Effect of Species Composition on Growth and Yield in Mixed Beech–Coniferous Stands
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Soil Trophicity Potential and Productivity Indicators of Mixed Stands
3.2. Influence of Species Composition on Stand Productivity
4. Discussion
4.1. Soil Trophicity and Stand Productivity
4.2. Species Proportion and Their Productivity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelty, M.J. Comparative productivity of monocultures and mixed-species stands. In The Ecology and Silviculture of Mixed-Species Forests; Springer: Dordrecht, The Netherlands, 1992; pp. 125–141. [Google Scholar]
- Pretzsch, H.; Schütze, G. Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: Evidence on stand level and explanation on individual tree level. Eur. J. For. Res. 2009, 128, 183–204. [Google Scholar] [CrossRef]
- Forrester, D.I.; Kohnle, U.; Albrecht, A.T.; Bauhus, J. Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For. Ecol. Manag. 2013, 304, 233–242. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dauber, E. Long-term stand dynamics of managed spruce–fir–beech mountain forests in Central Europe: Structure, productivity and regeneration success. Forestry 2015, 88, 407–428. [Google Scholar] [CrossRef] [Green Version]
- Hilmers, T.; Avdagić, A.; Bartkowicz, L.; Bielak, K.; Binder, F.; Bončina, A.; Dobor, L.; Forrester, D.I.; Hobi, M.L.; Ibrahimspahic, A.; et al. The productivity of mixed mountain forests comprised of Fagus sylvatica, Picea abies, and Abies alba across Europe. Forestry 2019, 92, 512–522. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H. Diversity and Productivity in Forests: Evidence from Long-Term Experimental Plots. In Forest Diversity and Function: Temperate and Boreal Systems; Scherer-Lorenzen, M., Körner, C., Schulze, E.-D., Eds.; Springer: Berlin, Germany; New York, NY, USA, 2005; pp. 41–64. ISBN 3-540-22191-3. [Google Scholar]
- Forrester, D.I. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. For. Ecol. Manag. 2014, 312, 282–292. [Google Scholar] [CrossRef]
- Pretzsch, H.; Schütze, G. Tree species mixing can increase stand productivity, density and growth efficiency and attenuate the trade-off between density and growth throughout the whole rotation. Ann. Bot. 2021, 128, 767–786. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Peinado, R.; Pretzsch, H.; Löf, M.; Heym, M.; Bielak, K.; Aldea, J.; Barbeito, I.; Brazaitis, G.; Drössler, L.; Godvod, K. Mixing effects on Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) productivity along a climatic gradient across Europe. For. Ecol. Manag. 2021, 482, 118834. [Google Scholar] [CrossRef]
- Vacek, Z.; Prokůpková, A.; Vacek, S.; Bulušek, D.; Šimůnek, V.; Hájek, V.; Králíček, I. Mixed vs. monospecific mountain forests in response to climate change: Structural and growth perspectives of Norway spruce and European beech. For. Ecol. Manag. 2021, 488, 119019. [Google Scholar] [CrossRef]
- Pretzsch, H.; Steckel, M.; Heym, M.; Biber, P.; Ammer, C.; Ehbrecht, M.; Bielak, K.; Bravo, F.; Ordóñez, C.; Collet, C.; et al. Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea (Matt.) Liebl.) analysed along a productivity gradient through Europe. Eur. J. For. Res. 2020, 139, 349–367. [Google Scholar] [CrossRef] [Green Version]
- Brunner, A.; Forrester, D.I. Tree species mixture effects on stem growth vary with stand density–An analysis based on individual tree responses. For. Ecol. Manag. 2020, 473, 118334. [Google Scholar] [CrossRef]
- Pretzsch, H. Individual Tree Structure and Growth in Mixed Compared with Monospecific Stands. In Mixed-Species Forests; Pretzsch, H., Forrester, D.I., Bauhus, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 271–336. [Google Scholar] [CrossRef]
- Rukh, S.; Poschenrieder, W.; Heym, M.; Pretzsch, H. Drought Resistance of Norway Spruce (Picea abies [L.] Karst) and European Beech (Fagus sylvatica [L.]) in Mixed vs. Monospecific Stands and on Dry vs. Wet Sites. from Evidence at the Tree Level to Relevance at the Stand Level. Forests 2020, 11, 639. [Google Scholar] [CrossRef]
- Torresan, C.; del Río, M.; Hilmers, T.; Notarangelo, M.; Bielak, K.; Binder, F.; Boncina, A.; Bosela, M.; Forrester, D.I.; Hobi, M.L.; et al. Importance of tree species size dominance and heterogeneity on the productivity of spruce-fir-beech mountain forest stands in Europe. For. Ecol. Manag. 2020, 457, 117716. [Google Scholar] [CrossRef]
- Pretzsch, H.; Block, J.; Dieler, J.; Dong, P.H.; Kohnle, U.; Nagel, J.; Spellmann, H.; Zingg, A. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann. For. Sci. 2010, 67, 712. [Google Scholar] [CrossRef] [Green Version]
- Versace, S.; Gianelle, D.; Garfì, V.; Battipaglia, G.; Lombardi, F.; Marchetti, M.; Tognetti, R. Interannual radial growth sensitivity to climatic variations and extreme events in mixed-species and pure forest stands of silver fir and European beech in the Italian Peninsula. Eur. J. For. Res. 2020, 139, 627–645. [Google Scholar] [CrossRef]
- Pretzsch, H.; Grams, T.; Häberle, K.H.; Pritsch, K.; Bauerle, T.; Rötzer, T. Growth and mortality of Norway spruce and European beech in monospecific and mixed-species stands under natural episodic and experimentally extended drought. Results of the KROOF throughfall exclusion experiment. Trees 2020, 34, 957–970. [Google Scholar] [CrossRef] [Green Version]
- Bosela, M.; Kulla, L.; Roessiger, J.; Šebeň, V.; Dobor, L.; Büntgen, U.; Lukac, M. Long-term effects of environmental change and species diversity on tree radial growth in a mixed European forest. For. Ecol. Manag. 2019, 446, 293–303. [Google Scholar] [CrossRef]
- Klopčič, M.; Mina, M.; Bugmann, H.; Bončina, A. The prospects of silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) Karst) in mixed mountain forests under various management strategies, climate change and high browsing pressure. Eur. J. For. Res. 2017, 136, 1071–1090. [Google Scholar] [CrossRef]
- Rößiger, G.; Kulla, L.; Bošeľa, M. Changes in growth caused by climate change and other limiting factors in time affect the optimal equilibrium of close-to-nature forest management. Cent. Eur. For. J. 2019, 65, 180–190. [Google Scholar] [CrossRef]
- Pretzsch, H.; Poschenrieder, W.; Uhl, E.; Brazaitis, G.; Makrickiene, E.; Calama, R. Silvicultural prescriptions for mixed-species forest stands. A European review and perspective. Eur. J. For. Res. 2021, 140, 1267–1294. [Google Scholar] [CrossRef]
- Seynave, I.; Gégout, J.C.; Hervé, J.C.; Dhôte, J.F.; Drapier, J.; Bruno, E.; Dumé, G. Picea abies site index prediction by environmental factors and understorey vegetation: A two-scale approach based on survey databases. Can. J. For. Res. 2005, 35, 1669–1678. [Google Scholar] [CrossRef]
- Jensen, J.; Rasmussen, L.; Raulund-Rasmussen, K.; Borggaard, O. Influence of soil properties on the growth of sycamore (Acer pseudoplatanus L.) in Denmark. Eur. J. For. Res. 2008, 127, 263–274. [Google Scholar] [CrossRef]
- Kobal, M.; Grčman, H.; Zupan, M.; Levanič, T.; Simončič, P.; Kadunc, A.; Hladnik, D. Influence of soil properties on silver fir (Abies alba Mill.) growth in the Dinaric Mountains. For. Ecol. Manag. 2015, 337, 77–87. [Google Scholar] [CrossRef] [Green Version]
- La Roi, G.H.; Strong, W.L.; Pluth, D.J. Understory plant community classifications as predictors of forest site quality for lodgepole pine and white spruce in west-central Alberta. Can. J. For. Res. 1988, 18, 875–887. [Google Scholar] [CrossRef]
- Strong, W.L.; Pluth, D.J.; La Roi, G.H.; Corns, I.G.W. Forest understory plants as predictors of lodgepole pine and white spruce site quality in west-central Alberta. Can. J. For. Res. 1991, 21, 1675–1683. [Google Scholar] [CrossRef]
- Bergès, L.; Chevalier, R.; Dumas, Y.; Franc, A.; Gilbert, J.M. Sessile oak (Quercus petraea Liebl.) site index variations in relation to climate, topography and soil in even-aged high-forest stands in northern France. Ann. For. Sci. 2005, 62, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Spârchez, G.; Târziu, D.R.; Dincă, L. Pedologie; Editura Lux Libris: Braşov, Romania, 2011; p. 292. [Google Scholar]
- Târziu, D.; Spârchez, G. Soluri și Stațiuni Forestiere; Editura Universității Transilvania: Brașov, Romania, 2013; pp. 104–109. ISBN 978-606-19-0260-6. [Google Scholar]
- Skovsgaard, J.P.; Vanclay, J.K. Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands. Forestry 2008, 81, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Socha, J.; Tymińska-Czabańska, L. A Method for the Development of Dynamic Site Index Models Using Height–Age Data from Temporal Sample Plots. Forests 2019, 10, 542. [Google Scholar] [CrossRef] [Green Version]
- Skovsgaard, J.P.; Vanclay, J.K. Forest site productivity: A review of spatial and temporal variability in natural site conditions. Forestry 2013, 86, 305–315. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Bockheim, J.G. Pedodiversity in an old-growth northern hardwood forest in the Huron Mountains, Upper Peninsula, Michigan. Can. J. For. Res. 2007, 37, 1106–1117. [Google Scholar] [CrossRef]
- Berrill, J.; O’Hara, K.L. Estimating site productivity in irregular stand structures by indexing the basal area or volume increment of the dominant species. Can. J. For. Res. 2014, 44, 92–100. [Google Scholar] [CrossRef]
- Jiang, H.; Radtke, P.J.; Weiskittel, A.R.; Coulston, J.W.; Guertin, P.J. Climate- and soil-based models of site productivity in eastern US tree species. Can. J. For. Res. 2015, 45, 325–342. [Google Scholar] [CrossRef]
- Cicşa, A.; Tudoran, G.M.; Boroeanu, M.; Dobre, A.C.; Spârchez, G. Productivity indicators for mixed beech-coniferous stands. Rev. Pădurilor 2021, 136, 1–60. [Google Scholar]
- Giurgiu, V. Dendrometrie și Auxologie Forestieră; Editura Ceres: București, Romania, 1979; pp. 114–135. [Google Scholar]
- Del Río, M.; Pretzsch, H.; Alberdi, I.; Bielak, K.; Bravo, F.; Brunner, A.; Condés, S.; Ducey, M.J.; Fonseca, T.; Von Lüpke, N.; et al. Characterization of the structure, dynamics, and productivity of mixed-species stands: Review and perspectives. Eur. J. For. Res. 2016, 135, 23–49. [Google Scholar] [CrossRef]
- Fu, L.; Sharma, R.P.; Zhu, G.; Li, H.; Hong, L.; Guo, H.; Duan, G.; Shen, C.; Lei, Y.; Li, Y.; et al. Basal Area Increment-Based Approach of Site Productivity Evaluation for Multi-Aged and Mixed Forests. Forests 2017, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Forrester, D.I.; Bauhus, J. A Review of Processes Behind Diversity—Productivity Relationships in Forests. Curr. For. Rep. 2016, 2, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Cicșa, A.; Tudoran, G.-M.; Boroeanu, M.; Dobre, A.-C.; Spârchez, G. Estimation of the Productivity Potential of Mountain Sites (Mixed Beech-Coniferous Stands) in the Romanian Carpathians. Forests 2021, 12, 549. [Google Scholar] [CrossRef]
- Chiriță, C.; Vlad, I.; Păunescu, C.; Pătrășcoiu, N.; Roșu, C.; Iancu, I. Stațiuni Forestiere; Editura Academiei Republicii Socialiste România: București, Romania, 1977; pp. 87–130. [Google Scholar]
- Spârchez, G. Cartarea şi Bonitarea Terenurilor Agricole şi Silvice; Editura Universității Transilvania: Brașov, Romania, 2009; p. 145. [Google Scholar]
- Tudoran, G.; Zotta, M. Adapting the planning and management of Norway spruce forests in mountain areas of Romania to environmental conditions including climate change. Sci. Total Environ. 2019, 698, 133761. [Google Scholar] [CrossRef] [PubMed]
- Tudoran, G.M.; Cicșa, A.; Boroeanu, M.; Dobre, A.C.; Pascu, I.S. Forest Dynamics after Five Decades of Management in the Romanian Carpathians. Forests 2021, 12, 783. [Google Scholar] [CrossRef]
- Giurgiu, V.; Decei, I.; Drăghiciu, D. Metode şi Tabele Dendrometrice; Editura Ceres: București, Romania, 2004; pp. 53–54. [Google Scholar]
- Pretzsch, H. Facilitation and competition reduction in tree species mixtures in Central Europe: Consequences for growth modeling and forest management. Ecol. Model. 2022, 464, 109812. [Google Scholar] [CrossRef]
- Pretzsch, H. Density and growth of forest stands revisited. Effect of the temporal scale of observation, site quality, and thinning. For. Ecol. Manag. 2020, 460, 117879. [Google Scholar] [CrossRef]
- Tudoran, G.M.; Cicșa, A.; Ciceu, A.; Dobre, A.C. Growth Relationships in Silver Fir Stands at Their Lower-Altitude Limit in Romania. Forests 2021, 12, 439. [Google Scholar] [CrossRef]
- Vacek, S.; Prokůpková, A.; Vacek, Z.; Bulušek, D.; Šimůnek, V.; Králíček, I.; Prausová, R.; Hájek, V. Growth response of mixed beech forests to climate change, various management and game pressure in Central Europe. J. For. Sci. 2019, 65, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Moreau, G.; Auty, D.; Pothier, D.; Shi, J.; Lu, J.; Achim, A.; Xiang, W. Long-term tree and stand growth dynamics after thinning of various intensities in a temperate mixed forest. For. Ecol. Manag. 2020, 473, 118311. [Google Scholar] [CrossRef]
- Thurm, E.A.; Pretzsch, H. Improved productivity and modified tree morphology of mixed versus pure stands of European beech (Fagus sylvatica) and Douglas-fir (Pseudotsuga menziesii) with increasing precipitation and age. Ann. For. Sci. 2016, 73, 1047–1061. [Google Scholar] [CrossRef]
Altitude (m) | Species (%) | Total | |||||
---|---|---|---|---|---|---|---|
Beech | Fir | Spruce | Other Species | ||||
600–800 | 10 | 5 | 1 | 14 | 6 | ||
801–1000 | 42 | 39 | 10 | 38 | 27 | ||
1001–1200 | 36 | 37 | 24 | 18 | 30 | ||
1201–1400 | 12 | 18 | 42 | 20 | 26 | ||
1401–1600 | - | 1 | 23 | 10 | 11 | ||
Total (%) | 100 | 100 | 100 | 100 | 100 | ||
Density | 0.73 | 0.76 | 0.74 | 0.81 | 0.75 | ||
Area (ha) | 2004.90 | 303.48 | 2063.61 | 275.37 | 4647.36 | ||
Total (composition) (%) | 43 | 6 | 45 | 6 | 100 | ||
Slope (°) | <5 | 6–15 | 16–25 | 26–30 | 31–35 | 36–40 | Total |
Area (%) | - | 1 | 13 | 32 | 37 | 17 | 100 |
TI | Soil | HC (%) | VB (%) |
---|---|---|---|
31–50 | oligomesotrophic (2%) | <6 | 20–30 |
51–80 | mesotrophic (14%) | 6–10 | 31–40 |
81–140 | eutrophic (76%) | 11–20 | 41–55 |
>140 | megatrophic (8%) | >20 | 56–70 |
TI (Equation) | Intercept | HC (%) | VB (me%) | R2 | R2 Adjusted |
---|---|---|---|---|---|
p-value | 1.42 × 10−14 | 3.94 × 10−31 | 5.02 × 10−31 | 0.426 | 0.422 |
Species | TI | Indicators | |||
---|---|---|---|---|---|
hg (m) | hdom (m) | V (m3 ha−1) | MAI (m3 yr−1 ha−1) | ||
Spruce | 81–100 | 30.2 | 33.3 | 970 | 9.7 |
101–120 | 31.4 | 33.3 | 914 | 9.1 | |
Fir | 81–100 | 29.0 | 32.6 | 807 | 8.1 |
101–120 | 28.0 | 32.6 | 826 | 8.3 | |
Beech | 81–100 | 27.0 | 30.7 | 657 | 6.6 |
101–120 | 26.6 | 30.7 | 623 | 6.2 |
Parameter | Species | ||||||
---|---|---|---|---|---|---|---|
Spruce | Fir | Beech | |||||
Age (Years) | Index (m3 ha−1 yr−1) | Age (Years) | Index (m3 ha−1 yr−1) | Age (Years) | Index (m3 ha−1 yr−1) | ||
TI | 81–100 | 75 | 11.0 | 70 | 9.5 | 75 | 7.3 |
101–120 | 70 | 11.1 | 70 | 9.3 | 75 | 7.1 |
Parameter | Species | ||||||
---|---|---|---|---|---|---|---|
Spruce | Fir | Beech | |||||
Age (Years) | Index (m3 ha−1 yr−1) | Age (Years) | Index (m3 ha−1 yr−1) | Age (Years) | Index (m3 ha−1 yr−1) | ||
psp | ≤50% | 70 | 10.7 | 70 | 9.2 | 70 | 7.2 |
>50% | 70 | 11.0 | 70 | 9.4 | 70 | 7.5 |
Species | Species psp | Indicator | |||
---|---|---|---|---|---|
hg (m) | hdom (m) | V (m3) | MAI (m3 ha−1 yr−1) | ||
Spruce | psp ≤ 50% | 31.2 | 33.4 | 912 | 9.1 |
psp > 50% | 30.5 | 33.3 | 947 | 9.5 | |
Fir | psp ≤ 50% | 30.4 | 32.7 | 833 | 8.3 |
psp > 50% | 29.1 | 32.7 | 848 | 8.5 | |
Beech | psp ≤ 50% | 28.4 | 30.5 | 625 | 6.3 |
psp > 50% | 27.1 | 30.1 | 649 | 6.5 |
Species | Variable | Equation | R2 | RMSE | MAE | MAPE (Relative) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
y | x | Number | psp | a | b | c | d | |||||
Spruce | hdom (m) | diameter (cm) | (17) | <50 | 7.346 | 0.574 | 0.0051 | −0.9 × 10−5 | 0.986 | 1.353 | 1.046 | 0.043 |
(18) | >50 | 7.264 | 0.551 | 0.006 | −0.1 × 10−4 | 0.983 | 1.240 | 1.023 | 0.036 | |||
Beech | (19) | <50 | 7.130 | 0.824 | −1 × 10−3 | −5.6 × 10−5 | 0.945 | 1.220 | 0.910 | 0.035 | ||
(20) | >50 | 7.216 | 0.761 | 1 × 103 | −7.5 × 10−5 | 0.871 | 3.041 | 2.667 | 0.084 | |||
Spruce | hg (m) | Age (years) | (21) | <50 | −2.292 | 0.589 | 33.4 × 10−5 | 0.8 × 10−6 | 0.961 | 2.242 | 1.870 | 0.080 |
(22) | >50 | −3.980 | 0.645 | −0.004 | 0.1 × 10−5 | 0.961 | 2.198 | 1.838 | 0.076 | |||
Beech | (23) | <50 | 0.764 | 0.381 | −11.8 × 10−4 | − | 0.962 | 1.908 | 1.517 | 0.084 | ||
(24) | >50 | −1.073 | 0.440 | −14.5 × 10−4 | − | 0.963 | 1.766 | 1.467 | 0.065 | |||
Spruce | MAI (m3 yr−1 ha−1) | diameter (cm) | (25) | <50 | −0.06 | 0.897 | −0.0235 | 1.76 × 10−5 | 0.899 | 0.966 | 0.748 | 0.083 |
(26) | >50 | −0.429 | 0.899 | −0.0225 | 1.62 × 10−5 | 0.842 | 0.825 | 0.645 | 0.073 | |||
Beech | (27) | <50 | −0.675 | 0.726 | −0.021 | 1.75 × 10−5 | 0.834 | 0.736 | 0.559 | 0.089 | ||
(28) | >50 | −1.003 | 0.757 | −0.021 | 1.7 × 10−5 | 0.794 | 0.716 | 0.558 | 0.086 | |||
Spruce | V (m3 ha−1) | Age (years) | (29) | <50 | −159.0 | 15.76 | −0.047 | − | 0.973 | 72.19 | 58.50 | 0.148 |
(30) | >50 | −127.0 | 14.69 | −0.043 | − | 0.967 | 60.42 | 45.63 | 0.080 | |||
Beech | (31) | <50 | −136.4 | 11.41 | −0.038 | − | 0.952 | 47.29 | 38.30 | 0.093 | ||
(32) | >50 | −135.1 | 11.44 | −0.036 | − | 0.947 | 47.48 | 38.31 | 0.083 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicșa, A.; Tudoran, G.-M.; Cicșa, M.; Dobre, A.-C.; Spârchez, G. Effect of Species Composition on Growth and Yield in Mixed Beech–Coniferous Stands. Forests 2022, 13, 1651. https://doi.org/10.3390/f13101651
Cicșa A, Tudoran G-M, Cicșa M, Dobre A-C, Spârchez G. Effect of Species Composition on Growth and Yield in Mixed Beech–Coniferous Stands. Forests. 2022; 13(10):1651. https://doi.org/10.3390/f13101651
Chicago/Turabian StyleCicșa, Avram, Gheorghe-Marian Tudoran, Maria Cicșa (Boroeanu), Alexandru-Claudiu Dobre, and Gheorghe Spârchez. 2022. "Effect of Species Composition on Growth and Yield in Mixed Beech–Coniferous Stands" Forests 13, no. 10: 1651. https://doi.org/10.3390/f13101651