammability of European Forest Types. In Post-Fire Management and Restoration of Southern European Forests. Managing Forest Ecosystems; Moreira, F., Arianoutsou, M., Corona, P., De las Heras, J., Eds.; Springer: Berlin, Germany, 2012; Volume 24, pp. 79–92. ISBN 9785984520973. [Google Scholar]
- Amato, L. Incendio a Metaponto, 600 Evacuati dai Campeggi: Le Fiamme Divorano la Pineta. Available online: https://bari.repubblica.it/cronaca/2017/07/13/news/incendio_metaponto_evacuati_campeggi-170722749/ (accessed on 2 December 2021).
- Sgrigna, G.; Baldacchini, C.; Esposito, R.; Calandrelli, R.; Tiwary, A.; Calfapietra, C. Characterization of leaf-level particulate matter for an industrial city using electron microscopy and X-ray microanalysis. Sci. Total Environ. 2016, 548–549, 91–99. [Google Scholar] [CrossRef]
- Baldacchini, C.; Sgrigna, G.; Clarke, W.; Tallis, M.; Calfapietra, C. An ultra-spatially resolved method to quali-quantitative monitor particulate matter in urban environment. Environ. Sci. Pollut. Res. 2019, 26, 18719–18729. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Yan, J.; Lin, L.; Zhou, W.; Han, L.; Ma, K. Quantifying the characteristics of particulate matters captured by urban plants using an automatic approach. J. Environ. Sci. (China) 2016, 39, 259–267. [Google Scholar] [CrossRef]
- Baldacchini, C.; Castanheiro, A.; Maghakyan, N.; Sgrigna, G.; Verhelst, J.; Alonso, R.; Amorim, J.H.; Bellan, P.; Bojović, D.D.; Breuste, J.; et al. How Does the Amount and Composition of PM Deposited on Platanus acerifolia Leaves Change Across Different Cities in Europe? Environ. Sci. Technol. 2017, 51, 1147–1156. [Google Scholar] [CrossRef]
- Merkus, H.G. Particle size measurements. In Particle Size Measurements: Fundamentals, Practice, Quality; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Yusiharni, E.; Gilkes, R. Minerals in the ash of Australian native plants. Geoderma 2012, 189–190, 369–380. [Google Scholar] [CrossRef]
- Dong, T.T.T.; Stock, W.D.; Callan, A.C.; Strandberg, B.; Hinwood, A.L. Emission factors and composition of PM2.5 from laboratory combustion of five Western Australian vegetation types. Sci. Total Environ. 2020, 703, 134796. [Google Scholar] [CrossRef]
- Pateraki, S.; Manousakas, M.; Bairachtari, K.; Kantarelou, V.; Eleftheriadis, K.; Vasilakos, C.; Assimakopoulos, V.D.; Maggos, T. The traffic signature on the vertical PM profile: Environmental and health risks within an urban roadside environment. Sci. Total Environ. 2019, 646, 448–459. [Google Scholar] [CrossRef]
- Schröder, W.; Nickel, S.; Schönrock, S.; Meyer, M.; Wosniok, W.; Harmens, H.; Frontasyeva, M.V.; Alber, R.; Aleksiayenak, J.; Barandovski, L.; et al. Spatially valid data of atmospheric deposition of heavy metals and nitrogen derived by moss surveys for pollution risk assessments of ecosystems. Environ. Sci. Pollut. Res. 2016, 23, 10457–10476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saggu, G.S.; Mittal, S.K. Source apportionment of PM10 by positive matrix factorization model at a source region of biomass burning. J. Environ. Manag. 2020, 266, 110545. [Google Scholar] [CrossRef] [PubMed]
- Amato, F.; Pandolfi, M.; Viana, M.; Querol, X.; Alastuey, A.; Moreno, T. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Environ. 2009, 43, 1650–1659. [Google Scholar] [CrossRef]
- Garcia-Maraver, A.; Zamorano, M.; Fernandes, U.; Rabaçal, M.; Costa, M. Relationship between fuel quality and gaseous and particulate matter emissions in a domestic pellet-fired boiler. Fuel 2014, 119, 141–152. [Google Scholar] [CrossRef]
- Vicente, E.D.; Tarelho, L.A.C.; Teixeira, E.R.; Duarte, M.; Nunes, T.; Colombi, C.; Gianelle, V.; da Rocha, G.O.; Sanchez de la Campa, A.; Alves, C.A. Emissions from the combustion of eucalypt and pine chips in a fluidized bed reactor. J. Environ. Sci. 2016, 42, 246–258. [Google Scholar] [CrossRef]
- Zhang, Y.; Obrist, D.; Zielinska, B.; Gertler, A. Particulate emissions from different types of biomass burning. Atmos. Environ. 2013, 72, 27–35. [Google Scholar] [CrossRef]
- Gonçalves, C.; Alves, C.; Evtyugina, M.; Mirante, F.; Pio, C.; Caseiro, A.; Schmidl, C.; Bauer, H.; Carvalho, F. Characterisation of PM 10 emissions from woodstove combustion of common woods grown in Portugal. Atmos. Environ. 2010, 44, 4474–4480. [Google Scholar] [CrossRef]
- Leonelli, L.; Barboni, T.; Santoni, P.A.; Quilichini, Y.; Coppalle, A. Characterization of aerosols emissions from the combustion of dead shrub twigs and leaves using a cone calorimeter. Fire Saf. J. 2017, 91, 800–810. [Google Scholar] [CrossRef]
- Tittarelli, A.; Borgini, A.; Bertoldi, M.; De Saeger, E.; Ruprecht, A.; Stefanoni, R.; Tagliabue, G.; Contiero, P.; Crosignani, P. Estimation of particle mass concentration in ambient air using a particle counter. Atmos. Environ. 2008, 42, 8543–8548. [Google Scholar] [CrossRef]
- Danielsen, P.H.; Møller, P.; Jensen, K.A.; Sharma, A.K.; Wallin, H.; Bossi, R.; Autrup, H.; Mølhave, L.; Ravanat, J.-L.; Briedeé, J.J.; et al. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines. Chem. Res. Toxicol. 2011, 24, 168–184. [Google Scholar] [CrossRef]
- Purvis, C.R.; Mccrillis, R.C.; Kariher, P.H. Fine particulate matter (PM) and organic speciation of fireplace emissions. Environ. Sci. Technol. 2000, 34, 1653–1658. [Google Scholar] [CrossRef]
- Hedberg, E.; Kristensson, A.; Ohlsson, M.; Johansson, C.; Johansson, P.Å.; Swietlicki, E.; Vesely, V.; Wideqvist, U.; Westerholm, R. Chemical and physical characterization of emissions from birch wood combustion in a wood stove. Atmos. Environ. 2002, 36, 4823–4837. [Google Scholar] [CrossRef]
- Khamraev, K.; Cheriyan, D.; Choi, J.-H. A review on health risk assessment of PM in the construction industry—Current situation and future directions. Sci. Total Environ. 2021, 758, 143716. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Klejnowski, K. Submicrometer aerosol in rural and urban backgrounds in southern poland: Primary and secondary components of PM1. Bull. Environ. Contam. Toxicol. 2013, 90, 103–109. [Google Scholar] [CrossRef]
- Lamberg, H.; Nuutinen, K.; Tissari, J.; Ruusunen, J.; Yli-Pirilä, P.; Sippula, O.; Tapanainen, M.; Jalava, P.; Makkonen, U.; Teinilä, K.; et al. Physicochemical characterization of fine particles from small-scale wood combustion. Atmos. Environ. 2011, 45, 7635–7643. [Google Scholar] [CrossRef]
- Paoletti, L.; De Berardis, B.; Arrizza, L.; Passacantando, M.; Inglessis, M.; Mosca, M. Seasonal effects on the physico-chemical characteristics of PM2.1 in Rome: A study by SEM and XPS. Atmos. Environ. 2003, 37, 4869–4879. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Labrada-Delgado, G.; Aragon-Pina, A.; Campos-Ramos, A.; Castro-Romero, T.; Amador-Munoz, O.; Villalobos-Pietrini, R. Chemical and morphological characterization of PM2.5 collected during MILAGRO campaign using scanning electron microscopy. Atmos. Pollut. Res. 2012, 3, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Prather, K.A.; Bertram, T.H.; Grassian, V.H.; Deane, G.B.; Stokes, M.D.; DeMott, P.J.; Aluwihare, L.I.; Palenik, B.P.; Azam, F.; Seinfeld, J.H.; et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl. Acad. Sci. USA 2013, 110, 7550–7555. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Hsu, S.C.; Lin, S.H.; Huang, Y.T. Metallic elements emitted from industrial sources in Taiwan: Implications for source identification using airborne PM. Atmos. Pollut. Res. 2020, 11, 766–775. [Google Scholar] [CrossRef]
- Siciliano, T.; Giua, R.; Siciliano, M.; Di Giulio, S.; Genga, A. The morphology and chemical composition of the urban PM10 near a steel plant in Apulia determined by scanning electron microscopy. Source Apportionment. Atmos. Res. 2021, 251, 105416. [Google Scholar] [CrossRef]
- Guo, F.; Ju, Y.; Wang, G.; Alvarado, E.C.; Yang, X.; Ma, Y.; Liu, A. Inorganic chemical composition of PM2.5 emissions from the combustion of six main tree species in subtropical China. Atmos. Environ. 2018, 189, 107–115. [Google Scholar] [CrossRef]
- Ma; Tigabu; Guo; Zheng; Guo; Guo Water-Soluble Inorganic Ions in Fine Particulate Emission During Forest Fires in Chinese Boreal and Subtropical Forests: An Indoor Experiment. Forests 2019, 10, 994. [CrossRef] [Green Version]
- Niemi, J.V.; Tervahattu, H.; Vehkamäki, H.; Kulmala, M.; Koskentalo, T.; Sillanpää, M.; Rantamäki, M. Characterization and source identification of a fine particle episode in Finland. Atmos. Environ. 2004, 38, 5003–5012. [Google Scholar] [CrossRef] [Green Version]
- Kheloufi, A.; Mansouri, L.M.; Mami, A.; Djelilate, M. Physio-biochemical characterization of two acacia species (A. karroo Hayn and A. saligna Labill.) under saline conditions. Reforesta 2019, 33–49. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahma, M.A.; Miah, M.G.; Saha, S.R.; Karim, M.A.; Mostofa, M.G. Mechanistic insight into salt tolerance of Acacia auriculiformis: The importance of ion selectivity, osmoprotection, tissue tolerance, and Na+ exclusion. Front. Plant Sci. 2017, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Pérez, N.; Pey, J.; Querol, X.; Alastuey, A.; López, J.M.; Viana, M. Partitioning of major and trace components in PM10-PM2.5-PM1 at an urban site in Southern Europe. Atmos. Environ. 2008, 42, 1677–1691. [Google Scholar] [CrossRef]
- Morawska, L.; Keogh, D.U.; Thomas, S.B.; Mengersen, K. Modality in ambient particle size distributions and its potential as a basis for developing air quality regulation. Atmos. Environ. 2008, 42, 1617–1628. [Google Scholar] [CrossRef] [Green Version]
- Misra, M.K.; Ragland, K.W.; Baker, A.J. Wood ash composition as a function of furnace temperature. Biomass Bioenergy 1993, 4, 103–116. [Google Scholar] [CrossRef]
- Artaxo, P.; Martins, J.V.; Yamasoe, M.A.; Procópio, A.S.; Pauliquevis, T.M.; Andreae, M.O.; Guyon, P.; Gatti, L.V.; Leal, A.M.C. Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J. Geophys. Res. Atmos. 2002, 107, LBA 49-1–LBA 49-14. [Google Scholar] [CrossRef]
- Gray, D.M.; Dighton, J. Mineralization of forest litter nutrients by heat and combustion. Soil Biol. Biochem. 2006, 38, 1469–1477. [Google Scholar] [CrossRef]
- Echalar, F.; Artaxo, P.; Martins, J.V.; Yamasoe, M.; Gerab, F.; Maenhaut, W.; Holben, B. Long-term monitoring of atmospheric aerosols in the amazon basin: Source identification and apportionment. J. Geophys. Res. Atmos. 1998, 103, 31849–31864. [Google Scholar] [CrossRef]
- Saud, T.; Saxena, M.; Singh, D.; Saraswati; Dahiya, M.; Sharma, S.; Datta, A.; Ranu, G.; Mandal, T.K. Spatial variation of chemical constituents from the burning of commonly used biomass fuels in rural areas of the Indo-Gangetic Plain (IGP), India. Atmos. Environ. 2013, 71, 158–169. [Google Scholar] [CrossRef]
- Figas, A.; Siwik-Ziomek, A.; Kobierski, M. Heavy metals and sulphur in needles of Pinus sylvestris L. And soil in the forests of city agglomeration. Forests 2021, 12, 1310. [Google Scholar] [CrossRef]
- Chapin, F.S.; Matson, P.A.; Mooney, H.A. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2002; ISBN 0387954392. [Google Scholar]
- Samsonov, Y.N.; Belenko, O.A.; Ivanov, V.A. Dispersal and morphological characteristics of smoke particulate emission from fires in the boreal forests of Siberia. Atmos. Ocean. Opt. 2010, 23, 485–493. [Google Scholar] [CrossRef]
- Valotto, G.; Rampazzo, G.; Visin, F.; Gonella, F.; Cattaruzza, E.; Glisenti, A.; Formenton, G.; Tieppo, P. Environmental and traffic-related parameters affecting road dust composition: A multi-technique approach applied to Venice area (Italy). Atmos. Environ. 2015, 122, 596–608. [Google Scholar] [CrossRef]
- Genga, A.; Siciliano, T.; Siciliano, M.; Aiello, D.; Tortorella, C. Individual particle SEM-EDS analysis of atmospheric aerosols in rural, urban, and industrial sites of Central Italy. Environ. Monit. Assess. 2018, 190, 456. [Google Scholar] [CrossRef]
- Lobert, J.M.; Scharffe, D.H.; Weimin, H.; Kuhlbusch, T.A.; Seuwen, R.; Warneck; Crutzen, P.J. Experimental evaluation of biomass burning emissions: Nitrogen and carbon containing compounds. In Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications; Levin, J., Ed.; MIT Press: Cambridge, MA, USA, 1991; pp. 289–304. [Google Scholar]
- Ward, D.E.; Hardy, C.C. Smoke emissions from wildland fires. Environ. Int. 1991, 17, 117–134. [Google Scholar] [CrossRef] [Green Version]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- Faix, O.; Fortmann, I.; Bremer, J.; Meier, D. Gas chromatographic separation and mass spectrometric characterization of polysaccharide derived products. Holz Roh Werkstoff 1991, 49, 213–219. [Google Scholar] [CrossRef]
- Struppe, H.G.; Franke, F.; Hofmann, J.; Ondruschka, B. Coupling of thermal desorption in modified closeable sampling columns with wide-bore capillary gas chromatography and mass spectrometric detection. J. Chromatogr. A 1996, 750, 239–244. [Google Scholar] [CrossRef]
- Wotton, B.; Martin, T.; Engel, K. Vertical flame intensity profile from a surface fire. In Proceedings of the 13th International Conference of Forest Fire and Meteorology, Lorne, Australia, 27–31 October 1996; International Association of Wildland Fire: Missoula, MT, USA, 1998; pp. 175–182. [Google Scholar]
- Santoni, P.A.; Simeoni, A.; Rossi, J.L.; Bosseur, F.; Morandini, F.; Silvani, X.; Balbi, J.H.; Cancellieri, D.; Rossi, L. Instrumentation of wildland fire: Characterisation of a fire spreading through a Mediterranean shrub. Fire Saf. J. 2006, 41, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Yokelson, R.J.; Burling, I.R.; Urbanski, S.P.; Atlas, E.L.; Adachi, K.; Buseck, P.R.; Wiedinmyer, C.; Akagi, S.K.; Toohey, D.W.; Wold, C.E. Trace gas and particle emissions from open biomass burning in Mexico. Atmos. Chem. Phys. 2011, 11, 6787–6808. [Google Scholar] [CrossRef] [Green Version]
- Makkonen, U.; Hellén, H.; Anttila, P.; Ferm, M. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006. Sci. Total Environ. 2010, 408, 644–651. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Escrig, A.; Querol, X.; Alastuey, A.; Pey, J.; Perez, N.; Hopke, P.K. Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2. Atmos. Environ. 2009, 43, 2770–2780. [Google Scholar] [CrossRef]
- Palviainen, M.; Finér, L.; Kurka, A.M.; Mannerkoski, H.; Piirainen, S.; Starr, M. Release of potassium, calcium, iron and aluminium from Norway spruce, Scots pine and silver birch logging residues. Plant Soil 2004, 259, 123–136. [Google Scholar] [CrossRef]
Sample | C (W%) | N (W%) | ||||
---|---|---|---|---|---|---|
PM 10 | PM 2.5 | PM 1 | PM 10 | PM 2.5 | PM 1 | |
A. saligna | 26.63 | 26.19 | 25.99 | 21.10 | 20.33 | 20.41 |
C. equisetifolia | 30.62 | 24.98 | 25.13 | 18.71 | 18.94 | 19.00 |
E. camaldulensis | 34.43 | 32.96 | 31.59 | 17.18 | 18.72 | 17.65 |
J. oxycedrus | 26.96 | 26.17 | 28.46 | 20.89 | 22.44 | 21.00 |
P. halepensis | 29.72 | 27.77 | 29.82 | 19.93 | 20.79 | 20.29 |
P. lentiscus | 26.03 | 25.21 | 29.50 | 16.80 | 20.47 | 21.04 |
Litter | 30.61 | 27.78 | 28.64 | 18.60 | 21.68 | 19.33 |
Sample | Peak of Temperature (°C) | O2 (%) | CO2 (g Kg−1) | CO (g Kg−1) | Benzene (g Kg−1) | Toluene (g Kg−1) | Xylene (g Kg−1) |
---|---|---|---|---|---|---|---|
A. saligna | 648.3 | 18.1 | 1351.50 | 100.73 | 0.52 | 0.15 | 0.02 |
C. equisetifolia | 767.0 | 19.0 | 698.25 | 78.55 | 0.27 | 0.06 | 0.01 |
J. oxycedrus | 667.0 | 17.7 | 892.31 | 109.34 | 0.55 | 0.26 | 0.06 |
P. halepensis | 703.5 | 18.6 | 1238.50 | 92.27 | 0.47 | 0.13 | 0.02 |
P. lentiscus | 833.9 | 18.9 | 1564.20 | 121.86 | 1.28 | 0.43 | 0.06 |
Litter | 671.7 | 17.7 | 1617.00 | 96.87 | 0.36 | 0.14 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nestola, E.; Sgrigna, G.; Pallozzi, E.; Caccavale, L.; Guidolotti, G.; Calfapietra, C. Experimental Characterization of Particulate and Gaseous Emissions from Biomass Burning of Six Mediterranean Species and Litter. Forests 2022, 13, 322. https://doi.org/10.3390/f13020322
Nestola E, Sgrigna G, Pallozzi E, Caccavale L, Guidolotti G, Calfapietra C. Experimental Characterization of Particulate and Gaseous Emissions from Biomass Burning of Six Mediterranean Species and Litter. Forests. 2022; 13(2):322. https://doi.org/10.3390/f13020322
Chicago/Turabian StyleNestola, Enrica, Gregorio Sgrigna, Emanuele Pallozzi, Loredana Caccavale, Gabriele Guidolotti, and Carlo Calfapietra. 2022. "Experimental Characterization of Particulate and Gaseous Emissions from Biomass Burning of Six Mediterranean Species and Litter" Forests 13, no. 2: 322. https://doi.org/10.3390/f13020322
APA StyleNestola, E., Sgrigna, G., Pallozzi, E., Caccavale, L., Guidolotti, G., & Calfapietra, C. (2022). Experimental Characterization of Particulate and Gaseous Emissions from Biomass Burning of Six Mediterranean Species and Litter. Forests, 13(2), 322. https://doi.org/10.3390/f13020322