Termite Resistance, Chemical and Mechanical Characterization of Paulownia tomentosa Wood before and after Heat Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Chemical Composition and Lipophilic Extractives
2.3. Termite Resistance
2.4. Physical and Mechanical Properties
3. Results and Discussion
3.1. Chemical Composition
3.2. Termite Resistance
3.3. Physical and Mechanical Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Amaral, J. A fileira do eucalipto: Alguns aspetos macroeconómicos e macro-setoriais. In Cultivar. Cadernos de Análise e Prospetiva, 1st ed.; Sampaio, A., Dimas, B., Diniz, E., Morais, A., Moura, A., Garção, B., Sequeira, H., Loureiro, H., Esteves, P., Rego, P., et al., Eds.; Gabinete de Planeamento, Políticas e Administração Geral: Lisboa, Portugal, 2018; Volume 14, pp. 55–60. [Google Scholar]
- Gonçalves, J.; Teixeira, P.; Carneiro, S. Valorizar o pinheiro-Bravo: A Perspetiva de Mercado, 1st ed.; Centro Pinus-Associação para a Valorização da Floresta de Pinho: Viana do Castelo, Portugal, 2020; 40p, ISBN 978-972-98308-8-4. [Google Scholar]
- Akyildiz, M.H.; Kol, H.S. Some Technological Properties and Uses of Paulownia (Paulownia tomentosa Steud.) Wood. J. Environ. Biol. 2010, 31, 351–355. [Google Scholar]
- Li, P.; Oda, J. Flame Retardancy of Paulownia Wood and Its Mechanism. J. Mater. Sci. 2007, 42, 8544–8550. [Google Scholar] [CrossRef] [Green Version]
- El-Showk, S.; El-Showk, N. The Paulownia Tree. An Alternative for Sustainable Forestry; Crop Development: Rabat, Morocco, 2003; pp. 1–8. [Google Scholar]
- Icka, P.; Damo, R.; Icka, E. Paulownia tomentosa, a Fast Growing Timber. Ann. Valahia Univ. Targoviste Agric. 2016, 10, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Yadav, N.K.; Vaidya, B.N.; Henderson, K.; Lee, J.F.; Stewart, W.M.; Dhekney, S.A.; Joshee, N. A Review of Paulownia Biotechnology: A Short Rotation, Fast Growing Multipurpose Bioenergy Tree. Am. J. Plant Sci. 2013, 4, 2070. [Google Scholar] [CrossRef] [Green Version]
- Pásztory, Z.; Horváth, N.; Börcsök, Z. Effect of Heat treatment Duration on the Thermal Conductivity of Spruce and Poplar Wood. Eur. J. Wood Wood Prod. 2017, 75, 843–845. [Google Scholar] [CrossRef]
- Örs, Y.; Şenel, A. Thermal Conductivity Coefficients of Wood and Wood-Based Materials. Turk. J. Agric. For. 1999, 23, 239–246. [Google Scholar]
- Krišťák, Ľ.; Igaz, R.; Ružiak, I. Applying the EDPS Method to the Research into Thermophysical Properties of Solid Wood of Coniferous Trees. Adv. Mater. Sci. Eng. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, D.; Söderström, O. Crack Formation Due to Weathering of Radial and Tangential Sections of Pine and Spruce. Wood Mater. Sci. Eng. 2006, 1, 12–20. [Google Scholar] [CrossRef]
- Esteves, B.; Pereira, H. Wood Modification by heat treatment: A Review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 5, ISBN 0-470-02173-X. [Google Scholar]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood Modification Technologies-a Review. iFor. Biogeosci. For. 2017, 10, 895. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal Modification of Wood—A Review: Chemical Changes and Hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Jones, D.; Ormondroyd, G.O.; Curling, S.F.; Popescu, C.-M.; Popescu, M.-C. Chemical compositions of natural fibres. In Advanced High Strength Natural Fibre Composites in Construction; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–58. [Google Scholar]
- Sandberg, D.; Kutnar, A.; Karlsson, O.; Jones, D. Wood Modification Technologies: Principles, Sustainability, and the Need for Innovation; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Kaygin, B.; Gunduz, G.; Aydemir, D. Some Physical Properties of Heat-Treated Paulownia (Paulownia elongata) Wood. Dry. Technol. 2009, 27, 89–93. [Google Scholar] [CrossRef]
- Tuong, V.M.; Li, J. Effect of Heat treatment on the Change in Color. BioResources 2010, 5, 1257–1267. [Google Scholar]
- Srinivas, K.; Pandey, K.K. Effect of Heat treatment on Color Changes, Dimensional Stability, and Mechanical Properties of Wood. J. Wood Chem. Technol. 2012, 32, 304–316. [Google Scholar] [CrossRef]
- Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. Influence of Steam Heating on the Properties of Pine (Pinus pinaster) and Eucalypt (Eucalyptus globulus) Wood. Wood Sci. Technol. 2006, 41, 193–207. [Google Scholar] [CrossRef]
- Guller, B. Effects of Heat treatment on Density, Dimensional Stability and Color of Pinus nigra Wood. Afr. J. Biotechnol. 2014, 11, 2204–2209. [Google Scholar]
- Dirol, D.; Guyonnet, R. The Improvment of Wood Durability by Retification Process. In Proceedings of the the International Research Group on Wood Preservation; Section 4, Report Prepared for the 24 Annual Meeting. IRGWP: Stockholm, Sweden, 1993; pp. 1–11. [Google Scholar]
- Esteves, B.; Graça, J.; Pereira, H. Extractive Composition and Summative Chemical Analysis of Thermally Treated Eucalypt Wood. Holzforschung 2008, 62, 344–351. [Google Scholar] [CrossRef]
- Weiland, J.-J.; Guyonnet, R. Study of Chemical Modifications and Fungi Degradation of Thermally Modified Wood Using DRIFT Spectroscopy. Holz als Roh und Werkstoff 2003, 61, 216–220. [Google Scholar] [CrossRef]
- Wikberg, H.; Maunu, S.L. Characterisation of Thermally Modified Hard-and Softwoods by 13C CPMAS NMR. Carbohydr. Polym. 2004, 58, 461–466. [Google Scholar] [CrossRef]
- Bhuiyan, T.R.; Hirai, N. Study of Crystalline Behavior of Heat-Treated Wood Cellulose during Treatments in Water. J. Wood Sci. 2005, 51, 42–47. [Google Scholar] [CrossRef]
- Boonstra, M.J.; Tjeerdsma, B. Chemical Analysis of Heat-treated Softwoods. Holz Roh Werkst. 2006, 64, 204–211. [Google Scholar] [CrossRef]
- Herrera, R.; Erdocia, X.; Llano-Ponte, R.; Labidi, J. Characterization of Hydrothermally Treated Wood in Relation to Changes on Its Chemical Composition and Physical Properties. J. Anal. Appl. Pyrolysis 2014, 107, 256–266. [Google Scholar] [CrossRef]
- Tjeerdsma, B.F.; Boonstra, M.; Pizzi, A.; Tekely, P.; Militz, H. Characterisation of Thermally Modified Wood: Molecular Reasons for Wood Performance Improvement. Holz als Roh und Werkstoff 1998, 56, 149–153. [Google Scholar] [CrossRef]
- Rautkari, L.; Hill, C.A.; Curling, S.; Jalaludin, Z.; Ormondroyd, G. What Is the Role of the Accessibility of Wood Hydroxyl Groups in Controlling Moisture Content? J. Mater. Sci. 2013, 48, 6352–6356. [Google Scholar] [CrossRef]
- Herrera, R.; Erdocia, X.; Labidi, J.; Llano-Ponte, R. Chemical Analysis of Industrial-Scale Hydrothermal Wood Degraded by Wood-Rotting Basidiomycetes and Its Action Mechanisms. Polym. Degrad. Stab. 2015, 117, 37–45. [Google Scholar] [CrossRef]
- Candelier, K.; Thevenon, M.-F.; Petrissans, A.; Dumarcay, S.; Gerardin, P.; Petrissans, M. Control of Wood Thermal Treatment and Its Effects on Decay Resistance: A Review. Annal. For. Sci. 2016, 73, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Dubey, M.K.; Pang, S.; Walker, J. Changes in Chemistry, Color, Dimensional Stability and Fungal Resistance of Pinus radiata D. Don Wood with Oil Heat treatment. Holzforschung 2012, 66, 49–57. [Google Scholar] [CrossRef]
- Ayata, U.; Akcay, C.; Esteves, B. Determination of Decay Resistance against Pleurotus ostreatus and Coniophora puteana Fungus of Heat-Treated Scotch Pine, Oak and Beech Wood Species. Maderas Ciencia y Tecnología 2017, 19, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Boonstra, M.; Van Acker, J.; Kegel, E.; Stevens, M. Optimisation of a Two-Stage Heat treatment Process: Durability Aspects. Wood Sci. Technol. 2007, 41, 31–57. [Google Scholar] [CrossRef]
- Ringman, R.; Pilgaard, A.; Kölle, M.; Brischke, C.; Richter, K. Effects of Thermal Modification on Postia placenta Wood Degradation Dynamics: Measurements of Mass Loss, Structural Integrity and Gene Expression. Wood Sci. Technol. 2016, 50, 385–397. [Google Scholar] [CrossRef]
- Surini, T.; Charrier, F.; Malvestio, J.; Charrier, B.; Moubarik, A.; Castéra, P.; Grelier, S. Physical Properties and Termite Durability of Maritime Pine Pinus pinaster Ait., Heat-Treated under Vacuum Pressure. Wood Sci. Technol. 2012, 46, 487–501. [Google Scholar] [CrossRef]
- Sivrikaya, H.; Can, A.; de Troya, T.; Conde, M. Comparative Biological Resistance of Differently Thermal Modified Wood Species against Decay Fungi, Reticulitermes grassei and Hylotrupes bajulus. Maderas Ciencia y Tecnología 2015, 17, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Esteves, B. Technological Improvement of Portuguese Woods by Heat Modification. Ph.D. Thesis, School of Agronomy, Lisbon University, Lisbon, Portugal, 2006. [Google Scholar]
- Yildiz, S. Physical, Mechanical, Technological and Chemical Properties of Beech and Spruce Wood Treated by Heating. Ph.D. Thesis, Karadeniz Technical University, Trabzon, Turkey, 2002. [Google Scholar]
- Kim, G.-H.; Yun, K.-E.; Kim, J.-J. Effect of Heat treatment on the Decay Resistance and the Bending Properties of Radiata Pine Sapwood. Material und Organismen 1998, 32, 101–108. [Google Scholar]
- Korkut, S.; Akgül, M.; Dündar, T. The Effects of Heat treatment on Some Technological Properties of Scots Pine (Pinus sylvestris L.) Wood. Bioresour. Technol. 2008, 99, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.L.; Kocaefe, D.; Zhang, J. Mechanical Behaviour of Quebec Wood Species Heat-Treated Using ThermoWood Process. Holz als Roh und Werkstoff 2007, 65, 255–259. [Google Scholar] [CrossRef]
- Kubojima, Y.; Okano, T.; Ohta, M. Bending Strength and Toughness of Heat-Treated Wood. J. Wood Sci. 2000, 46, 8–15. [Google Scholar] [CrossRef]
- Nuopponen, M.; Vuorinen, T.; Jämsä, S.; Viitaniemi, P. Thermal Modifications in Softwood Studied by FT-IR and UV Resonance Raman Spectroscopies. J. Wood Chem. Technol. 2005, 24, 13–26. [Google Scholar] [CrossRef]
- Sivonen, H.; Maunu, S.L.; Sundholm, F.; Jämsä, S.; Viitaniemi, P. Magnetic Resonance Studies of Thermally Modified Wood. Holzforschung 2002, 56, 648–654. [Google Scholar] [CrossRef]
- Berglund, J.; Mikkelsen, D.; Flanagan, B.M.; Dhital, S.; Gaunitz, S.; Henriksson, G.; Lindström, M.E.; Yakubov, G.E.; Gidley, M.J.; Vilaplana, F. Wood Hemicelluloses Exert Distinct Biomechanical Contributions to Cellulose Fibrillar Networks. Nat. Commun. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Burgert, I.; Keplinger, T. Plant Micro-and Nanomechanics: Experimental Techniques for Plant Cell-Wall Analysis. J. Exp. Botan. 2013, 64, 4635–4649. [Google Scholar] [CrossRef] [Green Version]
- Esteves, B.; Videira, R.; Pereira, H. Chemistry and Ecotoxicity of Heat-Treated Pine Wood Extractives. Wood Sci. Technol. 2010, 45, 661–676. [Google Scholar] [CrossRef] [Green Version]
- Windeisen, E.; Strobel, C.; Wegener, G. Chemical Changes during the Production of Thermo-Treated Beech Wood. Wood Sci. Technol. 2007, 41, 523–536. [Google Scholar] [CrossRef]
- Jones, D.; Sandberg, D.; Giacomo, G. Wood Modification in Europe: A State-of-the-Art about Processes, Products, Applications; Firenze University Press: Firenze, Italy, 2019. [Google Scholar]
- TAPPI. TAPPI. TAPPI UM 250. In Acid-Soluble Lignin in Wood and Pulp; TAPPI Press: Atlanta, GA, USA, 2000. [Google Scholar]
- CEN. EN 117 Wood Preservatives—Determination of Toxic Values against Reticulitermes Species (European Termites) (Laboratory Method); CEN: Brussels, Belgium, 2012. [Google Scholar]
- CEN. EN 13183-1 Moisture Content of a Piece of Sawn Timber—Part 1: Determination by Oven Dry Method; CEN: Brussels, Belgium, 2002. [Google Scholar]
- CEN. EN 310 Wood-Based Panels: Determination of Modulus of Elasticity in Bending and of Bending Strength; CEN: Brussels, Belgium, 1993. [Google Scholar]
- Ye, X.; Zhang, Z.; Chen, Y.; Cheng, J.; Tang, Z.; Hu, Y. Physico-Chemical Pretreatment Technologies of Bioconversion Efficiency of Paulownia Tomentosa (Thunb.). Steud. Ind. Crops Prod. 2016, 87, 280–286. [Google Scholar] [CrossRef]
- Kalaycioglu, H.; Deniz, I.; Hiziroglu, S. Some of the Properties of Particleboard Made from Paulownia. J. Wood Sci. 2005, 51, 410–414. [Google Scholar] [CrossRef]
- Gong, C.; Bujanovic, B.M. Impact of Hot-Water Extraction on Acetone-Water Oxygen Delignification of Paulownia Spp. and Lignin Recovery. Energies 2014, 7, 857–873. [Google Scholar] [CrossRef]
- Mecca, M.; D’Auria, M.; Todaro, L. Effect of Heat treatment on Wood Chemical Composition, Extraction Yield and Quality of the Extractives of Some Wood Species by the Use of Molybdenum Catalysts. Wood Sci. Technol. 2019, 53, 119–133. [Google Scholar] [CrossRef]
- Ding, T.; Gu, L.; Liu, X. Influence of Steam Pressure on Chemical Changes of Heat-Treated Mongolian Pine Wood. BioResources 2011, 6, 1880–1889. [Google Scholar]
- Brosse, N.; El Hage, R.; Chaouch, M.; Pétrissans, M.; Dumarçay, S.; Gérardin, P. Investigation of the Chemical Modifications of Beech Wood Lignin during Heat treatment. Polym. Degrad. Stab. 2010, 95, 1721–1726. [Google Scholar] [CrossRef]
- Mohareb, A.; Sirmah, P.; Pétrissans, M.; Gérardin, P. Effect of Heat treatment Intensity on Wood Chemical Composition and Decay Durability of Pinus patula. Eur. J. Wood Wood Prod. 2012, 70, 519–524. [Google Scholar] [CrossRef]
- Sikora, A.; Kačík, F.; Gaff, M.; Vondrová, V.; Bubeníková, T.; Kubovskỳ, I. Impact of Thermal Modification on Color and Chemical Changes of Spruce and Oak Wood. J. Wood Sci. 2018, 64, 406–416. [Google Scholar] [CrossRef]
- D’Auria, M.; Mecca, M.; Todaro, L. High Temperature Treatment Allows the Detection of Episesamin in Paulownia Wood Extractives. Nat. Prod. Res. 2020, 34, 1326–1330. [Google Scholar] [CrossRef]
- Ra, J.-B.; Kim, K.-B.; Leem, K.-H. Effect of Heat treatment Conditions on Color Change and Termite Resistance of Heat-Treated Wood. J. Korean Wood Sci. Technol. 2012, 40, 370–377. [Google Scholar] [CrossRef]
- Salman, S.; Thévenon, M.F.; Pétrissans, A.; Dumarçay, S.; Candelier, K.; Gérardin, P. Improvement of the Durability of Heat-Treated Wood against Termites. Maderas Ciencia y Tecnología 2017, 19, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Esteves, B.; Nunes, L.; Domingos, I.; Pereira, H. Comparison between Heat-treated Sapwood and Heartwood from Pinus pinaster. Eur. J. Wood Wood Prod. 2014, 72, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Hidayat, W.; Qi, Y.; Jang, J.-H.; Febrianto, F.; Kim, N.H. Effect of Mechanical Restraint on the Properties of Heat-Treated Pinus koraiensis and Paulownia tomentosa Woods. BioResources 2017, 12, 7539–7551. [Google Scholar]
- Kim, Y.K.; Kwon, G.J.; Kim, A.R.; Lee, H.S.; Purusatama, B.; Lee, S.H.; Kang, C.W.; Kim, N.H. Effects of Heat treatment on the Characteristics of Royal Paulownia (Paulownia tomentosa (Thunb.) Steud.) Wood Grown in Korea. J. Korean Wood Sci. Technol. 2018, 46, 511–526. [Google Scholar]
- Yildiz, S.; Gezer, E.D.; Yildiz, U.C. Mechanical and Chemical Behavior of Spruce Wood Modified by Heat. Build. Environ. 2006, 41, 1762–1766. [Google Scholar] [CrossRef]
- Yildiz, U.C.; Yildiz, S.; Gezer, E.D. Mechanical and Chemical Behavior of Beech Wood Modified by Heat. Wood Fiber Sci. 2005, 37, 456–461. [Google Scholar]
- Boonstra, M.J.; Van Acker, J.; Tjeerdsma, B.F.; Kegel, E.V. Strength Properties of Thermally Modified Softwoods and Its Relation to Polymeric Structural Wood Constituents. Ann. For. Sci. 2007, 64, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Kvietková, M.; Gašparík, M.; Gaff, M. Effect of Thermal Treatment on Surface Quality of Beech Wood after Plane Milling. BioResources 2015, 10, 4226–4238. [Google Scholar] [CrossRef]
- Korkut, D.S.; Guller, B. The Effects of Heat treatment on Physical Properties and Surface Roughness of Red-Bud Maple (Acer trautvetteri Medw.) Wood. Bioresour. Technol. 2008, 99, 2846–2851. [Google Scholar] [CrossRef]
- Winandy, J.E.; Lebow, P.K. Modeling Strength Loss in Wood by Chemical Composition. Part I. An Individual Component Model for Southern Pine. Wood Fiber Sci. 2001, 33, 239–254. [Google Scholar]
- Kocaefe, D.; Shi, J.L.; Yang, D.-Q.; Bouazara, M. Mechanical Properties, Dimensional Stability, and Mold Resistance of Heat-Treated Jack Pine and Aspen. For. Prod. J. 2008, 58, 88. [Google Scholar]
- Kartal, S.N.; Hwang, W.-J.; Imamura, Y. Water Absorption of Boron-Treated and Heat-Modified Wood. J. Wood Sci. 2007, 53, 454–457. [Google Scholar] [CrossRef]
Sample | Extractives (%) | Lignin (%) | α-Cellulose (%) | Hemic (%) | ||||
---|---|---|---|---|---|---|---|---|
Dic | Ethanol | Water | Total | Insoluble | Sol. | |||
Paulownia | 1.92 | 3.60 | 1.84 | 7.36 | 23.48 | 0.23 | 40.17 | 36.34 |
HT Paulownia | 2.82 | 9.74 | 2.31 | 14.87 | 29.46 | 0.14 | 49.77 | 21.76 |
Name | Untreated | Heat-Treated |
---|---|---|
Glycerol, 3TMS derivative | 6.63% | 1.31% |
Vanillin, TMS derivative | 1.22% | 2.18% |
Tyrosol, 2TMS derivative | 0.52% | - |
Piperonylic acid | 6.63% | 2.40% |
3,4-Dihydroxybenzaldehyde, 2TMS derivative | - | 0.44% |
4-Hydroxybenzoic acid, 2TMS derivative | - | 0.44% |
2,6-Dimethoxyhydroquinone, 2O-TMS derivative | - | 1.53% |
Syringaldehyde, TMS derivative | - | 4.58% |
Veratric acid, TMS derivative | - | 0.22% |
Vanillyl alcohol, 2TMS derivative | 1.40% | |
Vanillic Acid, 2TMS derivative | 2.09% | 5.23% |
4-Hydroxy-3-methoxyphenylglycol, 3TMS derivative | 0.70% | - |
Myristic acid, TMS derivative | 0.87% | - |
(3-Hydroxy-4-methoxyphenyl)ethylene glycol 3TMS deivative | 1.75% | - |
Azelaic acid, 2TMS derivative | - | 2.61% |
Coniferyl aldehyde, TMS derivative | - | 3.92% |
Syringic acid, 2TMS derivative | - | 2.83% |
trans-Coniferryl alchool, 2O-TMS derivative | - | 0.44% |
Sinapaldehyde, TMS derivative | - | 9.59% |
Palmitic Acid, TMS derivative | 15.53% | 2.40% |
trans-Sinapyl alcohol, 2O-TMS derivative | - | 0.22% |
Lapachol, TMS derivative | - | 10.02% |
9,12-Octadecadienoic acid (Z,Z)-, TMS derivative | 5.41% | 3.05% |
11-Octadecenoic acid, (Z)-, TMS derivative | 5.24% | 1.96% |
Stearic acid, TMS derivative | 5.76% | 0.65% |
Dehydroabietic acid, TMS derivative | 2.79% | 4.58% |
Ferruginol, TMS derivative | 0.87% | - |
Pentacosane | 1.22% | - |
Arachidic acid, TMS derivative | 1.57% | - |
Heptacosane | 1.05% | - |
(+)-Sesamin | 16.58% | 36.60% |
β-Sitosterol, TMS derivative | 22.16% | 2.83% |
Wood | Final Moisture Content (%) | Survival (%) | Average Mass Loss (%) | Average Grade of Attack |
---|---|---|---|---|
P. tomentosa | 44.12 ± 18.91 | 17.48 ± 25.28 | 3.35 ± 3.81 | 2.10 ±1.73 |
P. tomentosa heat-treated | 49.35 ± 18.94 | 52.28 ± 30.84 | 9.11 ± 4.72 | 3.83 ± 0.41 |
Maritime pine control | 51.72 ± 11.41 | 66.44 ±7.58 | 7.09 ± 0.96 | 4 |
Sample | Density (kg/m3) | MOE (MPa) | Bending Strength (MPa) | |||
---|---|---|---|---|---|---|
Average | STD | Average | STD | Average | STD | |
Untreated Paulownia | 443 | 14 | 6676 | 1185 | 63 | 10 |
Heat-Treated Paulownia | 399 | 9 | 5761 | 791 | 32 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, B.; Ferreira, H.; Viana, H.; Ferreira, J.; Domingos, I.; Cruz-Lopes, L.; Jones, D.; Nunes, L. Termite Resistance, Chemical and Mechanical Characterization of Paulownia tomentosa Wood before and after Heat Treatment. Forests 2021, 12, 1114. https://doi.org/10.3390/f12081114
Esteves B, Ferreira H, Viana H, Ferreira J, Domingos I, Cruz-Lopes L, Jones D, Nunes L. Termite Resistance, Chemical and Mechanical Characterization of Paulownia tomentosa Wood before and after Heat Treatment. Forests. 2021; 12(8):1114. https://doi.org/10.3390/f12081114
Chicago/Turabian StyleEsteves, Bruno, Helena Ferreira, Hélder Viana, José Ferreira, Idalina Domingos, Luísa Cruz-Lopes, Dennis Jones, and Lina Nunes. 2021. "Termite Resistance, Chemical and Mechanical Characterization of Paulownia tomentosa Wood before and after Heat Treatment" Forests 12, no. 8: 1114. https://doi.org/10.3390/f12081114