Modelling Shifts and Contraction of Seed Zones in Two Mexican Pine Species by Using Molecular Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of Climate Variables
2.3. Determination of Soil Variables
2.4. Cluster Analysis
2.5. Genetic Analysis
2.6. Outlier Detection
2.7. Determination of AFLP Diversity
2.8. Analysis of Molecular Variance and of Linkage Disequilibrium
2.9. Modelling Seed Zones from Environmentally-Associated AFLP Variants and Environmental Factors
2.10. Species Distribution Models
3. Results
3.1. Amount and Distribution of Genetic Diversity, AMOVA and Linkage Disequilibrium
3.2. Modelling Seed Zones through Environmentally Associated Variants
3.3. Species Distribution and Seed Zone Models for Pinus arizonica and P. durangensis
4. Discussion
4.1. AFLP-Environment Associations
4.2. Species Distribution and Seed Zones Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- De Kort, H.; Mergeay, J.; Vander Mijnsbrugge, K.; Decocq, G.; Maccherini, S.; Kehlet Bruun, H.H.; Honnay, O.; Vandepitte, K. An evaluation of seed zone delineation using phenotypic and population genomic data on black alder Alnus glutinosa. J. Appl. Ecol. 2014, 51, 1218–1227. [Google Scholar] [CrossRef]
- McKay, J.K.; Christian, C.E.; Harrison, S.; Rice, K.J. “How local is local?”—A review of practical and conceptual issues in the genetics of restoration. Restor. Ecol. 2005, 13, 432–440. [Google Scholar] [CrossRef]
- O’Brien, E.K.; Krauss, S.L. Testing the home-site advantage in forest trees on disturbed and undisturbed sites. Restor. Ecol. 2010, 18, 359–372. [Google Scholar] [CrossRef]
- St. Clair, J.B.; Howe, G.T.; Wright, J.; Becoin, R. Available online: https://www.fs.usda.gov/pnw/tools/center-forest-provenance-data (accessed on 24 June 2020).
- Ying, C.C.; Yanchuk, A.D. The development of British Columbia’s tree seed transfer guidelines: Purpose, concept, methodology, and implementation. For. Ecol. Manag. 2006, 227, 1–13. [Google Scholar] [CrossRef]
- Rehfeldt, G.E. Seed Transfer Guidelines for Douglas-Fir in Central Idaho; US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Odgen, UT, USA, 1983.
- Castellanos-Acuña, D.; Vance-Borland, K.W.; St. Clair, J.B.; Hamann, A.; López-Upton, J.; Gómez-Pineda, E.; Ortega-Rodríguez, J.M.; Sáenz-Romero, C. Climate-based seed zones for Mexico: Guiding reforestation under observed and projected climate change. New For. 2018, 49, 297–309. [Google Scholar] [CrossRef]
- Campbell, R. Soils, Seed-Zone Maps, and Physiography: Guidelines for Seed Transfer of Douglas-Fir in Southwestern Oregon. For. Sci. 1991. [Google Scholar] [CrossRef]
- Lindgren, D.; Ying, C.C. A model integrating seed source adaptation and seed use. New For. 2000, 20, 87–104. [Google Scholar] [CrossRef]
- Rehfeldt, G.E. Genetic variation, climate models and the ecological genetics of Larix occidentalis. For. Ecol. Manag. 1995, 78, 21–37. [Google Scholar] [CrossRef]
- Leal-Sáenz, A.; Waring, K.M.; Menon, M.; Cushman, S.A.; Eckert, A.; Flores-Rentería, L.; Hernández-Díaz, J.C.; López-Sánchez, C.A.; Martínez-Guerrero, J.H.; Wehenkel, C. Morphological Differences in Pinus strobiformis Across Latitudinal and Elevational Gradients. Front. Plant Sci. 2020, 11, 559697. [Google Scholar] [CrossRef]
- Hereford, J. A quantitative survey of local adaptation and fitness trade-offs. Am. Nat. 2009, 173, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Ghalambor, C.K.; McKay, J.K.; Carroll, S.P.; Reznick, D.N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 2007, 21, 394–407. [Google Scholar] [CrossRef]
- Krauss, S.L.; Sinclair, E.A.; Bussell, J.D.; Hobbs, R.J. An ecological genetic delineation of local seed-source provenance for ecological restoration. Ecol. Evol. 2013, 3, 2138–2149. [Google Scholar] [CrossRef]
- Hodge, G.R.; Dvorak, W.S. Breeding southern US and Mexican pines for increased value in a changing world. New For. 2014, 45, 295–300. [Google Scholar] [CrossRef]
- CONAFOR Establecimiento de Unidades Productoras y Manejo de Germoplasma Forestal-Especiaciones Técnicas; Declaratoria de Vigencia de la Norma Mexicana NMX-AA-169-SCFI-2014; Diario Oficial de la Federación: México City, Mexico, 2014.
- Villaseñor, J.L. Informe Final* del Proyecto JE012 La flora arbórea de México. Available online: www.conabio.gob.mx (accessed on 25 April 2013).
- Hernández-León, S.; Gernandt, D.S.; Pérez de la Rosa, J.A.; Jardón-Barbolla, L. Phylogenetic Relationships and Species Delimitation in Pinus Section Trifoliae Inferrred from Plastid DNA. PLoS ONE 2013, 8, e70501. [Google Scholar] [CrossRef]
- Bustamante-García, V.; Prieto-Ruíz, J.Á.; Merlín-Bermudes, E.; Álvarez-Zagoya, R.; Carrillo-Parra, A.; Hernández-Díaz, J.C. Potencial y eficiencia de producción de semilla de Pinus engelmannii Carr.; en tres rodales semilleros del estado de Durango, México. Madera y Bosques 2012, 18, 7–21. [Google Scholar] [CrossRef]
- Ramos-Ramírez, E. Viabilidad de Semillas en diez Especies de Pinus Procedentes de Rodales Semilleros Ubicados en el Estado de Durango; Universidad Juárez del Estado de Durango: Durango, México, 2019. [Google Scholar]
- Hernández-Velasco, J.; Hernández-Díaz, J.C.; Vargas-Hernández, J.; Hipkins, V.; Prieto-Ruíz, J.Á.; Pérez-Luna, A.; Wehenkel, C. Hybrid vigor in natural seed stands of seven Mexican Pinus species. New For. 2021. under review. [Google Scholar]
- Friedrich, S.C.; Hernández-Díaz, J.C.; Leinemann, L.; Prieto-Ruíz, J.A.; Wehenkel, C. Spatial genetic structure in seed stands of Pinus arizonica Engelm. and Pinus cooperi blanco in the state of Durango, Mexico. For. Sci. 2018, 64, 191–202. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Velasco, J.; Hernández-Díaz, J.C.; Fladung, M.; Cañadas-López, Á.; Prieto-Ruíz, J.Á.; Wehenkel, C. Spatial genetic structure in four Pinus species in the Sierra Madre Occidental Durango, Mexico. Can. J. For. Res. 2017, 47, 73–80. [Google Scholar] [CrossRef]
- Wehenkel, C.; Simental-Rodríguez, S.L.; Silva-Flores, R.; Hernández-Díaz, J.C.; López-Sánchez, C.A.; Martínez-Antúnez, P. Unterscheidung von 59 Saatgutbeständen verschiedener mexikanischer Kiefernarten anhand von 43 dendrometrischen, klimatischen, edaphischen und genetischen Variablen. Forstarchiv 2015. [Google Scholar] [CrossRef]
- Rehfeldt, G.E. A Spline Model of Climate for the Western United States; Gen. Tech. Rep. RMRS-GTR-165; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006.
- Hutchinson, M.F. Continent-wide data assimilation using thin plate smoothing splines. Data Assim. Syst. Bureau Meteorol. Melb. 1991, 104–113. [Google Scholar]
- Sáenz-Romero, C.; Rehfeldt, G.E.; Crookston, N.L.; Duval, P.; St-Amant, R.; Beaulieu, J.; Richardson, B.A. Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Clim. Chang. 2010, 102, 595–623. [Google Scholar] [CrossRef]
- Castellanos, J.Z.; Uvalle-Bueno, J.X.; Aguilar-Santelises, A. Manual de Interpretación de Análisis de Suelos y Aguas Agrícolas, Plantas y ECP., 2nd ed.; Instituto de Capacitación para la Productividad Agrícola: Ciudad de México, México, 1999; p. 201. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954.
- Baker, A.S. Colorimetric Determination of Nitrate in Soil and Plant Extracts with Brucine. J. Agric. Food Chem. 1967, 15, 802–806. [Google Scholar] [CrossRef]
- León-Arteta, R.; Aguilar-Santelises, A.; Etchevers-Barra, J.D.; Castellanos, J.Z. 1987 Materia orgánica. Análisis Químico para Evaluar la Fertilidad del Suelo. Soc. Mex. la Cienc. del Suelo 1987, 85–91. [Google Scholar]
- Vázquez, A.A.; Bautista, N. Guía Para Interpretar El Análisis Químico de Suelo y Agua. 1993. Available online: https://www.mapa.gob.es/ministerio/pags/biblioteca/hojas/hd_1993_05.pdf (accessed on 25 March 2021).
- Normandin, V.; Kotuby-Amacher, J.; Miller, R.O. Modification of the ammonium acetate extractant for the determination of exchangeable cations in calcareous soils. Commun. Soil Sci. Plant Anal. 1998, 29, 1785–1791. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Valle, F.H.D.; Herbert, V.F. Prácticas de Relaciones Agua-Suelo-Planta-Atmósfera; Universidad Autónoma de Chapingo: Chapingo, México, 1992; Volume 3, p. 167. [Google Scholar]
- Bodenhofer, U.; Kothmeier, A.; Hochreiter, S. Apcluster: An R package for affinity propagation clustering. Bioinformatics 2011, 27, 2463–2464. [Google Scholar] [CrossRef]
- Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976. [Google Scholar] [CrossRef] [Green Version]
- Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; Van De Lee, T.; Hornes, M.; Friters, A.; Pot, J.; Paleman, J.; Kuiper, M.; et al. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23, 4407–4414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ávila-Flores, I.J.; Hernández-Díaz, J.C.; González-Elizondo, M.S.; Prieto-Ruíz, J.Á.; Wehenkel, C. Degree of hybridization in seed stands of Pinus engelmannii Carr. in the Sierra Madre Occidental, Durango, Mexico. PLoS ONE 2016, 11, e0152651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchma, O.; Vornam, B.; Finkeldey, R. Mutation rates in Scots pine (Pinus sylvestris L.) from the Chernobyl exclusion zone evaluated with amplified fragment-length polymorphisms (AFLPs) and microsatellite markers. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2011, 725, 29–35. [Google Scholar] [CrossRef]
- Krauss, S.L. Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Mol. Ecol. 2000, 9, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
- Bonin, A.; Bellemain, E.; Bronken Eidesen, P.; Pompanon, F.; Brochmann, C.; Taberlet, P. How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 2004, 13, 3261–3273. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.C.; Foll, M.; Excoffier, L.; Heckel, G. Enhanced AFLP genome scans detect local adaptation in high-altitude populations of a small rodent (Microtus arvalis). Mol. Ecol. 2011, 20, 1450–1462. [Google Scholar] [CrossRef]
- Foll, M.; Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 2008, 180, 977–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simental-Rodríguez, S.L.; Quinones-Pérez, C.Z.; Moya, D.; Hernández-Tecles, E.; Lopez-Sanchez, C.A.; Wehenkel, C. The relationship between species diversity and genetic structure in the rare Picea Chihuahuana tree species community, Mexico. PLoS ONE 2014, 9, e111623. [Google Scholar] [CrossRef] [Green Version]
- Foll, M.; Fischer, M.C.; Heckel, G.; Excoffier, L. Estimating population structure from AFLP amplification intensity. Mol. Ecol. 2010, 19, 4638–4647. [Google Scholar] [CrossRef]
- Gregorius, H.R.; Degen, B.; König, A. Problems in the analysis of genetic differentiation among populations—A case study in Quercus robur. Silvae Genet. 2007, 56, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Gregorius, H.R. On the concept of genetic distance between populations based on gene frequencies. In IUFRO Joint Meeting of Working Parties on Popul. and Ecol. Genet., Breed Theory and Progeny Testing; Elsevier: Stockholm, Sweden, 1974; pp. 413–438. [Google Scholar]
- Wehenkel, C.; Corral-Rivas, J.J.; Hernández-Díaz, J.C.; Von Gadow, K. Estimating balanced structure areas in multi-species forests on the Sierra Madre Occidental, Mexico. Ann. For. Sci. 2011, 68, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Gillet, E.M.; Gregorius, H.R. Measuring differentiation among populations at different levels of genetic integration. BMC Genet. 2008, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Schönswetter, P.; Tribsch, A. Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 2005, 54, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992. [Google Scholar] [CrossRef]
- Wright, S. Breeding Structure of Populations in Relation to Speciation. Am. Nat. 1940, 74, 232–248. [Google Scholar] [CrossRef]
- Ohta, T. Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proc. Natl. Acad. Sci. USA 1982, 79, 1940–1944. [Google Scholar] [CrossRef] [Green Version]
- Ohta, T. Linkage disequilibrium with the island model. Genetics 1982, 101, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Slatkin, M. Linkage disequilibrium—Understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 2008, 9, 477–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agapow, P.M.; Burt, A. Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes 2001, 1, 101–102. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Cushman, S.A.; McGarigal, K. Hierarchical, multi-scale decomposition of species-environment relationships. Landsc. Ecol. 2002, 17, 637–646. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package, R Package Version 1.17-4; 2010. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 25 March 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Chapter 10: Tree-based methods. In Modern Applied Statistics with S-Plus, Statistics and Computing, 3rd ed.; Chambers, J., Eddy, W., Härdle, W., Sheather, S., Tierney, L., Eds.; Springer-Verlag Press: New York, NY, USA, 1999; pp. 303–327. [Google Scholar] [CrossRef]
- Williams, C.K.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Ziem, A.; Scrucca, L.; Kuhn, M.M. Package ‘Caret’, Version 6.0-80 2018. Available online: https://cran.r-project.org/web/packages/caret/caret.pdf (accessed on 14 May 2020).
- McGarigal, K.; Stafford, S.; Cushman, S. Multivariate Statistics for Wildlife and Ecology Research; Springer: New York, NY, USA, 2000; p. 283. [Google Scholar]
- Vittinghoff, E.; McCulloch, C.E. Relaxing the rule of ten events per variable in logistic and cox regression. Am. J. Epidemiol. 2007, 165, 710–718. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available online: https://ggplot2.tidyverse.org (accessed on 25 March 2021).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Houghton, J.T.; Houghton, Y.D.J.G.; Ding, D.J.; Griggs, M.; Noguer, P.J.; van der Linden, X.; Dai, K.; Maskell, C.A.J. Climate Change. Sci. Basis 2001, 861–881. [Google Scholar]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM SIGKDD Explor. Newsl. 2009, 11, 1–9. [Google Scholar] [CrossRef]
- Hall, M. Correlation-Based Feature Selection for Machine Learning; The University of Waikato: Hamilton, New Zealand, 1999. [Google Scholar]
- Deschamps, B.; McNairn, H.; Shang, J.; Jiao, X. Towards operational radar-only crop type classification: Comparison of a traditional decision tree with a random forest classifier. Can. J. Remote Sens. 2012, 38, 60–68. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J. 2016, 4, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Castaño-Santamaría, J.; López-Sánchez, C.A.; Ramón Obeso, J.; Barrio-Anta, M. Modelling and mapping beech forest distribution and site productivity under different climate change scenarios in the Cantabrian Range (North-western Spain). For. Ecol. Manag. 2019. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Tatler, J.; Cassey, P.; Prowse, T.A.A. High accuracy at low frequency: Detailed behavioural classification from accelerometer data. J. Exp. Biol. 2018, 221, jeb184085. [Google Scholar] [CrossRef] [Green Version]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Valverde, A.; Lobo, J.M. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol. 2007, 31, 361–369. [Google Scholar] [CrossRef]
- Ramos, I.; (Unidad de Manejo Forestal 0802, Madera, Chihuahua, México); Bustillos, R.D.; (Unidad de Manejo Forestal 00802, Madera, Chihuahua, México); Martínez, C.L.; (Unidad de Manejo Forestal 0802, Madera, Chihuahua, México). Personal communication, 2020.
- Rodríguez, S.G.; (Unidad de Manejo Forestal 1001, Guanaceví, Durango, México). Personal communication, 2020.
- Rodríguez, S.G.; (Unidad de Manejo Forestal 0802, Madera, Chihuahua, México). Personal communication, 2020.
- Reed, D.H.; Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 2003, 17, 230–237. [Google Scholar] [CrossRef]
- Capblancq, T.; Morin, X.; Gueguen, M.; Renaud, J.; Lobreaux, S.; Bazin, E. Climate-associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J. Evol. Biol. 2020, 33, 783–796. [Google Scholar] [CrossRef]
- Cullingham, C.I.; Cooke, J.E.K.; Coltman, D.W. Cross-species outlier detection reveals different evolutionary pressures between sister species. New Phytol. 2014, 204, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Sork, V.L.; Fitz-Gibbon, S.T.; Puiu, D.; Crepeau, M.; Gugger, P.F.; Sherman, R.; Stevens, K.; Langley, C.H.; Pellegrini, M.; Salzberg, S.L. First draft assembly and annotation of the genome of a California endemic oak Quercus lobata Née (Fagaceae). G3 Genes Genomes Genet. 2016, 6, 3485–3495. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Vázquez, L.; Feng, L.; Liu, Z.; Zhao, G. Climatic and soil factors shape the demographical history and genetic diversity of a deciduous oak (quercus liaotungensis) in Northern China. Front. Plant Sci. 2018. [Google Scholar] [CrossRef]
- Jump, A.S.; Hunt, J.M.; Martínez-Izquierdo, J.A.; Peñuelas, J. Natural selection and climate change: Temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol. Ecol. 2006, 15, 3469–3480. [Google Scholar] [CrossRef] [PubMed]
- Richardson, B.A.; Rehfeldt, G.E.; Kim, M.S. Congruent climate-related genecological responses from molecular markers and quantitative traits for western white pine (Pinus monticola). Int. J. Plant Sci. 2009, 170, 1120–1131. [Google Scholar] [CrossRef]
- Johnson, R.C.; Kisha, T.J.; Pecetti, L.; Romani, M.; Richter, P. Characterization of Poa supina from the Italian alps with AFLP markers and correlation with climatic variables. Crop Sci. 2011, 51, 1627–1636. [Google Scholar] [CrossRef]
- Dell’Acqua, M.; Fricano, A.; Gomarasca, S.; Caccianiga, M.; Piffanelli, P.; Bocchi, S.; Gianfranceschi, L. Genome scan of Kenyan Themeda triandra populations by AFLP markers reveals a complex genetic structure and hints for ongoing environmental selection. S. Afr. J. Bot. 2014, 92, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Hufford, K.M.; Veneklaas, E.J.; Lambers, H.; Krauss, S.L. Genetic delineation of local provenance defines seed collection zones along a climate gradient. AoB Plants 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magdy, M.; Werner, O.; Mcdaniel, S.F.; Goffinet, B.; Ros, R.M. Genomic scanning using AFLP to detect loci under selection in the moss Funaria hygrometrica along a climate gradient in the Sierra Nevada Mountains, Spain. Plant Biol. 2016, 8, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Quintela-Sabarís, C.; Ribeiro, M.M.; Poncet, B.; Costa, R.; Castro-Fernández, D.; Fraga, M.I. AFLP analysis of the pseudometallophyte Cistus ladanifer: Comparison with cpSSRs and exploratory genome scan to investigate loci associated to soil variables. Plant Soil 2012, 359, 397–413. [Google Scholar] [CrossRef]
- Wehenkel, C.; Martínez-Guerrero, J.H.; Pinedo-Alvarez, A.; Carrillo, A. Adaptive genetic differentiation in Picea chihuahuana M. Caused by different copper concentrations in the top soil. Forstarchiv 2012. [Google Scholar] [CrossRef]
- Fang, Z.; Shao, C.; Meng, Y.; Wu, P.; Chen, M. Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci. 2009, 176, 170–180. [Google Scholar] [CrossRef]
- Fan, F.; Cui, B.; Zhang, T.; Qiao, G.; Ding, G.; Wen, X. The temporal transcriptomic response of Pinus massoniana seedlings to phosphorus deficiency. PLoS ONE 2014, 9, e105068. [Google Scholar] [CrossRef] [Green Version]
- Hornoy, B.; Pavy, N.; Gérardi, S.; Beaulieu, J.; Bousquet, J. Genetic adaptation to climate inwhite spruce involves small to moderate allele frequency shifts in functionally diverse genes. Genome Biol. Evol. 2015, 7, 3269–3285. [Google Scholar] [CrossRef] [Green Version]
- Lotterhos, K.E.; Yeaman, S.; Degner, J.; Aitken, S.; Hodgins, K.A. Modularity of genes involved in local adaptation to climate despite physical linkage. Genome Biol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Shirk, A.J.; Cushman, S.A.; Waring, K.M.; Wehenkel, C.A.; Leal-Sáenz, A.; Toney, C.; Lopez-Sanchez, C.A. Southwestern white pine (Pinus strobiformis) species distribution models project a large range shift and contraction due to regional climatic changes. For. Ecol. Manag. 2018, 411, 176–186. [Google Scholar] [CrossRef]
- Gómez-Pineda, E.; Sáenz-Romero, C.; Ortega-Rodríguez, J.M.; Blanco-García, A.; Madrigal-Sánchez, X.; Lindig-Cisneros, R.; Lopez-Toledo, L.; Pedraza-Santos, M.E.; Rehfeldt, G.E. Suitable climatic habitat changes for Mexican conifers along altitudinal gradients under climatic change scenarios. Ecol. Appl. 2020, 30, e02041. [Google Scholar] [CrossRef]
- Van der Maaten, E.; Hamann, A.; van der Maaten-Theunissen, M.; Bergsma, A.; Hengeveld, G.; van Lammeren, R.; Mohren, F.; Nabuurs, G.J.; Terhürne, R.; Sterck, F. Species distribution models predict temporal but not spatial variation in forest growth. Ecol. Evol. 2017, 7, 2585–2594. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Sniezko, R.A.; Ekramoddoullah, A.K.M. Association of a novel Pinus monticola chitinase gene (PmCh4B) with quantitative resistance to cronartium ribicola. Phytopathology 2011, 101, 904–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stingemore, J.A.; Krauss, S.L. Genetic Delineation of Local Provenance in Persoonia longifolia: Implications for Seed Sourcing for Ecological Restoration. Restor. Ecol. 2013, 21, 49–57. [Google Scholar] [CrossRef]
- Wilding, C.S.; Butlin, R.K.; Grahame, J. Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J. Evol. Biol. 2001, 14, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Manel, S.; Gugerli, F.; Thuiller, W.; Alvarez, N.; Legendre, P.; Holderegger, R.; Gielly, L.; Taberlet, P. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol. Ecol. 2012, 21, 3729–3738. [Google Scholar] [CrossRef] [Green Version]
- Méndez-González, I.D.; Jardón-Barbolla, L.; Jaramillo-Correa, J.P. Differential landscape effects on the fine-scale genetic structure of populations of a montane conifer from central Mexico. Tree Genet. Genomes 2017, 13, 30. [Google Scholar] [CrossRef]
- Rodríguez-Caballero, R. Discusión de fórmulas para el cálculo de la productividad maderable y exposición del Método Mexicano de Ordenación de Montes de especies coniferas. Monogr. For. Morelia Com. For. del Estado Michoacán 1958, 245. [Google Scholar]
- Torres Rojo, J.M. Sostenibilidad del volumen de cosecha calculado con el Método Mexicano de Ordenación de Montes. Madera y Bosques 2016, 6, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Maciel-Nájera, J.F.; Hernández-Velasco, J.; González-Elizondo, M.S.; Hernández-Díaz, J.C.; López-Sánchez, C.A.; Antúnez, P.; Bailón-Soto, C.E.; Wehenkel, C. Unexpected spatial patterns of natural regeneration in typical uneven-aged mixed pine-oak forests in the Sierra Madre Occidental, Mexico. Glob. Ecol. Conserv. 2020, 23, e01074. [Google Scholar] [CrossRef]
- Silva-Flores, R.; Hernández-Díaz, J.C.; Wehenkel, C. Does community-based forest ownership favour conservation of tree species diversity? A comparison of forest ownership regimes in the Sierra Madre Occidental, Mexico. For. Ecol. Manag. 2016, 363, 218–228. [Google Scholar] [CrossRef]
- Excoffier, L.; Hofer, T.; Foll, M. Detecting loci under selection in a hierarchically structured population. Heredity 2009, 103, 285–298. [Google Scholar] [CrossRef] [Green Version]
- Meyer, C.L.; Vitalis, R.; Saumitou-Laprade, P.; Castric, V. Genomic pattern of adaptive divergence in Arabidopsis halleri, a model species for tolerance to heavy metal. Mol. Ecol. 2009, 18, 2050–2062. [Google Scholar] [CrossRef]
- Brousseau, L.; Postolache, D.; Lascoux, M.; Drouzas, A.D.; Källman, T.; Leonarduzzi, C.; Liepelt, S.; Piotti, A.; Popescu, F.; Roschanski, A.M.; et al. Local adaptation in European firs assessed through extensive sampling across altitudinal gradients in southern Europe. PLoS ONE 2016, 11, e0158216. [Google Scholar] [CrossRef]
Species | frAFLP vs. var | C[frAFLP × var] | p (Z ≥ C) | RMSE | R2 | MAE | Model |
---|---|---|---|---|---|---|---|
Pinus arizonica | 349 vs. P | 0.86 | 0.00033 | 0.15 | 0.62 | 0.13 | avNNet |
314 vs. P | 0.85 | 0.00041 | 0.13 | 0.45 | 0.12 | nnet | |
351 vs. SPRP | 0.86 | 0.00058 | 0.15 | 0.30 | 0.12 | brnn | |
209 vs. P | 0.83 | 0.00066 | 0.18 | 0.59 | 0.16 | lm | |
Pinus durangensis | 240 vs. WINP | −0.91 | 0.00004 | 0.11 | 0.57 | 0.09 | brnn |
416 vs. SPRP | 0.86 | 0.00023 | 0.12 | 0.56 | 0.10 | rf | |
416 vs. Latitude | −0.81 | 0.0004 | 0.12 | 0.52 | 0.10 | brnn | |
342 vs. MMAX | 0.84 | 0.00049 | 0.09 | 0.49 | 0.08 | lm | |
406 vs. Latitude | 0.78 | 0.00074 | 0.11 | 0.54 | 0.09 | rf | |
406 vs. AAI | 0.79 | 0.00082 | 0.13 | 0.50 | 0.11 | avNNet | |
236 vs. Latitude | 0.79 | 0.00089 | 0.15 | 0.52 | 0.12 | brnn | |
406 vs. Latitude + AAI | 0.12 | 0.69 | 0.10 | rf | |||
416 vs. SPRP + Latitude | 0.11 | 0.56 | 0.10 | brnn |
Species | AUC | OA | MCC | TSS | Kappa | Sen | Spe | PoP | Pr | Ab | Total | Prev |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P. arizonica | 0.92 | 0.902 | 0.481 | 0.41 | 0.472 | 0.449 | 0.964 | 0.30 | 615 | 4473 | 5088 | 0.1209 |
P. durangensis | 0.92 | 0.867 | 0.611 | 0.59 | 0.609 | 0.654 | 0.931 | 0.35 | 1119 | 3757 | 4876 | 0.2295 |
Species | SZ and SDM Modeled * | Mean Spatial Difference between SDM for 1990 and 2030 (km) | Shift Course | Average Elevation Difference between SDM for 1990 and 2030 (m) |
---|---|---|---|---|
P. arizonica | SZ 1 (Blue) | 242 | NW | −600 |
SZ 2 (Red) | 18 | SW | 151 | |
P. durangensis | SZ 1 (Red) | 56 | NW | −70 |
SZ 2 (Yellow) | 67 | NW | −1 | |
SZ 3 (Green) | 105 | NW | −16 | |
SZ 4 (Blue) | 100 | NW | −22 | |
P. arizonica | SDM | 31 | SE | 156 |
P. durangensis | SDM | 9 | NW | 43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simental-Rodriguez, S.L.; Pérez-Luna, A.; Hernández-Díaz, J.C.; Jaramillo-Correa, J.P.; López-Sánchez, C.A.; Flores-Rentería, L.; Carrillo-Parra, A.; Wehenkel, C. Modelling Shifts and Contraction of Seed Zones in Two Mexican Pine Species by Using Molecular Markers. Forests 2021, 12, 570. https://doi.org/10.3390/f12050570
Simental-Rodriguez SL, Pérez-Luna A, Hernández-Díaz JC, Jaramillo-Correa JP, López-Sánchez CA, Flores-Rentería L, Carrillo-Parra A, Wehenkel C. Modelling Shifts and Contraction of Seed Zones in Two Mexican Pine Species by Using Molecular Markers. Forests. 2021; 12(5):570. https://doi.org/10.3390/f12050570
Chicago/Turabian StyleSimental-Rodriguez, Sergio Leonel, Alberto Pérez-Luna, José Ciro Hernández-Díaz, Juan Pablo Jaramillo-Correa, Carlos A. López-Sánchez, Lluvia Flores-Rentería, Artemio Carrillo-Parra, and Christian Wehenkel. 2021. "Modelling Shifts and Contraction of Seed Zones in Two Mexican Pine Species by Using Molecular Markers" Forests 12, no. 5: 570. https://doi.org/10.3390/f12050570
APA StyleSimental-Rodriguez, S. L., Pérez-Luna, A., Hernández-Díaz, J. C., Jaramillo-Correa, J. P., López-Sánchez, C. A., Flores-Rentería, L., Carrillo-Parra, A., & Wehenkel, C. (2021). Modelling Shifts and Contraction of Seed Zones in Two Mexican Pine Species by Using Molecular Markers. Forests, 12(5), 570. https://doi.org/10.3390/f12050570