A Comparison of Three Circular Mitochondrial Genomes of Fagus sylvatica from Germany and Poland Reveals Low Variation and Complete Identity of the Gene Space
Abstract
:1. Introduction
1.1. Importance of European Beech and Its Population Structure
1.2. Maternally Inherited Markers Are Important for Tracking Migration Routes
2. Materials and Methods
2.1. Data Acquisition and Initial Draft Assembly of the Mitochondrial Genome of Bhaga
2.2. Manual Curation of the Assembly
2.3. Assembly of the Mitochondrial Genome of Jamy
2.4. Functional Annotation and Circular Representation
3. Results
3.1. General Features of the Mitochondrial Genome Assemblies
3.2. Comparison of Mitochondrial Genome Assemblies
4. Discussion
4.1. Why Variable Regions in Maternally Inherited Genomes Are Important to Identify in Beech
4.2. Utility of the Genomic Diversity of Organelle Genomes in Beech for Tracing Migration
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giesecke, T.; Hickler, T.; Kunkel, T.; Sykes, M.T.; Bradshaw, R.H.W. ORIGINAL ARTICLE: Towards an understanding of the Holocene distribution of Fagus sylvatica L. J. Biogeogr. 2006, 34, 118–131. [Google Scholar] [CrossRef]
- Zscheischler, J.; Fischer, E.M. The record-breaking compound hot and dry 2018 growing season in Germany. Weather Clim. Extrem. 2020, 29, 100270. [Google Scholar] [CrossRef]
- Kron, W.; Löw, P.; Kundzewicz, Z.W. Changes in risk of extreme weather events in Europe. Environ. Sci. Policy 2019, 100, 74–83. [Google Scholar] [CrossRef]
- Albert, R.E.I.F.; Xystrakis, F.; Gaertner, S.; Sayer, U. Floristic change at the drought limit of European beech (Fagus sylvatica L.) to downy oak (Quercus pubescens) forest in the temperate climate of central Europe. Not. Bot. Horti Agrobot. Cluj Napoca 2017, 45, 646–654. [Google Scholar]
- Sandurska, E.; Ulaszewski, B.; Burczyk, J. Genetic Insights into Ecological Succession from Oak- (Quercus robur L.) to Beech- (Fagus sylvatica L.) Dominated Forest Stands. Acta Biol. Crac. Ser. Bot. 2017, 59, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Magri, D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 2008, 35, 450–463. [Google Scholar] [CrossRef]
- Comps, B.; Thiébaut, B.; Paule, L.; Merzeau, D.; Letouzey, J. Allozymic variability in beechwoods (Fagus sylvatica L.) over central Europe: Spatial differentiation among and within populations. Heredity 1990, 65, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, S.; Menozzi, P. Genetic variability of Fagus sylvatica L. in Italy: The role of postglacial recolonization. Heredity 1995, 75, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Sjölund, M.J.; González-Díaz, P.; Moreno-Villena, J.J.; Jump, A.S. Understanding the legacy of widespread population translocations on the post-glacial genetic structure of the European beech, Fagus sylvatica L. J. Biogeogr. 2017, 44, 2475–2487. [Google Scholar] [CrossRef] [Green Version]
- Cuervo-Alarcon, L.; Arend, M.; Müller, M.; Sperisen, C.; Finkeldey, R.; Krutovsky, K.V. Genetic variation and signatures of natural selection in populations of European beech (Fagus sylvatica L.) along precipitation gradients. Tree Genet. Genomes 2018, 14, 84. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.; Lopez, P.A.; Papageorgiou, A.C.; Tsiripidis, I.; Gailing, O. Indications of Genetic Admixture in the Transition Zone between Fagus sylvatica L. and Fagus sylvatica ssp. orientalis Greut. & Burd. Diversity 2019, 11, 90. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Wang, B.; Zhao, W.; Pan, J.; Mao, J.F.; Wang, X.R. Combining mitochondrial and nuclear genome analyses to dissect the effects of colonization, environment, and geography on population structure in Pinus tabuliformis. Evol. Appl. 2018, 11, 1931–1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magri, D.; Vendramin, G.G.; Comps, B.; Dupanloup, I.; Geburek, T.; Gömöry, D.; Latałowa, M.; Litt, T.; Paule, L.; Roure, J.M.; et al. A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence and genetic consequences. New Phytol. 2006, 171, 199–221. [Google Scholar] [CrossRef]
- Demesure, B.; Comps, B.; Petit, R.J. Chloroplast DNA Phylogeography of the Common Beech (Fagus sylvatica L.) in Europe. Evolution 1996, 50, 2515–2520. [Google Scholar] [CrossRef]
- Sebastiani, F.; Carnevale, S.; Vendramin, G.G. A new set of mono- and dinucleotide chloroplast microsatellites in Fagaceae. Mol. Ecol. Notes 2004, 4, 259–261. [Google Scholar] [CrossRef]
- Vettori, C.; Vendramin, G.G.; Anzidei, M.; Pastorelli, R.; Paffetti, D.; Giannini, R. Geographic distribution of chloroplast variation in Italian populations of beech (Fagus sylvatica L.). Theor. Appl. Genet. 2004, 109, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hatziskakis, S.; Papageorgiou, A.C.; Gailing, O.; Finkeldey, R. High chloroplast haplotype diversity in Greek populations of beech (Fagus sylvatica L.). Plant Biol. 2009, 11, 425–433. [Google Scholar] [CrossRef]
- Meger, J.; Ulaszewski, B.; Vendramin, G.G.; Burczyk, J. Using reduced representation libraries sequencing methods to identify cpDNA polymorphisms in European beech (Fagus sylvatica L). Tree Genet. Genomes 2019, 15, 7. [Google Scholar] [CrossRef]
- Dumolin, S.; Demesure, B.; Petit, R.J. Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor. Appl. Genet. 1995, 91, 1253–1256. [Google Scholar] [CrossRef]
- Gualberto, J.M.; Mileshina, D.; Wallet, C.; Niazi, A.K.; Weber-Lotfi, F.; Dietrich, A. The plant mitochondrial genome: Dynamics and maintenance. Biochimie 2014, 100, 107–120. [Google Scholar] [CrossRef]
- Smith, D.R. Mutation Rates in Plastid Genomes: They Are Lower than You Might Think. Genome Biol. Evol. 2015, 7, 1227–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mader, M.; Schroeder, H.; Schott, T.; Schöning-Stierand, K.; Montalvão, A.P.L.; Liesebach, H.; Liesebach, M.; Fussi, B.; Kersten, B. Mitochondrial Genome of Fagus sylvatica L. as a Source for Taxonomic Marker Development in the Fagales. Plants 2020, 9, 1274. [Google Scholar] [CrossRef]
- Mishra, B.; Ulaszewski, B.; Ploch, S.; Burczyk, J.; Thines, M. A Circular Chloroplast Genome of Fagus sylvatica Reveals High Conservation between Two Individuals from Germany and One Individual from Poland and an Alternate Direction of the Small Single-Copy Region. Forests 2021, 12, 180. [Google Scholar] [CrossRef]
- Mishra, B.; Gupta, D.K.; Pfenninger, M.; Hickler, T.; Langer, E.; Nam, B.; Paule, J.; Sharma, R.; Ulaszewski, B.; Warmbier, J.; et al. A reference genome of the European beech (Fagus sylvatica L.). GigaScience 2018, 7, 063. [Google Scholar] [CrossRef] [PubMed]
- Hackl, T.; Hedrich, R.; Schultz, J.; Förster, F. proovread: Large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 2014, 30, 3004–3011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boetzer, M.; Pirovano, W. SSPACE-LongRead: Scaffolding bacterial draft genomes using long read sequence information. BMC Bioinform. 2014, 15, 211. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De Novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar]
- Barkman, T.J.; Lim, S.-H.; Salleh, K.M.; Nais, J. Mitochondrial DNA sequences reveal the photosynthetic relatives of Rafflesia, the world’s largest flower. Proc. Natl. Acad. Sci. USA 2004, 101, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Golosova, O.; Fursov, M. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Brunet, J.; Felton, A.; Lindbladh, M. From wooded pasture to timber production—Changes in a European beech (Fagus sylvatica) forest landscape between 1840 and 2010. Scand. J. For. Res. 2012, 27, 245–254. [Google Scholar] [CrossRef]
- Dittmar, C.; Zech, W.; Elling, W. Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—A dendroecological study. For. Ecol. Manag. 2003, 173, 63–78. [Google Scholar] [CrossRef]
- Diekmann, M.; Eilertsen, O.; Fremstad, E.; Lawesson, J.E.; Aude, E. Beech forest communities in the Nordic countries—A multivariate analysis. Plant Ecol. 1999, 140, 203–220. [Google Scholar] [CrossRef]
- Wang, K.; Hattemer, H.H. Dispersal of seed and effective pollen in small stands of European beech (Fagus sylvatica L.). In Genetic Response of Forest Systems to Changing Environmental Conditions; Springer: Dordrecht, The Netherlands, 2001; pp. 259–269. [Google Scholar]
- Zwolak, R.; Bogdziewicz, M.; Wróbel, A.; Crone, E.E. Advantages of masting in European beech: Timing of granivore satiation and benefits of seed caching support the predator dispersal hypothesis. Oecologia 2016, 180, 749–758. [Google Scholar] [CrossRef] [Green Version]
- Saltré, F.; Saint-Amant, R.; Gritti, E.S.; Brewer, S.; Gaucherel, C.; Davis, B.A.S.; Chuine, I. Climate or migration: What limited European beech post-glacial colonization? Glob. Ecol. Biogeogr. 2013, 22, 1217–1227. [Google Scholar] [CrossRef]
- Björkman, L. The establishment of Fagus sylvatica at the stand-scale in southern Sweden. Holocene 1999, 9, 237–245. [Google Scholar] [CrossRef]
- Saltré, F.; Duputié, A.; Gaucherel, C.; Chuine, I. How climate, migration ability and habitat fragmentation affect the projected future distribution of European beech. Glob. Change Biol. 2015, 21, 897–910. [Google Scholar] [CrossRef]
- McCauley, D.E. Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes. New Phytol. 2013, 200, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Muñoz-Fuentes, V.; Buch, A.-K.; Çelik, A.; Dutbayev, A.; Gabrielyan, I.; Glynou, K.; Kachour, L.; Khaliq, I.; Kitner, M.; et al. Out of Transcaucasia: Origin of Western and Central Palearctic populations of Microthlaspi perfoliatum. Flora Morphol. Distrib. Funct. Ecol. Plants 2019, 253, 127–141. [Google Scholar] [CrossRef]
- Vitt, P.; Havens, K.; Kramer, A.T.; Sollenberger, D.; Yates, E. Assisted migration of plants: Changes in latitudes, changes in attitudes. Biol. Conserv. 2010, 143, 18–27. [Google Scholar] [CrossRef]
- Bucharova, A. Assisted migration within species range ignores biotic interactions and lacks evidence. Restor. Ecol. 2016, 25, 14–18. [Google Scholar] [CrossRef]
- Park, A.; Talbot, C. Information Underload: Ecological Complexity, Incomplete Knowledge, and Data Deficits Create Challenges for the Assisted Migration of Forest Trees. Bioscience 2018, 68, 251–263. [Google Scholar] [CrossRef] [Green Version]
Position | Bhaga | Mader et al. [22] | Jamy | Flanking Sequences |
---|---|---|---|---|
218216 | - | G | G | tRNA-S rps1 |
374587 | G | A | A | ORF10 tRNA-W |
374635 | T | A | A | ORF10 tRNA-W |
374906 | T | G | G | ORF10 tRNA-W |
374957 | C | G | G | ORF10 tRNA-W |
375155 | T | C | C | ORF10 tRNA-W |
375281 | A | - | - | ORF10 tRNA-W |
375282 | A | - | - | ORF10 tRNA-W |
375283 | T | - | - | ORF10 tRNA-W |
375284 | T | - | - | ORF10 tRNA-W |
375285 | G | - | - | ORF10 tRNA-W |
375436 | - | C | C | ORF10 tRNA-W |
375997 | A | - | - | ORF10 tRNA-W |
375998 | C | - | - | ORF10 tRNA-W |
375999 | A | - | - | ORF10 tRNA-W |
376000 | C | - | - | ORF10 tRNA-W |
376001 | A | - | - | ORF10 tRNA-W |
376238 | G | T | T | ORF10 tRNA-W |
376265 | G | T | T | ORF10 tRNA-W |
376306 | G | A | A | ORF10 tRNA-W |
376426 | G | T | T | ORF10 tRNA-W |
376451 | - | A | A | ORF10 tRNA-W |
376745 | C | - | - | ORF10 tRNA-W |
376760 | A | - | - | ORF10 tRNA-W |
376761 | A | - | - | ORF10 tRNA-W |
376762 | T | - | - | ORF10 tRNA-W |
376763 | T | - | - | ORF10 tRNA-W |
376764 | T | - | - | ORF10 tRNA-W |
376765 | T | - | - | ORF10 tRNA-W |
376766 | C | - | - | ORF10 tRNA-W |
414463 | C | A | C | cob tRNA-R |
416680 | G | A | A | tRNA-R ccmFc |
416692 | C | A | A | tRNA-R ccmFc |
416695 | G | A | A | tRNA-R ccmFc |
416808 | C | T | T | tRNA-R ccmFc |
416809 | G | T | T | tRNA-R ccmFc |
416829 | T | C | C | tRNA-R ccmFc |
416896 | G | A | A | tRNA-R ccmFc |
417049 | A | C | C | tRNA-R ccmFc |
485229 | A | C | A | ORF6 tRNA-I |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, B.; Ulaszewski, B.; Meger, J.; Ploch, S.; Burczyk, J.; Thines, M. A Comparison of Three Circular Mitochondrial Genomes of Fagus sylvatica from Germany and Poland Reveals Low Variation and Complete Identity of the Gene Space. Forests 2021, 12, 571. https://doi.org/10.3390/f12050571
Mishra B, Ulaszewski B, Meger J, Ploch S, Burczyk J, Thines M. A Comparison of Three Circular Mitochondrial Genomes of Fagus sylvatica from Germany and Poland Reveals Low Variation and Complete Identity of the Gene Space. Forests. 2021; 12(5):571. https://doi.org/10.3390/f12050571
Chicago/Turabian StyleMishra, Bagdevi, Bartosz Ulaszewski, Joanna Meger, Sebastian Ploch, Jaroslaw Burczyk, and Marco Thines. 2021. "A Comparison of Three Circular Mitochondrial Genomes of Fagus sylvatica from Germany and Poland Reveals Low Variation and Complete Identity of the Gene Space" Forests 12, no. 5: 571. https://doi.org/10.3390/f12050571
APA StyleMishra, B., Ulaszewski, B., Meger, J., Ploch, S., Burczyk, J., & Thines, M. (2021). A Comparison of Three Circular Mitochondrial Genomes of Fagus sylvatica from Germany and Poland Reveals Low Variation and Complete Identity of the Gene Space. Forests, 12(5), 571. https://doi.org/10.3390/f12050571