Growth Assessment of Native Tree Species from the Southwestern Brazilian Amazonia by Post-AD 1950 14C Analysis: Implications for Tropical Dendroclimatology Studies and Atmospheric 14C Reconstructions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Species Selection, Sample Collection, and Preparation
2.3. Tree-Ring Demarcation Strategies and Analysis
2.4. Radiocarbon Dating
3. Results and Discussion
3.1. Tree-Ring Demarcation
3.2. Tree-Ring Chronologies
3.3. Radiocarbon Analysis
4. Implications for Tropical Dendrochronology and Atmospheric 14C New Records
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schweingruber, F.H. Tree Rings: Basics and Applications of Dendrochronology; Springer: Dordrecht, The Netherlands, 2012; ISBN 978-94-009-1273-1. [Google Scholar]
- Stahle, D.W.; Cook, E.R.; Burnette, D.J.; Villanueva, J.; Cerano, J.; Burns, J.N.; Griffin, D.; Cook, B.I.; Acuña, R.; Torbenson, M.C.; et al. The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quat. Sci. Rev. 2016, 149, 34–60. [Google Scholar] [CrossRef] [Green Version]
- Gholami, V.; Torkaman, J.; Dalir, P. Simulation of precipitation time series using tree-rings, earlywood vessel features, and artificial neural network. Theor. Appl. Clim. 2018, 137, 1939–1948. [Google Scholar] [CrossRef]
- Matskovsky, V.; Venegas-González, A.; Garreaud, R.; Roig, F.A.; Gutiérrez, A.G.; Muñoz, A.A.; Le Quesne, C.; Klock, K.; Canales, C. Tree growth decline as a response to projected climate change in the 21st century in Mediterranean mountain forests of Chile. Glob. Planet. Chang. 2021, 198, 103406. [Google Scholar] [CrossRef]
- Pompa-García, M.; Camarero, J.J. Latin American Dendroecology: Combining Tree-Ring Sciences and Ecology in a Megadiverse Territory; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Schöngart, J.; Bräuning, A.; Barbosa, A.C.M.C.; Lisi, C.S.; De Oliveira, J.M. Dendroecological Studies in the Neotropics: History, Status and Future Challenges. In Dendroecology; Amoroso, M., Daniels, L., Baker, P., Camarero, J., Eds.; Ecological Studies (Analysis and Synthesis); Springer: Cham, Switzerland, 2017; Volume 231. [Google Scholar] [CrossRef]
- Nath, C.D.; Munoz, F.; Pélissier, R.; Burslem, D.; Muthusankar, G. Growth rings in tropical trees: Role of functional traits, environment, and phylogeny. Trees 2016, 30, 2153–2175. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.D.S.; Funch, L.S.; Da Silva, L.B. The growth ring concept: Seeking a broader and unambiguous approach covering tropical species. Biol. Rev. 2019, 94, 1161–1178. [Google Scholar] [CrossRef] [PubMed]
- Worbes, M. One hundred years of tree-ring research in the tropics—A brief history and an outlook to future challenges. Dendrochronologia 2002, 20, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.; Linares, R.; Lisi, C.; Filho, M.T. Annual growth rings in a sample of Paraná pine (Araucaria angustifolia): Toward improving the 14C calibration curve for the Southern Hemisphere. Quat. Geochronol. 2015, 25, 96–103. [Google Scholar] [CrossRef]
- Santos, G.M.; Granato-Souza, D.; Barbosa, A.C.; Oelkers, R.; Andreu-Hayles, L. Radiocarbon analysis confirms annual periodicity in Cedrela odorata tree rings from the equatorial Amazon. Quat. Geochronol. 2020, 58, 101079. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Hogg, A.G.; Heaton, T.J.; Hua, Q.; Palmer, J.G.; Turney, C.S.; Southon, J.; Bayliss, A.; Blackwell, P.G.; Boswijk, G.; Ramsey, C.B.; et al. SHCal20 Southern Hemisphere Calibration, 0–55,000 Years cal BP. Radiocarbon 2020, 62, 759–778. [Google Scholar] [CrossRef]
- Levin, I.; Hesshaimer, V. Radiocarbon—A Unique Tracer of Global Carbon Cycle Dynamics. Radiocarbon 2000, 42, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.M. Beyond archaeology: 14C-AMS and the global carbon cycle. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2012; Volume 1423, pp. 311–318. [Google Scholar] [CrossRef]
- Graven, H.D. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proc. Natl. Acad. Sci. USA 2015, 112, 9542–9545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Centers for Environmental Information (NOAA). Paleoclimatology Data Map—NCEI-Map Application. Available online: https://gis.ncdc.noaa.gov/maps/ncei/paleo?layers=0000000000000001. (accessed on 20 April 2021).
- Babst, F.; Poulter, B.; Bodesheim, P.; Mahecha, M.; Frank, D. Improved tree-ring archives will support earth-system science. Nat. Ecol. Evol. 2017, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Rozendaal, D.M.A.; Zuidema, P. Dendroecology in the tropics: A review. Trees 2010, 25, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Wils, T.H.; Robertson, I.; Eshetu, Z.; Sass-Klaassen, U.G.; Koprowski, M. Periodicity of growth rings in Juniperus procera from Ethiopia inferred from crossdating and radiocarbon dating. Dendrochronologia 2009, 27, 45–58. [Google Scholar] [CrossRef]
- Herrera-Ramirez, D.; Andreu-Hayles, L.; Del Valle, J.I.; Santos, G.; Gonzalez, P.L.M. Nonannual tree rings in a climate-sensitivePrioria copaiferachronology in the Atrato River, Colombia. Ecol. Evol. 2017, 7, 6334–6345. [Google Scholar] [CrossRef] [PubMed]
- Haines, H.A.; Olley, J.M.; English, N.; Hua, Q. Anomalous ring identification in two Australian subtropical Araucariaceae species permits annual ring dating and growth-climate relationship development. Dendrochronologia 2018, 49, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Vetter, R.E.; Botosso, P.C. Remarks on Age and Growth Rate Determination of Amazonian Trees. IAWA J. 1989, 10, 133–145. [Google Scholar] [CrossRef]
- Baker, J.C.A.; Santos, G.M.; Gloor, M.; Brienen, R.J.W. Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees 2017, 31, 1999–2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soliz-Gamboa, C.C.; Rozendaal, D.M.A.; Ceccantini, G.; Angyalossy, V.; Van Der Borg, K.; Zuidema, P.A. Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 2010, 25, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Enting, I.G. Nuclear Weapons Data for Use in Carbon Cycle Modelling; C.S.I.R.O: Melbourne, Australia, 1982; ISBN 0 643 03460 9.
- Hua, Q.; Barbetti, M.; Rakowski, A. Atmospheric Radiocarbon for the Period 1950–2010. Radiocarbon 2013, 55, 2059–2072. [Google Scholar] [CrossRef] [Green Version]
- Westbrook, J.A.; Guilderson, T.P.; Colinvaux, P.A. Annual Growth Rings in a Sample of Hymenaea Courbaril. IAWA J. 2006, 27, 193–197. [Google Scholar] [CrossRef]
- Hadad, M.A.; Santos, G.M.; Juñent, F.A.R.; Grainger, C.S. Annual nature of the growth rings of Araucaria araucana confirmed by radiocarbon analysis. Quat. Geochronol. 2015, 30, 42–47. [Google Scholar] [CrossRef]
- Andreu-Hayles LSantos, G.; Herrera-Ramírez, D.; Martin-Fernández, J.; Ruiz-Carrascal, D.; Boza-Espinoza, T.; Fuentes, A.; Jorgensen, P. Matching Dendrochronological Dates with the Southern Hemisphere 14C Bomb Curve to Confirm Annual Tree Rings in Pseudolmedia Rigida from Bolivia. Radiocarbon 2015, 57, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Biondi, F.; Fessenden, J.E. Radiocarbon Analysis of Pinus Lagunae Tree Rings: Implications for Tropical Dendrochronology. Radiocarbon 1999, 41, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Godoy-Veiga, M.; Cintra, B.B.L.; Stríkis, N.M.; Cruz, F.W.; Grohmann, C.H.; Santos, M.S.; Regev, L.; Boaretto, E.; Ceccantini, G.; Locosselli, G.M. The value of climate responses of individual trees to detect areas of climate-change refugia, a tree-ring study in the Brazilian seasonally dry tropical forests. For. Ecol. Manag. 2021, 488, 118971. [Google Scholar] [CrossRef]
- Barbosa, A.C.M.; Pereira, G.A.; Granato-Souza, D.; Santos, R.M.; Fontes, M.A.L. Tree rings and growth trajectories of tree species from seasonally dry tropical forest. Aust. J. Bot. 2018, 66, 414. [Google Scholar] [CrossRef]
- Pereira, G.D.A.; Barbosa, A.C.M.C.; Torbenson, M.; Stahle, D.W.; Granato-Souza, D.; Dos Santos, R.M.; Barbosa, J.P.D. The Climate Response of Cedrela Fissilis Annual Ring Width in the Rio São Francisco Basin, Brazil. Tree-Ring Res. 2018, 74, 162–171. [Google Scholar] [CrossRef]
- Hammerschlag, I.; Macario, K.D.; Barbosa, A.C.; Pereira, G.D.A.; Farrapo, C.L.; Cruz, F. Annually Verified Growth of Cedrela Fissilis from Central Brazil. Radiocarbon 2019, 61, 927–937. [Google Scholar] [CrossRef]
- Locosselli, G.M.; Buckeridge, M.; Moreira, M.Z.; Ceccantini, G. A multi-proxy dendroecological analysis of two tropical species (Hymenaea spp., Leguminosae) growing in a vegetation mosaic. Trees 2012, 27, 25–36. [Google Scholar] [CrossRef]
- Locosselli, G.M.; Schongart, J.; Ceccantini, G. Climate/growth relations and teleconnections for a Hymenaea courbaril (Leguminosae) population inhabiting the dry forest on karst. Trees 2016, 30, 1127–1136. [Google Scholar] [CrossRef]
- Brienen, R.J.W.; Zuidema, P. Relating tree growth to rainfall in Bolivian rain forests: A test for six species using tree ring analysis. Oecologia 2005, 146, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pedlowski, M.A.; Dale, V.H.; Matricardi, E.A.; Filho, E.P.D.S. Patterns and impacts of deforestation in Rondônia, Brazil. Landsc. Urban Plan. 1997, 38, 149–157. [Google Scholar] [CrossRef]
- Germer, S.; Neill, C.; Krusche, A.; Neto, S.C.G.; Elsenbeer, H. Seasonal and within-event dynamics of rainfall and throughfall chemistry in an open tropical rainforest in Rondônia, Brazil. Biogeochemistry 2007, 86, 155–174. [Google Scholar] [CrossRef]
- Khanna, J.; Medvigy, D.; Fueglistaler, S.; Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Chang. 2017, 7, 200–204. [Google Scholar] [CrossRef]
- Leite-Filho, A.T.; Soares-Filho, B.S.; Davis, J.L.; Abrahão, G.M.; Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 2021, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- De Sales, F.; Santiago, T.; Biggs, T.W.; Mullan, K.; Sills, E.O.; Monteverde, C. Impacts of Protected Area Deforestation on Dry-Season Regional Climate in the Brazilian Amazon. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Ancapichún, S.; De Pol-Holz, R.; Christie, D.A.; Santos, G.M.; Collado-Fabbri, S.; Garreaud, R.; Lambert, F.; Orfanoz-Cheuquelaf, A.; Rojas, M.; Southon, J.; et al. Radiocarbon bomb-peak signal in tree-rings from the tropical Andes register low latitude atmospheric dynamics in the Southern Hemisphere. Sci. Total Environ. 2021, 774, 145126. [Google Scholar] [CrossRef]
- Marengo, J.A.; Liebmann, B.; Grimm, A.M.; Misra, V.; Silva Dias, P.L.; Cavalcanti, I.F.A.; Carvalho, L.M.V.; Berbery, E.H.; Ambrizzi, T.; Vera, C.S.; et al. Recent developments on the South American monsoon system. Int. J. Climatol. 2012, 32, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A. Long-term trends and cycles in the hydrometeorology of the Amazon basin since the late 1920s. Hydrol. Process. 2009, 23, 3236–3244. [Google Scholar] [CrossRef]
- Granato-Souza, D.; Stahle, D.W.; Barbosa, A.; Feng, S.; Torbenson, M.; Pereira, G.D.A.; Schongart, J.; Barbosa, J.P.; Griffin, D. Tree rings and rainfall in the equatorial Amazon. Clim. Dyn. 2019, 52, 1857–1869. [Google Scholar] [CrossRef]
- Ministério do Meio Ambiente. Diagnostico. In Plano de Manejo da Floresta Nacional do Jamari; Ministério do Meio Ambiente, Instituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renováveis: Brasília, Brazil, 2005; Volume 1. Available online: https://www.icmbio.gov.br/portal/images/stories/docs-planos-de-manejo/flona_jamari_pm_diagnostico.pdf (accessed on 18 April 2021).
- IBGE. Cidades e Estados. Available online: https://cidades.ibge.gov.br/ (accessed on 18 April 2021).
- Instituto Brasileiro de Geografia e Estatistica. Manual Técnico da Vegetação Brasileira; Instituto Brasileiro de Geografia e Estatistica: Rio de Janeiro, Brazil, 2012; ISBN 9788524042720.
- Bastos, A.; Manisesi, V.; Passos, E.; Gomes, F.; Uchôa, L. Physical Environment Aspects as Subsidy to Occupation in Southwest Amazon Conservation Units—A Case Study Relating the Jamari National Forest and its Surrounding Areas. Int. J. Sustain. Land Use Urban Plan. 2015, 2, 9–22. [Google Scholar] [CrossRef]
- Perigolo, N.A. Caracterização dos Tipos Vegetacionais do Médio Rio Madeira, Rondônia. Master’s Thesis, Universidade de Brasilia, Brasília, Brazil, 2014. Available online: https://repositorio.unb.br/handle/10482/17564. (accessed on 19 April 2021).
- EMBRAPA. Sistema Brasileiro de Classificação de Solos; Embrapa Solos (Empresa Brasileira de Pesquisa Agropecuária): Brasília, Brazil, 2006; ISBN 978-85-7035-198-2. [Google Scholar]
- Lobão, M.S. Dendrocronologia, Fenologia, Atividade Cambial e Qualidade do Lenho de Árvores de Cedrela odorata L., Cedrela fissilis Vell. e Schizolobium parahyba var. amazonicum Hub. ex Ducke, no estado do Acre. Brasil. Ph.D. Thesis, University of São Paulo, São Paulo, Brazil, 2011. [Google Scholar] [CrossRef] [Green Version]
- Souza, I.M.; Funch, L.S. Synchronization of leafing and reproductive phenological events in Hymenaea L. species (Leguminosae, Caesalpinioideae): The role of photoperiod as the trigger. Braz. J. Bot. 2017, 40, 125–136. [Google Scholar] [CrossRef]
- Alencar, J.D.C.; De Almeida, R.A.; Fernandes, N.P. Fenologia de espécies florestais em floresta tropical úmida de terra firme na Amazônia Central. Acta Amaz. 1979, 9, 163–199. [Google Scholar] [CrossRef] [Green Version]
- Stahle, D.W. Useful Strategies for the Development of Tropical Tree-Ring Chronologies. IAWA J. 1999, 20, 249–253. [Google Scholar] [CrossRef]
- Grogan, J.; Schulze, M. The Impact of Annual and Seasonal Rainfall Patterns on Growth and Phenology of Emergent Tree Species in Southeastern Amazonia, Brazil. Biotropica 2011, 44, 331–340. [Google Scholar] [CrossRef]
- Tomazello, M.; Brazolin, S.; Chagas, M.P.; Oliveira, J.T.S.; Ballarin, A.W.; Benjamin, C.A. Application of X-ray technique in nondestructive evaluation of eucalypt wood. Maderas. Cienc. Tecnol. 2008, 10, 139–149. [Google Scholar] [CrossRef]
- Cybis Electronic. CDendro and CooRecorder V.7.7. Available online: www.cybis.se. (accessed on 22 April 2021).
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull. 1983, 43, 69–78. Available online: http://hdl.handle.net/10150/261223. (accessed on 20 April 2021).
- Cook, E.R. A Time Series Approach to Tree-Ring Standardisation; University of Arizona: Tucson, AZ, USA, 1985. [Google Scholar]
- Cook, E.; Krusic, P. Program ARSTAN: A Tree-Ring Standardization Program Based on Detrending and Autoregressive Time Series Modeling, with Interactive Graphics; Lamont Doherty Earth Observatory, Tree-Ring Laboratory: Palisades, NY, USA, 2005. [Google Scholar]
- Cook, E.R.; Pederson, N. Uncertainty, Emergence, and Statistics in Dendrochronology; Springer: Dordrecht, The Netherlands, 2011; pp. 77–112. [Google Scholar] [CrossRef]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Southon, J.R.; Magana, A.L. A Comparison of Cellulose Extraction and ABA Pretreatment Methods for AMS 14C Dating of Ancient Wood. Radiocarbon 2010, 52, 1371–1379. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.M.; Ormsby, K. Behavioral Variability in ABA Chemical Pretreatment Close to the 14C Age Limit. Radiocarbon 2013, 55, 534–544. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.M.; Xu, X. Bag of Tricks: A Set of Techniques and other Resources to Help 14C Laboratory Setup, Sample Processing, and Beyond. Radiocarbon 2017, 59, 785–801. [Google Scholar] [CrossRef]
- Beverly, R.K.; Beaumont, W.; Tauz, D.; Ormsby, K.M.; Von Reden, K.F.; Santos, G.; Southon, J.R. The Keck Carbon Cycle AMS Laboratory, University of California, Irvine: Status Report. Radiocarbon 2010, 52, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.M.; Moore, R.B.; Southon, J.R.; Griffin, S.; Hinger, E.; Zhang, D. AMS 14C Sample Preparation at the KCCAMS/UCI Facility: Status Report and Performance of Small Samples. Radiocarbon 2007, 49, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.J.; Brown, T.; Reimer, R.W. Discussion: Reporting and Calibration of Post-Bomb 14C Data. Radiocarbon 2004, 46, 1299–1304. [Google Scholar] [CrossRef] [Green Version]
- Stuiver, M.; Polach, H.A. Discussion Reporting of 14C Data. Radiocarbon 1977, 19, 355–363. [Google Scholar] [CrossRef] [Green Version]
- IAWA Committee. IAWA List of Microscopic Features for Hardwood Identification. IAWA Bull. 1989, 10, 219–332. [Google Scholar] [CrossRef]
- Moya-Roque, R.; Tomazelo-Filho, M. Relationships between anatomical features and intra-ring wood density profiles in Gmelina arborea applying X-ray densitometry. Cerne 2007, 13, 384–392. [Google Scholar]
- de Oliveira, B.R.U.; de Figueiredo Latorraca, J.V.; Filho, M.T.; Garcia, R.A.; de Carvalho, A.M. Dendroclimatology correlations of Eucalyptus grandis Hill ex Maiden of Rio Claro, RJ state—Brazil. Ciênc. Florest. 2011, 21, 499–508. [Google Scholar] [CrossRef] [Green Version]
- de Andrade, E.S.; dos Santos Carvalho Garcia, S.; Albernaz, A.L.K.M.; Tomazello Fillho, M.; Moutinho, V.H.P. Growth ring analysis of Euxylophora paraensis through X-ray microdensitometry. Ciênc. Rural 2017, 47. [Google Scholar] [CrossRef] [Green Version]
- De Mil, T.; Tarelkin, Y.; Hahn, S.; Hubau, W.; Deklerck, V.; Debeir, O.; Van Acker, J.; De Cannière, C.; Beeckman, H.; Bulcke, J.V.D. Wood Density Profiles and Their Corresponding Tissue Fractions in Tropical Angiosperm Trees. Forests 2018, 9, 763. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.Q.; Durgante, F.M.; Wittmann, F.; Piedade, M.T.F.; Rodriguez, D.R.O.; Tomazello-Filho, M.; Parolin, P.; Schöngart, J. Minimum temperature and evapotranspiration in Central Amazonian floodplains limit tree growth of Nectandra amazonum (Lauraceae). Trees 2021, 35, 1–18. [Google Scholar] [CrossRef]
- Tomazello Filho, M.; Botosso, P.C.; Lisi, C.S. Potencialidade da familia Meliaceae para dendrocronologia em regioes tropicais e subtropicais. In Dendrocronología en América Latina; Universidad Nacional de Cuyo: Mendoza, Argentina, 2000; pp. 381–431. [Google Scholar]
- Callado, C.H.; Roig, F.A.; Tomazello-Filho, M.; Barros, C.F. Cambial growth periodicity studies of south american woody species—A review. IAWA J. 2013, 34, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, A. Avaliação de Anéis de Crescimento de Espécies Florestais de Terra-Firme no Município de Novo Aripuanã—AM. Ph.D. Thesis, Instituto Nacional de Pesquisas da Amazônia, Porto Alegre, Brazil, 2005. Available online: https://repositorio.inpa.gov.br/handle/1/12268. (accessed on 20 April 2021).
- Brienen, R.J.W.; Schöngart, J.; Zuidema, P.A. Tree rings in the tropics: Insights into the ecology and climate sensitivity of tropical trees. In Tropical Tree Physiology; Goldstein, G., Santiago, L.S., Eds.; Springer International Publishing: Berlin, Germany, 2016; Volume 6, pp. 439–461. [Google Scholar] [CrossRef]
- Camarero, J.J.; Mendivelso, H.A.; Sánchez-Salguero, R. How past andS future climate and drought drive radial-growth variability of three tree species in a Bolivian tropical dry forest. In Latin American Dendroecology; Pompa-García, M., Camarero, J.J., Eds.; Springer International Publishing: Berlin, Germany, 2020; pp. 141–167. [Google Scholar] [CrossRef]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Arizona Press: Tucson, AZ, USA, 1996; ISBN 0816516804. [Google Scholar]
- Randerson, J.T.; Enting, I.G.; Fung, I.Y.; Schuur, E.A.G.; Caldeira, K. Seasonal and latitudinal variability of troposphere Δ14CO2: Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Glob. Biogeochem. Cycles 2002, 16, 59-1–59-19. [Google Scholar] [CrossRef] [Green Version]
- Fritts, H.C. Tree Rings and Climate; Academic Press: Cambridge, MA, USA, 1976. [Google Scholar] [CrossRef]
UCIAMS# | Tree Species/Sample ID | Calendar Date Adjusted | F14C | ±1σ | Weighed Mean F14C † | Propagated Error | Standard Error | |
---|---|---|---|---|---|---|---|---|
241053 | Cedrela fissilis | JAC09C-1957 | 1957.08 | 1.0272 | 0.0014 | |||
241054 | JAC09C-1958 | 1958.08 | 1.0689 | 0.0014 | ||||
241055 | JAC09C-1962 | 1962.08 | 1.2068 | 0.0016 | ||||
241056 | JAC09C-1963(1) | 1963.08 | 1.2868 | 0.0017 | ||||
241057 | JAC09C-1963(2) | 1963.08 | 1.2849 | 0.0017 | 1.2858 | 0.0012 | 0.0009 | |
241058 | JAC09C-1965 | 1965.08 | 1.6282 | 0.0025 | ||||
241059 | JAC09C-1971 | 1971.08 | 1.4957 | 0.0022 | ||||
241060 | JAC09C-1972 | 1972.08 | 1.4780 | 0.0020 | ||||
241036 | Hymenaea courbaril | JAJ30A-1957 | 1957.08 | 0.9818 | 0.0014 | |||
241037 | JAJ30A-1958 | 1958.08 | 0.9799 | 0.0014 | ||||
241038 | JAJ30A-1962(1) | 1962.08 | 0.9870 | 0.0017 | ||||
241039 | JAJ30A-1962(2) | 1962.08 | 0.9889 | 0.0014 | 0.9881 | 0.0011 | 0.0009 | |
241040 | JAJ30A-1963 | 1963.08 | 1.0013 | 0.0014 | ||||
241041 | JAJ30A-1965 | 1965.08 | 1.0634 | 0.0018 | ||||
241042 | JAJ30A-1971 | 1971.08 | 1.6062 | 0.0024 | ||||
241043 | JAJ30A-1972 | 1972.08 | 1.5928 | 0.0023 | ||||
241045 | Peltogyne paniculata | JAR26C-1957 | 1957.08 | 1.0312 | 0.0014 | |||
241046 | JAR26C-1958 | 1958.08 | 1.0605 | 0.0016 | ||||
241047 | JAR26C-1962 | 1962.08 | 1.1989 | 0.0017 | ||||
241048 | JAR26C-1963(1) | 1963.08 | 1.2802 | 0.0018 | ||||
245722 | JAR26C-1963(2) | 1963.08 | 1.2816 | 0.0018 | 1.2809 | 0.0013 | 0.0007 | |
241050 | JAR26C-1965 | 1965.08 | 1.6574 | 0.0022 | ||||
241051 | JAR26C-1971 | 1971.08 | 1.5013 | 0.0020 | ||||
241052 | JAR26C-1972 | 1972.08 | 1.4824 | 0.0022 | ||||
Reference materials (extracted to α-cellulose) | ||||||||
UCIAMS# | Sample ID | Expected F14C values § | F14C | ±1σ | Weighed Mean F14C † | Propagated Error | Standard Error | |
241079 | FIRI-J barley | ~1.107 | 1.1019 | 0.0015 | ||||
241080 | 1.1073 | 0.0015 | 1.1046 | 0.0011 | 0.0027 | |||
241083 | FIRI-H fossil wood | ~0.757 | 0.7576 | 0.0011 | ||||
241081 | AVR 14C-free wood | >55 kyrs | 0.0013 * | 0.0000 | ||||
241082 | 0.0012 * | 0.0000 | 0.0012 | 0.0000 | 0.0000 | |||
Reference materials (combusted) | ||||||||
245696 | OX2 (oxalic-acid) | ~1.340 | 1.3407 | 0.0019 | ||||
245705 | 1.3374 | 0.0019 | 1.3390 | 0.0013 | 0.0016 | |||
245706 | ANU sucrose | ~1.502 | 1.5023 | 0.0022 | ||||
241044 | 1.5037 | 0.0023 | 1.5030 | 0.0016 | 0.0007 | |||
241034 | POC Coal | >55 kyrs | 0.0013 * | 0.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, G.M.; Rodriguez, D.R.O.; Barreto, N.d.O.; Assis-Pereira, G.; Barbosa, A.C.; Roig, F.A.; Tomazello-Filho, M. Growth Assessment of Native Tree Species from the Southwestern Brazilian Amazonia by Post-AD 1950 14C Analysis: Implications for Tropical Dendroclimatology Studies and Atmospheric 14C Reconstructions. Forests 2021, 12, 1177. https://doi.org/10.3390/f12091177
Santos GM, Rodriguez DRO, Barreto NdO, Assis-Pereira G, Barbosa AC, Roig FA, Tomazello-Filho M. Growth Assessment of Native Tree Species from the Southwestern Brazilian Amazonia by Post-AD 1950 14C Analysis: Implications for Tropical Dendroclimatology Studies and Atmospheric 14C Reconstructions. Forests. 2021; 12(9):1177. https://doi.org/10.3390/f12091177
Chicago/Turabian StyleSantos, Guaciara M., Daigard Ricardo Ortega Rodriguez, Nathan de Oliveira Barreto, Gabriel Assis-Pereira, Ana Carolina Barbosa, Fidel A. Roig, and Mário Tomazello-Filho. 2021. "Growth Assessment of Native Tree Species from the Southwestern Brazilian Amazonia by Post-AD 1950 14C Analysis: Implications for Tropical Dendroclimatology Studies and Atmospheric 14C Reconstructions" Forests 12, no. 9: 1177. https://doi.org/10.3390/f12091177
APA StyleSantos, G. M., Rodriguez, D. R. O., Barreto, N. d. O., Assis-Pereira, G., Barbosa, A. C., Roig, F. A., & Tomazello-Filho, M. (2021). Growth Assessment of Native Tree Species from the Southwestern Brazilian Amazonia by Post-AD 1950 14C Analysis: Implications for Tropical Dendroclimatology Studies and Atmospheric 14C Reconstructions. Forests, 12(9), 1177. https://doi.org/10.3390/f12091177