Species-Specific Effects of Groundwater Level Alteration on Climate Sensitivity of Floodplain Trees
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Sample Collection
2.2. Growth Climate Sensitivity
2.3. Growth Trends and Basal Increment Area
3. Results
3.1. Growth Climate Sensitivity
3.1.1. Species-Specific Growth Climate Sensitivity
3.1.2. Site-Specific Growth Climate Sensitivity
3.1.3. Temporal Changes in Climate Sensitivity
3.2. Growth Trends Changes after River Regulation and Revitalization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Revenga, C.; Brunner, J.; Henninger, N.; Kassem, K.; Payne, R. Pilot Analysis of Global Ecosystems: Freshwater Systems; World Resources Institute: Washington, DC, USA, 2000. [Google Scholar]
- Kozlowski, T.T. Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands 2002, 22, 550–561. [Google Scholar] [CrossRef]
- Tockner, K.; Stanford, J.A. Riverine flood plains: Present state and future trends. Environ. Conserv. 2002, 29, 308–330. [Google Scholar] [CrossRef] [Green Version]
- Machar, I. Editorial for special issue “Biodiversity and management of temperate floodplain forests”. Forests 2021, 12, 351. [Google Scholar] [CrossRef]
- Maděra, P.; Řepka, R.; Koutecký, T.; Šebesta, J. Vascular plant biodiversity of floodplain forest in Morava and Dyje Rivers confluence (Forest District Soutok), Czech Republic. J. Landsc. Ecol. 2018, 11, 64–97. [Google Scholar] [CrossRef] [Green Version]
- Řepka, R.; Šebesta, J.; Maděra, P.; Vahalík, P. Comparison of the floodplain forest floristic composition of two riparian corridors: Species richness, alien species and the effect of water regime changes. Biologia 2015, 70, 208–217. [Google Scholar] [CrossRef]
- Schindler, S.; Sebesvari, Z.; Damm, C.; Euller, K.; Mauerhofer, V.; Schneidergruber, A.; Biró, M.; Essl, F.; Kanka, R.; Lauwaars, S.G.; et al. Multifunctionality of floodplain landscapes: Relating management options to ecosystem services. Landsc. Ecol. 2014, 29, 229–244. [Google Scholar] [CrossRef]
- Pechanec, V.; Machar, I.; Sterbova, L.; Prokopova, M.; Kilianova, H.; Chobot, K.; Cudlin, P. Monetary valuation of natural forest habitats in protected areas. Forests 2017, 8, 427. [Google Scholar] [CrossRef] [Green Version]
- Klimo, E. (Ed.) Floodplain Forests of the Temperate Zone of Europe; Publishing House for Forestry: Lesnická Práce, Czech Republic, 2008. [Google Scholar]
- Maděra, P. Response of floodplain forest communities herb layer to changes in the water regime. Biológia Bratisl. 2001, 56, 63–72. [Google Scholar]
- Maděra, P. Effect of water regime changes on the diversity of plant communities in floodplain forests. Ekológia 2001, 20, 116–129. [Google Scholar]
- Maděra, P. Can the microscopic structure of wood influence landscape diversity? Ekologia 2001, 20, 387–393. [Google Scholar]
- Mosner, E.; Weber, A.; Carambia, M.; Nilson, E.; Schmitz, U.; Zelle, B.; Horchler, P. Climate change and floodplain vegetation—Future prospects for riparian habitat availability along the Rhine River. Ecol. Eng. 2015, 82, 493–511. [Google Scholar] [CrossRef]
- Schneider, C.; Laizé, C.L.R.; Acreman, M.C.; Flörke, M. How will climate change modify river flow regimes in Europe? Hydrol. Earth Syst. Sci. 2013, 17, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, N.; Šigut, L.; Stojanović, M.; Fischer, M.; Kyselova, I.; Pavelka, M. Analysis of floodplain forest sensitivity to drought. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020, 375, 20190518. [Google Scholar] [CrossRef]
- Skiadaresis, G.; Schwarz, J.A.; Bauhus, J. Groundwater extraction in floodplain forests reduces radial growth and increases summer drought sensitivity of pedunculate oak trees (Quercus robur L.). Front. For. Glob. Chang. 2019, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Hughes, F.M.; Rood, S.B. Allocation of river flows for restoration of floodplain forest ecosystems: A review of approaches and their applicability in Europe. Environ. Manag. 2003, 32, 12–33. [Google Scholar] [CrossRef] [PubMed]
- Stojanovič, D.B.; Levanič, T.; Matović, B.; Orlović, S. Growth decrease and mortality of oak floodplain forests as a response to change of water regime and climate. Eur. J. For. Res. 2015, 134, 555–567. [Google Scholar] [CrossRef]
- Giagli, K.; Baar, J.; Fajstavr, M.; Gryc, V.; Vavrčík, H. Tree-ring width and Variation of Wood Density in Fraxinus excelsior L. and Quercus robur L. Growing in Floodplain Forests. BioResources 2018, 13, 804–819. [Google Scholar] [CrossRef]
- Schweinguber, F.H. Tree-Rings and Environment: Dendroecology; Swiss Federal Institute for Forest, Snow and Landscape Research: Zürich, Switzerland, 1996. [Google Scholar]
- Rehschuh, R.; Mette, T.; Menzel, A.; Buras, A. Soil properties affect the drought susceptibility of Norway spruce. Dendrochronologia 2017, 45, 81–89. [Google Scholar] [CrossRef]
- Fritts, H.C. Tree Rings and Climate; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Stella, J.C.; Riddle, J.; Piégay, H.; Gagnage, M.; Trémélo, M.L. Climate and local geomorphic interactions drive patterns of riparian forest decline along a Mediterranean Basin river. Geomorphology 2013, 202, 101–114. [Google Scholar] [CrossRef]
- Ferner, E.; Rennenberg, H.; Kreuzwieser, J. Effect of flooding on C metabolism of flood-tolerant (Quercus robur) and non-tolerant (Fagus sylvatica) tree species. Tree Physiol. 2012, 32, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Glenz, C.; Schlaepfer, R.; Iorgulescu, I.; Kienast, F. Flooding tolerance of Central European tree and shrub species. For. Ecol. Manag. 2006, 235, 1–13. [Google Scholar] [CrossRef]
- Scharnweber, T.; Couwenberg, J.; Heinrich, I.; Wilmking, M. New insights for the interpretation of ancient bog oak chronologies? Reactions of oak (Quercus robur L.) to a sudden peatland rewetting. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 417, 534–543. [Google Scholar] [CrossRef]
- Lite, S.J.; Stromberg, J.C. Surface water and ground-water thresholds for maintaining Populus–Salix forests, San Pedro River, Arizona. Biol. Conserv. 2005, 125, 153–167. [Google Scholar] [CrossRef]
- Singer, M.B.; Stella, J.C.; Dufour, S.; Piégay, H.; Wilson, R.J.; Johnstone, L. Contrasting water-uptake and growth responses to drought in co-occurring riparian tree species. Ecohydrology 2013, 6, 402–412. [Google Scholar] [CrossRef]
- Haneca, K.; Čufar, K.; Beeckman, H. Oaks, tree-rings and wooden cultural heritage: A review of the main characteristics and applications of oak dendrochronology in Europe. J. Archaeol. Sci. 2009, 36, 1–11. [Google Scholar] [CrossRef]
- Rybníček, M.; Čermák, P.; Prokop, O.; Žid, T.; Trnka, M.; Kolář, T. Oak (Quercus spp.) response to climate differs more among sites than among species in central Czech Republic. Dendrobiology 2016, 75, 55–65. [Google Scholar] [CrossRef]
- Salekl, L.; Sivacioglu, A.; Topacoglu, O.; Zahradnile, D.; Jerabkoval, L.; Machar, I. Crowns of Old Remnant Oak Standards. Fresenius Environ. Bull. 2017, 26, 4023–4032. [Google Scholar]
- Tumajer, J.; Treml, V. Influence of artificial alteration of groundwater level on vessel lumen area and tree-ring width of Quercus robur. Trees 2017, 31, 1945–1957. [Google Scholar] [CrossRef]
- Tumajer, J.; Treml, V. Response of floodplain pedunculate oak (Quercus robur L.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. For. Ecol. Manag. 2016, 379, 185–194. [Google Scholar] [CrossRef]
- Singer, M.B.; Sargeant, C.I.; Piégay, H.; Riquier, J.; Wilson, R.J.; Evans, C.M. Floodplain ecohydrology: Climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees. Water Resour. Res. 2014, 50, 4490–4513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heklau, H.; Jetschke, G.; Bruelheide, H.; Seidler, G.; Haider, S. Species-specific responses of wood growth to flooding and climate in floodplain forests in Central Germany. IForest 2019, 12, 226. [Google Scholar] [CrossRef]
- Roibu, C.C.; Sfeclă, V.; Mursa, A.; Ionita, M.; Nagavciuc, V.; Chiriloaei, F.; Popa, I. The climatic response of tree ring width components of ash (Fraxinus excelsior L.) and common oak (Quercus robur L.) from Eastern Europe. Forests 2020, 11, 600. [Google Scholar] [CrossRef]
- Úradníček, L.; Maděra, P.; Tichá, S.; Koblížek, J. Woody Plants of the Czech. Republic; Lesnická práce: Kostelec nad Černými lesy, Czech Republic, 2010; 368p. [Google Scholar]
- Mikac, S.; Žmegač, A.; Trlin, D.; Paulić, V.; Oršanić, M.; Anić, I. Drought-induced shift in tree response to climate in floodplain forests of Southeastern Europe. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ružičková, H.; Banásová, V.; Kalivoda, H. Morava River alluvial meadows on the Slovak–Austrian border (Slovak part): Plant community dynamics, floristic and butterfly diversity–threats and management. J. Nat. Conserv. 2004, 12, 157–169. [Google Scholar] [CrossRef]
- Čupa, P.; Madera, P. The UNESCO Dolni Morava Biosphere Reserve—A model for cultural landscape management. Eco. Mont. 2019, 11, 36–42. [Google Scholar] [CrossRef]
- Quitt, E. Klimatické Oblasti Československa [Climatic Regions of Czechoslovakia]; Geografický Ústav ČSAV, (Brno): Brno, Chez Republic, 1975. [Google Scholar]
- Czudek, T. Reliéf Moravy a Slezska v Kvartéru [Relief of Moravia and Silesia in the Quaternary]; Sursum: Tišnov, Czech Republic, 1997; 213p. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources International Soil Classification System for Naming Soils and Creating Legends for Soil Maps World Soil Resources Reports, no. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Cook, E.R.; Peters, K. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Res. 1981, 41, 45–53. [Google Scholar]
- Cook, E.R. A Time Series Analysis Approach to Tree Ring Standardization (Dendrochronology, Forestry, Dendroclimatology, Autoregressive Process). Ph.D. Thesis, The University of Arizona, Tuscon, AZ, USA, 1985; p. 171. [Google Scholar]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- R Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Bunn, A.G.; Korpela, M.; Biondi, F.; Merian, P.; Qeadan, F.; Zang, C. dplR: Dendrochronology Program. Library in R. 2021, R package version 1.7.2. Available online: http://CRAN.R-project.org/package=dplR (accessed on 31 January 2021).
- Beguería, S.; Vicente-Serrano, S.M. SPEI: Calculation of the Standardized Precipitation-Evapotranspiration Index. 2013, R Package Version 1.6. Available online: http://CRAN.R-project.org/package=SPEI (accessed on 7 June 2021).
- Zang, C.; Biondi, F. treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- Peters, R.L.; Groenendijk, P.; Vlam, M.; Zuidema, P.A. Detecting long-term growth trends using tree rings: A critical evaluation of methods. Glob. Chang. Biol. 2015, 21, 2040–2054. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Pedersen, O.; Nakazono, M.; Tsutsumi, N. Key root traits of Poaceae for adaptation to soil water gradients. New Phytol. 2021, 229, 3133–3140. [Google Scholar] [CrossRef] [PubMed]
- Čermák, J. Leaf distribution in large trees and stands of the floodplain forest in southern Moravia. Tree Physiol. 1998, 18, 727–737. [Google Scholar] [CrossRef]
- Armstrong, W.; Justin, S.H.F.W.; Beckett, P.M.; Lythe, S. Root adaptation to soil waterlogging. Aquat. Bot. 1991, 39, 57–73. [Google Scholar] [CrossRef]
- Maděra, P.; Úradníček, L. Growth response of oak (Quercus robur L.) and ash (Fraxinus angustifolia Vahl.) on changed conditions of the floodplain forest geobiocoene hydrological regime. Ekológia 2001, 20, 130–142. [Google Scholar]
- Vadez, V. Root hydraulics: The forgotten side of roots in drought adaptation. Field Crops Res. 2014, 165, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Tatarinov, F.; Urban, J.; Čermák, J. Application of “clump technique” for root system studies of Quercus robur and Fraxinus excelsior. For. Ecol. Manag. 2008, 255, 495–505. [Google Scholar] [CrossRef]
- Göransson, H.; Wallander, H.; Ingerslev, M.; Rosengren, U. Estimating the relative nutrient uptake from different soil depths in Quercus robur, Fagus sylvatica and Picea abies. Plant. Soil. 2006, 286, 87–97. [Google Scholar] [CrossRef]
- Romanovsky, M.G.; Mamaev, V.V. Gruntovye vody nagornyh dubrav Tallermanovskogo lesa [Groundwater of mountain oak forests of Tallerman]. Lesovedenie 2002, 5, 11–16. (In Russian) [Google Scholar]
- Kerr, G.; Cahalan, C. A review of site factors affecting the early growth of ash (Fraxinus excelsior L.). For. Ecol. Manag. 2004, 188, 225–234. [Google Scholar] [CrossRef]
- Rust, S.; Savill, P.S. The root systems of Fraxinus excelsior and Fagus sylvatica and their competitive relationships. Forestry 2000, 73, 499–508. [Google Scholar] [CrossRef]
- Sass-Klaassen, U.; Sabajo, C.R.; den Ouden, J. Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 2011, 29, 171–175. [Google Scholar] [CrossRef]
- Kramer, P. Physiology of Woody Plants; Elsevier: Amsterdam, The Netherlands, 2012; 826p. [Google Scholar]
- Barbaroux, C.; Breda, N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol. 2002, 22, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Čermák, J.; Prax, A. Water balance of a Southern Moravian floodplain forest under natural and modified soil water regimes and its ecological consequences. Ann. For. Sci. 2001, 58, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Galić, Z.; Orlović, S.; Klašnja, B.; Kebert, M.; Galović, V. Edaphic conditions in most common types of oak forests affected by drying. Contemp. Agric. 2011, 60, 260–266. [Google Scholar]
- Kreuzwieser, J.; Papadopoulou, E.; Rennenberg, H. Interaction of flooding with carbon metabolism of forest trees. Plant. Biol. 2004, 6, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Keßler, M.; Cech, T.L.; Brandstetter, M.; Kirisits, T. Dieback of ash (Fraxinus excelsior and Fraxinus angustifolia) in Eastern Austria: Disease development on monitoring plots from 2007 to 2010. J. Agric. Ext. Rural Dev. 2012, 4, 223–226. [Google Scholar] [CrossRef]
- Coker, T.L.; Rozsypálek, J.; Edwards, A.; Harwood, T.P.; Butfoy, L.; Buggs, R.J. Estimating mortality rates of European ash (Fraxinus excelsior) under the ash dieback (Hymenoscyphus fraxineus) epidemic. Plants People Planet 2019, 1, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Colangelo, M.; Camarero, J.J.; Ripullone, F.; Gazol, A.; Sánchez-Salguero, R.; Oliva, J.; Redondo, M.A. Drought decreases growth and increases mortality of coexisting native and introduced tree species in a temperate floodplain forest. Forests 2018, 9, 205. [Google Scholar] [CrossRef] [Green Version]
Site | Species | Elevation (m a.s.l.) | No. Sampled Trees | Span | Avg. Series Length (year ± SD) | 1st Order Autocorrelation (Raw Series) | Series Intercorrelation | EPS | SNR |
---|---|---|---|---|---|---|---|---|---|
KO | Quercus robur L. | 159 | 63 | 1860–2019 | 117.6 ± 34.1 | 0.69 | 0.56 | 0.97 | 29.8 |
KO | Fraxinus angustifolia Vahl. | 159 | 37 | 1883–2019 | 96.4 ± 25.3 | 0.71 | 0.57 | 0.92 | 12.1 |
SO | Quercus robur | 154 | 33 | 1885–2019 | 122.6 ± 6.8 | 0.72 | 0.67 | 0.97 | 30.9 |
SO | Fraxinus angustifolia | 154 | 30 | 1869–2019 | 126.6 ± 25.3 | 0.69 | 0.59 | 0.92 | 11.1 |
1900–2019 | 1972–2019 | |||
---|---|---|---|---|
Site | Quercus robur | Fraxinus angustifolia | Quercus robur | Fraxinus angustifolia |
KO | 0.0002209 | −0.00006 | 0.000282 | 0.001551 |
(0.615) | (0.899) | (0.868) | (0.285) | |
SO | 0.0002825 | 0.0005127 | −0.001425 | −0.006579 |
(0.617) | (0.325) | (0.553) | (0.0000742) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šenfeldr, M.; Horák, P.; Kvasnica, J.; Šrámek, M.; Hornová, H.; Maděra, P. Species-Specific Effects of Groundwater Level Alteration on Climate Sensitivity of Floodplain Trees. Forests 2021, 12, 1178. https://doi.org/10.3390/f12091178
Šenfeldr M, Horák P, Kvasnica J, Šrámek M, Hornová H, Maděra P. Species-Specific Effects of Groundwater Level Alteration on Climate Sensitivity of Floodplain Trees. Forests. 2021; 12(9):1178. https://doi.org/10.3390/f12091178
Chicago/Turabian StyleŠenfeldr, Martin, Pavel Horák, Jakub Kvasnica, Martin Šrámek, Hana Hornová, and Petr Maděra. 2021. "Species-Specific Effects of Groundwater Level Alteration on Climate Sensitivity of Floodplain Trees" Forests 12, no. 9: 1178. https://doi.org/10.3390/f12091178
APA StyleŠenfeldr, M., Horák, P., Kvasnica, J., Šrámek, M., Hornová, H., & Maděra, P. (2021). Species-Specific Effects of Groundwater Level Alteration on Climate Sensitivity of Floodplain Trees. Forests, 12(9), 1178. https://doi.org/10.3390/f12091178