The Effect of Robinia pseudoacacia Plantation on Soil Desiccation across Different Precipitation Zones of the Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Sites
2.2. Field Sampling Measurements
2.3. Soil-Desiccation Evaluation and Statistical Methods
3. Results
3.1. Soil-Moisture Content of R. pseudoacacia at Different Precipitation Zones
3.2. Soil-Moisture Availability of R. pseudoacacia
3.3. Soil Desiccation in R. pseudoacacia Forestland at Different Precipitation Zones
3.4. Distribution of Desiccated-Soil Layers and Soil-Moisture Recovery of R. pseudoacacia
4. Discussion
4.1. Soil-Moisture Conditions of R. pseudoacacia at Different Precipitation Zones
4.2. Soil Desiccation of Different-Aged R. pseudoacacia
4.3. Soil Desiccation and Desiccated-Soil Moisture Recovery of R. pseudoacacia
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Y.Q.; Shao, M.A.; Liu, Z.P. Large-scale spatial variability of dried soil layers and related factors across the entire Loess Plateau of China. Geoderma 2010, 159, 99–108. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A.; Zhu, Y.J.; Liu, Z.P. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agric. For. Meteorol. 2011, 151, 437–448. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, J.B. Environmental Response and Adaptation Strategies to Dryness in Guanzhong Area; Science Press: Beijing, China, 2011. [Google Scholar]
- Liang, H.B.; Xue, Y.Y.; Shi, J.W.; Li, Z.S.; Liu, G.H.; Fu, B.J. Soil moisture dynamics under Caragana korshinskii shrubs of different ages in Wuzhai County on the Loess Plateau, China. Earth Environ. Sci. Trans. R. Soc. Edinb. 2018, 109, 387–396. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Q.J.; Wei, S.P.; Shao, M.A.; Li, Y. Soil desiccation for loess soils on natural and regrown areas. Forest Ecol. Manag. 2008, 255, 2467–2477. [Google Scholar] [CrossRef]
- Yang, W.Z.; Han, S.F. Soil water ecological environment on the artificial woodland and grassland in loess hilly region. Mem. NISWC Acad. Sin. Minist. Water Conserv. 1985, 2, 18–28. [Google Scholar] [CrossRef]
- Jipp, P.H.; Nepstad, D.C.; Cassel, D.K.; Carvalho, C. Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazonia. Clim. Change 1998, 39, 395–412. [Google Scholar] [CrossRef]
- Robinson, N.; Harper, R.J.; Smettem, K.R.J. Soil water depletion by Eucalyptus spp. Integrated into drying agricultural systems. Plant Soil 2006, 286, 141–151. [Google Scholar] [CrossRef]
- Querejeta, J.I.; Egerton-Warburton, L.M.; Allen, M.F. Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California oak savanna. Soil Biol. Biochem. 2007, 39, 409–417. [Google Scholar] [CrossRef]
- Shangguan, Z.P. Soil desiccation occurrence and its impact on forest vegetation in the Loess Plateau of China. Int. J. Sust. Dev. World 2007, 14, 299–306. [Google Scholar] [CrossRef]
- Wang, L. The Relation between Soil Water Deficiency and Vegetation Growth in Northern Shaanxi Loess Plateau. Ph.D. Thesis, North-West Agriculture and Forestry University, Yangling, China, 2002. [Google Scholar]
- Yan, W.M.; Deng, L.; Zhong, Y.Q.W.; Shangguan, Z.P. The Characters of dry soil layer on the Loess Plateau in China and their influencing factors. PLoS ONE 2015, 10, e0134902. [Google Scholar]
- Wang, S.; Fu, B.J.; Gao, G.Y.; Liu, Y.; Zhou, J. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China. Catena 2013, 101, 122–128. [Google Scholar] [CrossRef]
- Chen, H.S.; Shao, M.A.; Li, Y.Y. Soil desiccation in the Loess Plateau of China. Geoderma 2008, 143, 91–100. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A.; Liu, Z.P.; David, N.W. Regional spatial pattern of deep soil water content and its influencing factors. Hydrol. Sci. J. 2012, 57, 265–281. [Google Scholar] [CrossRef]
- Guo, Z.S.; Shao, M.A. Soil water carrying capacity of vegetation and soil desiccation in artificial forestry and grassland in semi-arid regions of the Loess Plateau. Acta Ecol. Sin. 2003, 23, 1640–1647. [Google Scholar]
- Duan, J.J.; Wang, X.L.; Zhang, C.X.; Gao, Z.L.; Li, R. Assessing indicator of dried soil layer on Loess Plateau and broken values. J. Soil Water Conserv. 2007, 21, 151–154. [Google Scholar]
- Chen, H.S.; Shao, M.A.; Li, Y.Y. The characteristics of soil water cycle and water balance on steep grassland under natural and simulated rainfall conditions in the Loess Plateau of China. J. Hydrol. 2008, 360, 242–251. [Google Scholar] [CrossRef]
- Yang, L.; Wei, W.; Chen, L.D.; Mo, B.R. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. J. Hydrol. 2012, 475, 111–122. [Google Scholar] [CrossRef]
- Yang, L.; Wei, W.; Chen, L.D.; Cai, G.J.; Jia, F.Y. Soil desiccation in deep soil layers under different vegetation types in the semi-arid loess hilly region. Geogr. Res. 2012, 31, 71–81. [Google Scholar]
- Li, J.; Chen, B.; Li, X.F.; Zhao, Y.J.; Ciren, Y.J.; Hu, W.; Jiang, B.; Cheng, J.M.; Shao, M.A. Effects of deep soil desiccation on artificial forestlands in different vegetation zones on the Loess Plateau of China. Acta Ecol. Sin. 2008, 28, 1429–1445. [Google Scholar]
- Li, J.; Chen, B.; Li, X.F.; Zhao, Y.J.; Ciren, Y.J.; Jiang, B.Y.J.; Hu, W. Soil desiccation effects of forestlands, grasslands and croplands in zones different in rainfall pattern on the Loess Plateau. Acta Pedol. Sin. 2008, 45, 40–52. [Google Scholar]
- Liang, H.B.; Xue, Y.Y.; Li, Z.S.; Wang, S.; Wu, X.; Gao, G.Y.; Liu, G.H.; Fu, B.J. Soil moisture decline following the plantation of Robinia pseudoacacia forests: Evidence from the Loess Plateau. For. Ecol. Manag. 2018, 412, 62–69. [Google Scholar] [CrossRef]
- Kou, M.; Garcia-Fayos, P.; Hu, S.; Jiao, J.Y. The effect of Robinia pseudoacacia afforestation on soil and vegetation properties in the Loess Plateau (China): A chronosequence approach. For. Ecol. Manag. 2016, 375, 146–158. [Google Scholar] [CrossRef]
- Wang, L.; Shao, M.A.; Li, Y.Y. Study on relationship between growth of artificial Robinia pseudoscacia plantation and soil desiccation in the Loess Plateau of northern Shannxi Province. Sci. Silvae Sin. 2004, 40, 84–91. [Google Scholar]
- Jiao, L.; An, W.M.; Li, Z.S.; Gao, G.Y.; Wang, C. Regional variation of soil water and vegetation characteristics in the Chinese Loess Plateau. Ecol. Indic. 2020, 115, 106399. [Google Scholar] [CrossRef]
- Nan, G.W.; Wang, N.; Jiao, L.; Zhu, Y.M.; Sun, H. A new exploration for accurately quantifying the effect of afforestation on soil moisture: A case study of artificial Robinia pseudoacacia in the Loess Plateau (China). For. Ecol. Manag. 2019, 433, 459–466. [Google Scholar] [CrossRef]
- Fu, Z.H.; Hu, W.; Beare, M.H.; Muller, K.; Wallace, D.; Chau, H.W. Contributions of soil organic carbon to soil water repellency persistence: Characterization and modeling. Geoderma 2021, 401, 115312. [Google Scholar] [CrossRef]
- Yang, L.; Wei, W.; Chen, L.D.; Chen, W.L.; Wang, J.L. Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. Catena 2014, 115, 123–133. [Google Scholar] [CrossRef]
- Zhao, C.L.; Jia, X.X.; Shao, M.A.; Zhang, X.B. Using pedo-transfer functions to estimate dry soil layers along an 860-km long transect on China’s Loess Plateau. Geoderma 2020, 369, 114320. [Google Scholar] [CrossRef]
- Zhang, C.C.; Wang, Y.Q.; Shao, M.A. Controlling gully- and revegetation-induced dried soil layers across a slope-gully system. Sci. Total Environ. 2020, 755, 142444. [Google Scholar] [CrossRef]
- Wang, L.; Shao, M.A.; Hou, Q.C.; Yang, G.M. The analysis to dried soil layer of artificial Robinnia pseudoscacia forestry land in the Yanan Experimental Area. Acta Bot. Boreal.-Occident. Sin. 2001, 21, 101–106. [Google Scholar]
- Wang, Y.P.; Shao, M.A.; Zhang, X.C. Soil moisture ecological environment of artificial vegetations in steep slope of loess region in North Shaanxi Province. Acta Ecol. Sin. 2008, 28, 3769–3778. [Google Scholar]
- Yao, X.L.; Fu, B.J.; Lv, Y.H.; Chang, R.Y.; Wang, S.; Wang, Y.F.; Su, C.H. The multi-scale spatial variance of soil moisture in the semi-arid Loess Plateau of China. J. Soils Sediments 2012, 12, 694–703. [Google Scholar] [CrossRef]
- Wang, X.C.; Muhammad, T.N.; Hao, M.D.; Li, J. Sustainable recovery of soil desiccation in semi-humid region on the Loess Plateau. Agric. Water Manag. 2011, 98, 1262–1270. [Google Scholar] [CrossRef]
- Yang, W.Z.; Shao, M.A. Soil Water Study of Loess Plateau; Science Press: Beijing, China, 2000. [Google Scholar]
- Mu, X.M.; Xu, X.X.; Chen, J.W. Eco-Hydrology on the Loess Plateau; Forestry Press of China: Beijing, China, 2001. [Google Scholar]
- Wang, S.; Fu, B.J.; Gao, G.Y.; Yao, X.L.; Zhou, J. Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2012, 16, 2883–2892. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, L.D.; Wei, W. Effects of vegetation restoration on the spatial distribution of soil moisture at the hillslope scale in semi-arid regions. Catena 2015, 124, 138–146. [Google Scholar] [CrossRef]
- Jiao, L.; Lv, N.; Fu, B.J.; Wang, J.; Li, Z.S.; Fang, W.W.; Liu, J.B.; Wang, C.; Zhang, L.W. Evapotranspiration partitioning and its implications for plant water use strategy: Evidence from a black locust plantation in the semi-arid Loess Plateau, China. For. Ecol. Manag. 2018, 424, 428–438. [Google Scholar] [CrossRef]
- Meng, Q.Q.; Wang, J. Effectiveness of Locusts soil moisture in Loess Plateau. J. Irrig. Drain. 2008, 27, 74–76. [Google Scholar]
- Cao, Y.; Zhao, Z.; Qu, M.; Cheng, X.R.; Wang, D.H. Effects of Robinia pseudoacacia roots on deep soil moisture status. Chin. J. Appl. Ecol. 2006, 17, 765–768. [Google Scholar]
- Hao, W.F.; Shan, C.J.; Liang, Z.S.; Chen, C.G. The study on the relation between soil nutrient and productivity of plantation Robinia pseudoacacia forest in the Loess Plateau and gully area of Northern Shaanxi. Chin. Agric. Sci. Bull. 2005, 21, 129–135. [Google Scholar]
- Xue, S.; Liu, G.B.; Dai, Q.H.; Wei, W.; Hou, X.L. Evolution of soil microbial biomass in the restoration process of artificial Robinia pseudoacacia under erosion environment. Acta Ecol. Sin. 2007, 27, 909–917. [Google Scholar]
- Zhang, S.Q.; Wang, G.D.; Liu, J.J.; Guo, M.C. Soil hydro-physical properties of Robinia pseudoacacia plantation forestland in Loess Plateau. J. Northwest For. Univ. 2004, 19, 11–14. [Google Scholar]
- Liu, J.H.; Liu, G.B.; Chen, S.Y. Relationship between soil moisture of Robinia pseudoacacia forests and aboveground biomass of understory vegetation. Res. Soil Water Conserv. 2009, 16, 57–60. [Google Scholar]
- Zhao, Z.; Cheng, X.R.; Xue, W.P.; Wang, D.H.; Yuan, Z.F. Difference of fine root vertical distribution of Robinia pseudoacacia under the different climate regions in the Loess Plateau. Sci. Silvae Sin. 2006, 42, 1–7. [Google Scholar]
- Wang, Z.Q.; Liu, B.Y.; Liu, G.; Zhang, Y.X. Soil water depletion depth by planted vegetation on the Loess Plateau. Sci. China Earth Sci. 2009, 52, 835–842. [Google Scholar] [CrossRef]
Climate & Vegetation Zone | Sampling Sites | Forest Age (a) | Soil Bulk Density (g/cm3) | Altitude (m) | Slope Position | Slope Aspect | Slope Gradient | Average Precipitation (mm) |
---|---|---|---|---|---|---|---|---|
Northern temperate semi-arid drought-prone steppe zone | Hequ | 40 | 1.26 | 1108 | Middle slope | Sunny slope | 5° | 410.78 |
Shenmu | 30 | 1.34 | 1167 | Middle slope | Sunny slope | 25° | 475.67 | |
Suide | 30 | 1.25 | 1001 | Middle slope | Shady slope | 19.5° | 454.89 | |
Ansai | 30 | 1.27 | 1274 | Upper slope | Sunny slope | 19° | 519.52 | |
40 | 1273 | Middle slope | Sunny slope | 40° | ||||
Central warm-temperate semi-arid steppe zone | Yanchang | 10 | 1.30 | 901 | Lower slope | Shady slope | 15° | 528.20 |
Yan’an | 5 | 1.30 | 1200 | Upper slope | Sunny slope | 10° | 538.66 | |
15 | Upper slope | Shady slope | 20° | |||||
30 | Upper slope | Sunny slope | 27° | |||||
45 | Middle slope | Shady slope | 25° | |||||
Southern warm-temperate semi-humid forest-steppe zone | Fuxian | 15 | 1.30 | 1215 | Lower slope | Sunny slope | 15° | 550 |
20 | 1116 | Lower slope | Shady slope | 5° | ||||
Yijun | 10 | 1.30 | 1265 | Lower slope | Shady slope | 14° | 580 | |
15 | 1258 | Middle slope | Shady slope | 15° |
Soil-Desiccation Intensity | SDI | Soil Desiccation Intensity | SDI |
---|---|---|---|
No desiccation | SDI ≥ 100 | Serious desiccation | 50 > SDI ≥ 25 |
Slight desiccation | 100 > SDI ≥ 75 | Intense desiccation | 25 > SDI ≥ 0 |
Medium desiccation | 75 > SDI ≥ 50 | Extreme desiccation | SDI < 0 |
Climate & Vegetation Zone | Sampling Sites | Vegetation Types | SMC (%) | SMS (mm) | ASMS (mm) | ASMS of Each Soil Layer (mm) | Soil-Moisture Consumption (mm) | Average Rate of Soil Desiccation (mm/a) |
---|---|---|---|---|---|---|---|---|
Typical northern temperate semi-arid drought-prone steppe zone | Hequ | RP-40a | 3.50 | 220.25 | −138.85 | −27.77 | 463.30 | 11.58 |
NG | 4.49 | 169.85 | −45.61 | −15.20 | 240.28 | |||
Wilting SMC | 5.70 | 359.10 | 0 | - | - | - | ||
Stable SMC | 10.85 | 683.55 | 324.45 | 64.89 | - | - | ||
FC | 16.00 | 1008 | 648.90 | 129.78 | - | - | ||
Shenmu | RP-30a | 1.97 | 84.42 | −172.86 | 54.02 | 344.38 | 11.48 | |
NG | 8.79 | 353.49 | 112.29 | 37.43 | 48.51 | 1.62 | ||
Wilting SMC | 6.00 | 257.28 | 0 | - | - | - | ||
Stable SMC | 10.00 | 428.80 | 171.52 | 53.60 | - | - | ||
FC | 14.00 | 600.32 | 343.04 | 107.20 | - | - | ||
Suide | RP-30a | 5.00 | 312.25 | 62.25 | 12.45 | 306.50 | 10.22 | |
NG | 8.79 | 329.75 | 179.75 | 59.92 | 41.50 | 2.77 | ||
Wilting SMC | 4.00 | 250.00 | 0 | - | - | - | ||
Stable SMC | 9.90 | 618.75 | 368.75 | 73.75 | - | - | ||
FC | 15.80 | 987.50 | 737.50 | 147.50 | - | - | ||
Ansai | RP-30a | 13.14 | 834.26 | 561.21 | 112.24 | −113.53 | - | |
RP-40a | 6.83 | 277.37 | 92.99 | 29.06 | 209.32 | 5.23 | ||
NG | 8.07 | 307.34 | 143.51 | 47.84 | 125.10 | 8.34 | ||
Wilting SMC | 4.30 | 273.05 | 0 | - | - | - | ||
Stable SMC | 11.35 | 720.73 | 447.68 | 89.54 | - | - | ||
FC | 18.40 | 1168.40 | 895.35 | 179.07 | - | - | ||
Central warm-temperate semi-arid steppe zone | Yanchang | RP-10a | 8.01 | 520.65 | 140.40 | 28.08 | 287.30 | 28.73 |
NG | 7.11 | 277.16 | 49.01 | 16.34 | 207.61 | |||
Wilting SMC | 5.85 | 380.25 | 0 | - | - | - | ||
Stable SMC | 12.43 | 807.95 | 427.70 | 85.54 | - | - | ||
FC | 19.00 | 1235 | 854.75 | 170.95 | - | - | ||
Yan’an | RP-5a | 6.70 | 435.50 | 143.00 | 28.60 | 425.75 | 85.15 | |
RP-15a | 8.54 | 554.84 | 262.34 | 52.47 | 306.41 | 20.43 | ||
RP-30a | 8.34 | 542.10 | 249.60 | 49.92 | 319.15 | 10.64 | ||
RP-45a | 13.80 | 897.26 | 604.76 | 120.95 | −36.01 | - | ||
NG | 15.44 | 602.16 | 426.66 | 142.22 | −85.41 | - | ||
Wilting SMC | 4.50 | 292.50 | 0 | - | - | - | ||
Stable SMC | 13.25 | 861.25 | 568.75 | 113.75 | - | - | ||
FC | 22.00 | 1430 | 1137.50 | 227.50 | - | - | ||
Southern warm-temperate semi-humid forest-steppe zone | Fuxian | RP-15a | 11.10 | 721.76 | 450.06 | 90.01 | 129.09 | 8.61 |
RP-20a | 7.49 | 486.72 | 215.02 | 43.00 | 364.13 | 18.21 | ||
NG | 19.19 | 748.28 | 585.26 | 195.09 | −237.77 | - | ||
Wilting SMC | 4.18 | 271.70 | 0 | - | - | - | ||
Stable SMC | 13.09 | 850.85 | 579.15 | 115.83 | - | - | ||
FC | 22.00 | 1430 | 1158.30 | 231.66 | - | - | ||
Yijun | RP-10a | 15.79 | 656.76 | 482.04 | 150.64 | −132.60 | - | |
RP-15a | 21.30 | 1384.24 | 1111.24 | 222.25 | −565.24 | - | ||
NG | 25.34 | 988.26 | 824.46 | 274.82 | −496.86 | - | ||
Wilting SMC | 4.20 | 273.00 | 0 | - | - | - | ||
Stable SMC | 12.60 | 819.00 | 546.00 | 109.20 | - | - | ||
FC | 21.00 | 1365 | 1092.00 | 218.40 | - | - |
Forest Age (a) | SMC (%) | SMS (mm) | ASMS (mm) | ASMS of Each Soil Layer (mm) | Soil-Moisture Consumption (mm) | Average Rate of Soil Desiccation (mm/a) |
---|---|---|---|---|---|---|
5 | 6.70 | 435.50 | 143.00 | 28.60 | 425.75 | 85.15 |
10 | 10.73 | 697.45 | 370.83 | 74.17 | 115.86 | 11.59 |
15 | 13.65 | 886.95 | 607.88 | 121.58 | −43.25 | - |
20 | 7.49 | 486.72 | 215.02 | 43.00 | 364.13 | 18.21 |
30 | 7.60 | 490.20 | 187.05 | 37.41 | 227.36 | 7.58 |
40 | 4.61 | 291.58 | −24.67 | −4.93 | 410.50 | 10.26 |
45 | 13.80 | 897.26 | 604.76 | 120.95 | −36.01 | - |
Sampling Sites | Forest Age (a) | Very-High-Efficiency Aquifer | High-Efficiency Aquifer | Mid-Efficiency Aquifer | Low-Efficiency/Invalid Aquifer | ||||
---|---|---|---|---|---|---|---|---|---|
Average RSM (%) | Proportion/% | Average RSM (%) | Proportion/% | Average RSM (%) | Proportion/% | Average RSM (%) | Proportion/% | ||
Hequ | 40 | / | 0 | / | 0 | 28.59 | 16 | 20.57 | 84 |
Shenmu | 30 | / | 0 | / | 0 | 31.43 | 6.25 | 14.06 | 93.75 |
Suide | 30 | / | 0 | / | 0 | 34.09 | 60 | 27.91 | 40 |
Ansai | 30 | 83.20 | 44 | 62.13 | 56 | / | 0 | / | 0 |
40 | / | 0 | 51.63 | 6.25 | 39.43 | 68.75 | 35.24 | 25 | |
Yanchang | 10 | / | 0 | 68.18 | 4 | 41.07 | 96 | / | 0 |
Yan’an | 5 | / | 0 | 57.73 | 4 | 33.48 | 48 | 25.15 | 48 |
15 | 83.64 | 8 | / | 0 | 35.23 | 88 | 27.73 | 4 | |
30 | / | 0 | 52.42 | 24 | 37.52 | 44 | 27.56 | 32 | |
45 | / | 0 | 62.75 | 100 | / | 0 | / | 0 | |
Fuxian | 15 | / | 0 | / | 0 | 40.28 | 72 | 33.94 | 12 |
20 | / | 0 | 55 | 4 | 38.51 | 44 | 30.52 | 56 | |
Yijun | 10 | 84.44 | 18.75 | 73.04 | 81.25 | / | 0 | / | 0 |
15 | 90.86 | 20 | 75.71 | 16 | / | 0 | / | 0 |
Climate and Vegetation Zone | Sampling Sites | Forest Age (a) | Average SDI/% | Soil Desiccation Intensity | Extreme Desiccated-Soil Layers (cm) | Intense Desiccated-Soil Layers (cm) | Serious Desiccated-Soil Layers (cm) | Medium Desiccated-Soil Layers (cm) | Slight Desiccated-Soil Layers (cm) | Desiccated-Soil Layers (cm) |
---|---|---|---|---|---|---|---|---|---|---|
Northern temperate semi-arid drought-prone typical steppe zone | Hequ | 40 | −42.80 | Extreme desiccation | 500 | 0 | 0 | 0 | 0 | 500 |
Shenmu | 30 | −100.78 | Extreme desiccation | 320 | 0 | 0 | 0 | 0 | 320 | |
Suide | 30 | 16.88 | Intense desiccation | 0 | 340 | 160 | 0 | 0 | 500 | |
Ansai | 30 | 125.36 | None | 0 | 0 | 0 | 0 | 180 | 180 | |
40 | 35.82 | Serious desiccation | 0 | 100 | 120 | 100 | 0 | 320 | ||
Central warm temperate semi-arid steppe zone | Yanchang | 10 | 32.83 | Serious desiccation | 0 | 200 | 220 | 40 | 20 | 480 |
Yan’an | 5 | 25.14 | Serious desiccation | 0 | 240 | 240 | 0 | 20 | 500 | |
15 | 46.13 | Serious desiccation | 0 | 0 | 40 | 380 | 40 | 460 | ||
30 | 43.89 | Serious desiccation | 0 | 180 | 120 | 120 | 80 | 500 | ||
45 | 106.33 | None | 0 | 0 | 0 | 0 | 100 | 100 | ||
Southern warm temperate semi-humid forest-steppe zone | Fuxian | 15 | 77.71 | Slight desiccation | 0 | 0 | 260 | 160 | 0 | 420 |
20 | 37.13 | Serious desiccation | 0 | 80 | 380 | 20 | 20 | 500 | ||
Yijun | 10 | 137.95 | None | 0 | 0 | 0 | 0 | 0 | 0 | |
15 | 203.52 | None | 0 | 0 | 0 | 0 | 0 | 0 |
Climate and Vegetation Zone | Sampling Sites | Forest Age (a) | SDI | 0–100 cm | 100–200 cm | 200–300 cm | 300–400 cm | 400–500 cm |
---|---|---|---|---|---|---|---|---|
Typical northern temperate semi-arid drought-prone steppe zone | Hequ | 40 | SDI (%) | −46.21 | −53.98 | −38.06 | −43.50 | −32.23 |
Desiccation | Extreme | Extreme | Extreme | Extreme | Extreme | |||
Shenmu | 30 | SDI (%) | −100.50 | −78 | −120 | - | - | |
Desiccation | Extreme | Extreme | Extreme | - | - | |||
Suide | 30 | SDI (%) | 25.08 | 5.76 | 21.02 | 9.83 | 22.71 | |
Desiccation | Serious | Intense | Intense | Intense | Intense | |||
Ansai | 30 | SDI (%) | 158.30 | 153.76 | 139.57 | 92.48 | 82.70 | |
Desiccation | None | None | None | Slight | Slight | |||
40 | SDI (%) | 14.18 | 38.87 | 51.30 | - | - | ||
Desiccation | Intense | Serious | Medium | - | - | |||
Central warm-temperate semi-arid steppe zone | Yanchang | 10 | SDI (%) | 23.06 | 18.10 | 23.76 | 29.56 | 69.66 |
Desiccation | Intense | Intense | Intense | Serious | Medium | |||
Yanan | 5 | SDI (%) | 24.46 | 10.51 | 23.77 | 36.80 | 30.17 | |
Desiccation | Intense | Intense | Intense | Serious | Serious | |||
15 | SDI (%) | 96.69 | 29.71 | 38.40 | 34.97 | 30.86 | ||
Desiccation | Slight | Serious | Serious | Serious | Serious | |||
30 | SDI (%) | 28.80 | 45.03 | 81.60 | 46.86 | 17.14 | ||
Desiccation | Serious | Serious | Slight | Serious | Intense | |||
45 | SDI (%) | 98.51 | 108.34 | 104.91 | 106.74 | 113.14 | ||
Desiccation | Slight | None | None | None | None | |||
Southern warm-temperate semi-humid forest-steppe zone | Fuxian | 15 | SDI (%) | 188.33 | 50.95 | 46.02 | 38.38 | 64.87 |
Desiccation | None | Medium | Serious | Serious | Medium | |||
20 | SDI (%) | 52.08 | 42.20 | 24.92 | 26.49 | 39.96 | ||
Desiccation | Medium | Serious | Intense | Serious | Serious | |||
Yijun | 10 | SDI (%) | 134.29 | 137.86 | 141.07 | - | - | |
Desiccation | None | None | None | - | - | |||
15 | SDI (%) | 190.71 | 158.57 | 202.38 | 224.52 | 241.43 | ||
Desiccation | None | None | None | None | None |
Sampling Sites | Forest Age (a) | Soil Moisture (%) | Stable Soil Moisture (%) | Total Moisture Demand (mm) | Soil-Moisture-Recovery Demand per Year (mm) | Soil-Moisture-Recovery Time (a) | ||||
---|---|---|---|---|---|---|---|---|---|---|
SMC (%) | SMS (mm) | Stable SMC (%) | Stable SMS (mm) | High Precipitation Years | Normal Years | Low Precipitation Years | ||||
Hequ | 40 | 3.50 | 220.25 | 10.85 | 683.55 | 463.3 | 177 | 134 | 91 | 3.72 |
Shenmu | 30 | 1.97 | 84.42 | 10.00 | 428.80 | 344.38 | 177 | 134 | 91 | 2.77 |
Suide | 30 | 5.00 | 312.25 | 9.90 | 618.75 | 306.5 | 177 | 134 | 91 | 2.46 |
Ansai | 30 | 13.14 | 834.26 | 11.35 | 720.73 | −113.53 | 177 | 134 | 91 | - |
40 | 6.83 | 277.37 | 11.35 | 720.73 | 443.36 | 177 | 134 | 91 | 3.56 | |
Yanchang | 10 | 8.01 | 520.65 | 12.43 | 807.95 | 287.3 | 240 | 186 | 132 | 1.64 |
Yanan | 5 | 6.70 | 435.50 | 13.25 | 861.25 | 425.75 | 240 | 186 | 132 | 2.43 |
15 | 8.54 | 554.84 | 13.25 | 861.25 | 306.41 | 240 | 186 | 132 | 1.75 | |
30 | 8.34 | 542.10 | 13.25 | 861.25 | 319.15 | 240 | 186 | 132 | 1.82 | |
45 | 13.80 | 897.26 | 13.25 | 861.25 | −36.01 | 240 | 186 | 132 | - | |
Fuxian | 15 | 11.10 | 721.76 | 13.09 | 850.85 | 129.09 | 260 | 200 | 140 | 0.69 |
20 | 7.49 | 486.72 | 13.09 | 850.85 | 364.13 | 260 | 200 | 140 | 1.94 | |
Yijun | 10 | 15.79 | 656.76 | 12.60 | 819.00 | 162.24 | 260 | 200 | 140 | 0.86 |
15 | 21.30 | 1384.24 | 12.60 | 819.00 | −565.24 | 260 | 200 | 140 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Meng, Z.; Li, Z.; Liu, G. The Effect of Robinia pseudoacacia Plantation on Soil Desiccation across Different Precipitation Zones of the Loess Plateau, China. Forests 2022, 13, 321. https://doi.org/10.3390/f13020321
Liang H, Meng Z, Li Z, Liu G. The Effect of Robinia pseudoacacia Plantation on Soil Desiccation across Different Precipitation Zones of the Loess Plateau, China. Forests. 2022; 13(2):321. https://doi.org/10.3390/f13020321
Chicago/Turabian StyleLiang, Haibin, Zhilong Meng, Zongshan Li, and Guohua Liu. 2022. "The Effect of Robinia pseudoacacia Plantation on Soil Desiccation across Different Precipitation Zones of the Loess Plateau, China" Forests 13, no. 2: 321. https://doi.org/10.3390/f13020321
APA StyleLiang, H., Meng, Z., Li, Z., & Liu, G. (2022). The Effect of Robinia pseudoacacia Plantation on Soil Desiccation across Different Precipitation Zones of the Loess Plateau, China. Forests, 13(2), 321. https://doi.org/10.3390/f13020321