Deep Subsoil Storage of Trace Elements and Pollution Assessment in Mountain Podzols (Tatra Mts., Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Study
2.3. Selected Physical and Chemical Properties
2.4. Content of Trace Elements and Pollution Indices
2.5. Statistical Analysis
3. Results
3.1. Morphological Characteristics of Studied Soils
3.2. Particle Size Distribution
3.3. Selected Chemical Properties
3.4. Podzolization Indices
3.5. Trace Element Content and Values of Pollution Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Profile Number | Soil Horizon | Depth (cm) | Colour * | Boundary | Structure | Consistence (Moist) | Coarse Fragments (%) | Moisture | Abundance of Roots |
---|---|---|---|---|---|---|---|---|---|
1 | Ol | 0–10 | n.d. | A | n.d. | n.d. | n.d. | M | M |
Oh | 10–14 | 10 YR 1.7/1 | A | n.d. | FR | n.d. | M | F | |
AE | 14–27 | 7.5 YR 3/3 | A | ME SB MO | FI | C | M | F | |
Bs | 27–44 | 7.5 YR 3/4 | C | FI SB MO | VFI | M | M | V | |
BC | 44–56 | 7.5 YR 4/6 | - | FI SB MO | VFI | A | M | V | |
2 | Ol | 0–4 | n.d. | A | n.d. | n.d. | n.d. | M | M |
Oh | 4–8 | 10 YR 1.7/1 | C | n.d. | FR | n.d. | M | C | |
A | 8–18 | 7.5 YR 3/1 | C | FI SB WE | FR | M | M | F | |
E | 18–40 | 10 YR 5/2 | C | VF SB WE | FI | A | M | V | |
BsC | 40–70 | 7.5 YR 5/8 | - | SG | VFI | A | M | N | |
3 | Ol | 0–4 | n.d. | A | n.d. | n.d. | n.d. | M | M |
Oh | 4–8 | 10 YR 2/2 | A | n.d. | FR | n.d. | M | M | |
AE | 8–12 | 10 YR 3/1 | A | FI GR MO | FI | A | M | C | |
BsC | 12–28 | 7.5 YR 3/4 | - | FI GR WE | VFI | D | M | V | |
4 | Ol | 0–2 | n.d. | A | n.d. | n.d. | n.d. | M | M |
Oh | 2–6 | 10 YR 1.7/1 | A | n.d. | FR | n.d. | M | M | |
A | 6–14 | 10 YR 1.7/1 | C | FI SB WE | FR | n.d. | M | C | |
E | 14–20 | 10 YR 6/2 | A | FI SB MO | FI | A | M | F | |
BsC | 20–39 | 7.5 YR 2/3 | - | FI SB MO | VFI | A | M | F | |
5 | Olf | 0–3 | n.d. | A | n.d. | n.d. | n.d. | M | M |
A | 3–7 | 7.5 YR 2/1 | C | VF CR WE | FR | C | M | M | |
AE | 7–19 | 7.5 YR 6/2 | G | FI GR WE | FI | M | M | F | |
E | 19–37 | 7.5 YR 7/1 | C | FI GR MO | FI | A | M | V | |
BsC | 37–50 | 7.5 YR 4/3 | FI GR MO | VFI | D | M | N | ||
6 | Olf | 0–6 | n.d. | A | n.d. | n.d. | n.d. | M | M |
A | 6–11 | 10 YR 3/1 | A | VF CR WE | FR | n.d. | M | F | |
E | 11–16 | 10 YR 6/1–2 | A | VF CR MO | FI | M | M | V | |
BsC | 16–39 | 10 YR 4/6 | - | SG | VFI | A | SM | N | |
7 | Ol | 0–3 | n.d. | A | n.d. | n.d. | n.d. | M | M |
Oh | 3–8 | 10 YR 1.7/1 | C | n.d. | FR | n.d. | M | F | |
A | 8–23 | 10 YR 5/2 | A | FI SB ST | FI | n.d. | M | F | |
E | 23–38 | 10 YR 4/1 | A | FI SB ST | FI | C | M | V | |
BsC | 38–58 | 7.5 YR 3/4 | - | FI SB MO | VFI | M | M | V | |
8 | Olf | 0–10 | 10 YR 2/2 | A | n.d. | FR | n.d. | M | M |
AE | 10–33 | 10 YR 3/3 | C | VF GR WE | FI | C | M | F | |
BsC1 | 33–40 | 10 YR 4/3 | C | SG | VFI | M | M | F | |
BsC2 | 40–60 | 10 YR 4/6 | - | SG | VFI | A | M | V | |
9 | Olf | 0–6 | 10 YR 2/1 | A | n.d. | FR | n.d. | M | M |
A | 6–10 | 7.5 YR 3/2 | A | FI AB MO | FR | M | M | F | |
E | 10–18 | 10 YR 5/4 | A | FI AB MO | FI | M | M | F | |
Bs | 18–24 | 10 YR 5/3 | A | FI AB MO | VFI | A | M | F | |
BC | 24–60 | 10 YR 6/6 | - | FI SB MO | VFI | A | M | V | |
10 | Olf | 0–2 | 10 YR 1.7/1 | A | n.d. | n.d. | n.d. | M | M |
A | 2–6 | 10 YR 2/2 | C | SG | FR | F | M | M | |
AE | 6–23 | 10 YR 5/3 | C | VF CR MO | FI | M | M | F | |
E | 23–45 | 10 YR 6/3-4 | C | VF CR WE | FI | A | M | F | |
BsC | 45–70 | 7.5 YR 4/4 | - | SG | VFI | A | M | V | |
11 | Olf | 0–3 | n.d. | A | n.d. | n.d. | n.d. | M | M |
A | 3–8 | 10 YR 2/1 | A | VF CR MO | FR | n.d. | M | C | |
AE | 8–16 | 7.5 YR 4/2 | C | FI SB MO | FI | n.d. | M | F | |
BsC1 | 16–40 | 5YR 4/3 | G | FI SB MO | VFI | M | M | F | |
BsC2 | 40–65 | 5 YR 4-3/4 | - | FI SB MO | VFI | A | M | F | |
12 | Olf | 0–3 | 7.5 YR 4/1 | C | n.d. | FR | n.d. | M | M |
A | 3–26 | 7.5 YR 7/1 | C | SG | FR | M | M | C | |
AE | 26–43 | 7.5 YR 6/1 | A | FI GR MO | FI | A | M | F | |
BsC | 43–62 | 7.5 YR 4/4 | FI AB WE | VFI | A | M | V | ||
13 | Ol | 0–3 | n.d. | A | n.d. | n.d. | n.d. | M | M |
Oh1 | 3–6 | 10 YR 1.7/1 | C | n.d. | FR | n.d. | M | M | |
Oh2 | 6–20 | 10 YR 1.7/1 | C | n.d. | FR | M | M | C | |
AE | 20–50 | 7.5 YR 2/1 | A | FI AB MO | FI | A | M | F | |
BsC | 50–70 | 5 YR 2/4 | - | FI AB MO | VFI | D | M | V |
Appendix B
Profile Number | Soil Horizon | Depth (cm) | Particle Size Distribution (%) | Texture Group | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2.0–1.0 mm | 1.0–0.5 mm | 0.5–0.250 mm | 0.25–0.1 mm | 0.1–0.05 mm | 0.05–0.02 mm | 0.02–0.005 mm | <0.002 mm | ||||
1 | Ol | 0–10 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Oh | 10–14 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
AE | 14–27 | 18 | 4 | 13 | 5 | 12 | 19 | 20 | 9 | SL | |
Bs | 27–44 | 34 | 1 | 23 | 4 | 11 | 18 | 6 | 3 | LS | |
BC | 44–56 | 25 | 24 | 21 | 1 | 8 | 9 | 10 | 2 | LS | |
2 | Ol | 0–4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Oh | 4–8 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
A | 8–18 | 34 | 12 | 1 | 9 | 14 | 12 | 10 | 8 | SL | |
E | 18–40 | 23 | 10 | 10 | 12 | 8 | 12 | 17 | 8 | SL | |
BsC | 40–70 | 33 | 27 | 3 | 14 | 12 | 7 | 4 | 0 | S | |
3 | Ol | 0–4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Oh | 4–8 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
AE | 8–12 | 45 | 12 | 3 | 5 | 16 | 7 | 5 | 7 | LS | |
BsC | 12–28 | 39 | 13 | 3 | 4 | 12 | 12 | 11 | 6 | SL | |
4 | Ol | 0–2 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Oh | 2–6 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
A | 6–14 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
E | 14–20 | 35 | 13 | 1 | 2 | 12 | 23 | 11 | 3 | SL | |
BsC | 20–39 | 46 | 1 | 23 | 1 | 9 | 10 | 9 | 1 | LS | |
5 | Olf | 0–3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
A | 3–7 | 43 | 17 | 5 | 6 | 10 | 10 | 4 | 5 | LS | |
AE | 7–19 | 38 | 18 | 1 | 1 | 17 | 10 | 10 | 5 | LS | |
E | 19–37 | 47 | 9 | 1 | 2 | 8 | 7 | 18 | 8 | SL | |
BsC | 37–50 | 42 | 13 | 2 | 8 | 11 | 7 | 11 | 6 | SL | |
6 | Olf | 0–6 | n.d. | n.d. | n.d. | n.d. | n.o. | n.o. | n.d. | n.d. | n.d. |
A | 6–11 | n.d. | n.d. | n.d. | n.d. | n.o. | n.o. | n.d. | n.d. | n.d. | |
E | 11–16 | 48 | 2 | 17 | 7 | 13 | 7 | 6 | 0 | LS | |
BsC | 16–39 | 56 | 15 | 13 | 0 | 9 | 4 | 3 | 0 | S | |
7 | Ol | 0–3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Oh | 3–8 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
A | 8–23 | 34 | 12 | 6 | 8 | 17 | 18 | 4 | 1 | LS | |
E | 23–38 | 23 | 4 | 28 | 3 | 20 | 15 | 6 | 1 | LS | |
BsC | 38–58 | 37 | 15 | 12 | 6 | 13 | 12 | 5 | 0 | LS | |
8 | Olf | 0–10 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
AE | 10–33 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
BsC1 | 33–40 | 48 | 13 | 12 | 12 | 10 | 3 | 2 | 0 | S | |
BsC2 | 40–60 | 38 | 17 | 17 | 6 | 8 | 9 | 4 | 1 | S | |
9 | Olf | 0–6 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
A | 6–10 | 47 | 2 | 3 | 0 | 17 | 14 | 13 | 4 | SL | |
E | 10–18 | 24 | 2 | 4 | 4 | 18 | 14 | 27 | 7 | SL | |
Bs | 18–24 | 20 | 0 | 0 | 6 | 10 | 25 | 29 | 10 | SiL | |
BC | 24–60 | 19 | 2 | 3 | 1 | 7 | 13 | 37 | 18 | SiL | |
10 | Olf | 0–2 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
A | 2–6 | 40 | 24 | 14 | 4 | 11 | 5 | 1 | 1 | S | |
AE | 6–23 | 53 | 21 | 2 | 2 | 7 | 7 | 8 | 0 | LS | |
E | 23–45 | 37 | 25 | 10 | 10 | 1 | 7 | 6 | 4 | LS | |
BsC | 45–70 | 39 | 28 | 5 | 12 | 8 | 5 | 3 | 0 | S | |
11 | Olf | 0–3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
A | 3–8 | 36 | 27 | 2 | 2 | 22 | 6 | 3 | 2 | S | |
AE | 8–16 | 43 | 1 | 1 | 4 | 28 | 11 | 9 | 3 | LS | |
BsC1 | 16–40 | 32 | 10 | 1 | 5 | 15 | 17 | 18 | 2 | SL | |
BsC2 | 40–65 | 39 | 28 | 3 | 0 | 10 | 10 | 10 | 0 | LS | |
12 | Olf | 0–3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
A | 3–26 | 32 | 17 | 18 | 14 | 7 | 8 | 4 | 0 | S | |
AE | 26–43 | 14 | 27 | 5 | 6 | 10 | 11 | 19 | 8 | SL | |
BsC | 43–62 | 17 | 19 | 25 | 1 | 8 | 11 | 13 | 6 | SL | |
13 | Ol | 0–3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Oh1 | 3–6 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
Oh2 | 6–20 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
AE | 20–50 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
BsC | 50–70 | 38 | 16 | 2 | 3 | 15 | 8 | 14 | 4 | LS |
References
- Lundström, U.S.; van Breemen, N.; Bain, D. The podzolization process. A review. Geoderma 2000, 94, 91–107. [Google Scholar] [CrossRef]
- Mokma, D.L.; Buurman, P. Podzols and Podzolization in Temperate Regions; International Soil Museum: Wageningen, The Netherlands, 1982; p. 131. ISBN 9789066720114. [Google Scholar]
- Sauer, D.; Sponagel, H.; Sommer, M.; Giani, L.; Jahn, R.; Stahr, K. Podzol: Soil of the year 2007. A review on its genesis, occurrence, and functions. J. Plant Nutr. Soil Sci. 2007, 170, 581–597. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.N.; Goryachkin, S.V.; Savichev, A.T. Distribution of rare-earth (Y, La, Ce) and other trace elements in the profiles of the podzolic soil group. Eurasian Soil Sci. 2011, 44, 500–509. [Google Scholar] [CrossRef]
- Miechówka, A.; Zadrożny, P.; Kowalczyk, E. Podzol soils of different climatic and vegetation belts of the Babiogórski National Park. Polish J. Soil Sci. 2006, 9, 73–79. [Google Scholar]
- Jien, S.H.; Wu, S.P.; Chen, Z.S.; Chen, T.H.; Chiu, C.Y. Characteristics and pedogenesis of podzolic forest soils along a toposequence near a subalpine lake in northern Taiwan. Bot. Stud. 2010, 51, 223–236. [Google Scholar]
- Kabała, C.; Bogacz, A.; Waroszewski, J.; Ochyra, S. Wpływ pokryw stokowych na morfologię i właściwości bielic subalpejskiego piętra Karkonoszy. Soil Sci. Annu. 2008, 59, 90–99, (In Polish with English Summary). [Google Scholar]
- Kabala, C.; Waroszewski, J.; Bogacz, A.; Labaz, B. On the specifics of podzols in mountain areas. Soil Sci. Annu. 2012, 63, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Nikodem, A.; Pavlu, L.; Kodešová, R.; Boruvka, L.; Drábek, O. Study of podzolization process under different vegetation cover in the Jizerské Hory Mts. Region. Soil Water Res. 2013, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Musielok, Ł.; Drewnik, M.; Szymański, W.; Stolarczyk, M.; Gus-Stolarczyk, M.; Skiba, M. Conditions favoring local podzolization in soils developed from flysch regolith—A case study from the Bieszczady Mountains in southeastern Poland. Geoderma 2021, 381. [Google Scholar] [CrossRef]
- Waroszewski, J.; Malkiewicz, M.; Mazurek, R.; Labaz, B.; Jezierski, P.; Kabala, C. Lithological discontinuities in Podzols developed from sandstone cover beds in the Stolowe Mountains (Poland). Catena 2015, 126, 11–19. [Google Scholar] [CrossRef]
- Waroszewski, J.; Kabala, C.; Jezierski, P. Relief-induced soil differentiation at the sandstone-mudstone contact in the Stołowe Mountains, SW Poland. Z. Geomorphol. 2015, 59 (Suppl. 1), 211–226. [Google Scholar] [CrossRef]
- Waroszewski, J.; Egli, M.; Kabala, C.; Kierczak, J.; Brandova, D. Mass fluxes and clay mineral formation in soils developed on slope deposits of the Kowarski Grzbiet (Karkonosze Mountains, Czech Republic/Poland). Geoderma 2016, 264, 363–378. [Google Scholar] [CrossRef] [Green Version]
- Zadrozny, P.; Halecki, W.; Gąsiorek, M.; Nicia, P.; Lamorski, T. Vertical pit-mounds distribution of uprooted Norway spruce (Picea abies L.): Field evidence in the upper mountain belt. iForest 2017, 10, 783–787. [Google Scholar] [CrossRef] [Green Version]
- Zwanzig, L.; Zwanzig, M.; Sauer, D. Outcomes of a quantitative analysis of 48 soil chronosequence studies in humid mid and high latitudes: Importance of vegetation in driving podzolization. Catena 2021, 196, 104821. [Google Scholar] [CrossRef]
- Wilcke, W.; Baumler, R.; Deschauer, H.; Kaupenjohann, M.; Zech, W. Erratum: Small scale distribution of Al, trace elements, and PAHs in an aggregated Alpine Podzol. Geoderma 1996, 71, 19. [Google Scholar] [CrossRef]
- Niemyska-Łukaszuk, J.; Gąsiorek, M.; Miechówka, A. Kadm, nikiel, ołów i cynk w glebach i roślinach polan pasterskich Tatrzańskiego Parku Narodowego. Zesz. Probl. Postępów Nauk Rol. 2000, 472, 543–550. [Google Scholar]
- Miechówka, A.; Niemyska-Łukaszuk, J.; Ciarkowska, K. Heavy metals in selected non-forest soils from the Tatra National Park. Chem. Inz. Ekol. 2002, 9, 1433–1438. [Google Scholar]
- Szopka, K.; Karczewska, A.; Jezierski, P.; Kabała, C. Spatial distribution of lead in the surface layers of mountain forest soils, an example from the Karkonosze National Park, Poland. Geoderma 2013, 192, 259–268. [Google Scholar] [CrossRef]
- Mazurek, R.; Kowalska, J.B.; Gąsiorek, M.; Zadrożny, P.; Wieczorek, J. Pollution indices as comprehensive tools for evaluation of the accumulation and provenance of potentially toxic elements in soils in Ojców National Park. J. Geochem. Explor. 2019, 201, 13–30. [Google Scholar] [CrossRef]
- Ciriaková, A. Heavy metals in the vascular plants of Tatra Mountains. Oecologia Mont. 2009, 18, 23–26. [Google Scholar]
- Hajdúk, J. Contents of Pb, Cd, As, Fe, Cr, Zn, Cu, Ca, Mg and S in TANAP soils in relation to the effect of industrial immissions. Zb. TANAP 1988, 28, 251–261. [Google Scholar]
- Paulo, A.; Gałaś, S.; Izakovičová, Z.; Hreško, J. Zarządzanie ochroną środowiska Tatr po obydwu stronach granicy polsko−słowackiej. In Nauka a Zarządzanie Obszarem Tatr I Ich Otoczeniem, Tom III; 2010; pp. 121–150, (In Polish). Available online: https://tpn.pl/filebrowser/files/T3_15.pdf (accessed on 5 February 2021).
- Jaguś, A.; Skrzypiec, M. Toxic elements in mountain soils (Little Beskids, Polish Carpathians). J. Ecol. Eng. 2019, 20, 197–202. [Google Scholar] [CrossRef]
- Korzeniowska, J.; Krąż, P. Heavy Metals Content in the Soils of the Tatra National Park Near Lake Morskie Oko and Kasprowy Wierch—A Case Study (Tatra Mts, Central Europe). Minerals 2020, 10, 1120. [Google Scholar] [CrossRef]
- Gao, X.; Chen, C.T.A. Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res. 2012, 46, 1901–1911. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.; Mazurek, R.; Gąsiorek, M.; Setlak, M.; Zaleski, T.; Waroszewski, J. Soil pollution indices conditioned by medieval metallurgical activity—A case study from Krakow (Poland). Environ. Pollut. 2016, 218, 1023–1036. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [Green Version]
- Gąsiorek, M.; Kowalska, J.; Mazurek, R.; Pająk, M. Comprehensive assessment of trace element pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere 2017, 179, 148–158. [Google Scholar] [CrossRef]
- Mazurek, R.; Kowalska, J.; Gąsiorek, M.; Zadrożny, P.; Józefowska, A.; Zaleski, T.; Kępka, W.; Tymczuk, M.; Orłowska, K. Assessment of trace elements contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 2017, 168, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Mirek, Z. Tatra Mts. and Tatra National Park—general information. In The Nature of Tatra National Park; Mirek, Z., Ed.; Tatry i Podtatrze: Krakow, Poland, 1996; Volume 3, pp. 17–26. ISBN 83-85832-08-4. [Google Scholar]
- Passendorfer, E. Geology. In The Nature of Tatra National Park; Mirek, Z., Ed.; Tatry i Podtatrze: Krakow, Poland, 1996; Volume 3, pp. 9–96. ISBN 83-85832-08-4. [Google Scholar]
- Komornicki, T.; Skiba, S. Soils. In The Nature of Tatra National Park; Mirek, Z., Ed.; Tatry i Podtatrze: Krakow, Poland, 1996; Volume 3, pp. 215–226. ISBN 83-85832-08-4. [Google Scholar]
- Hess, M.T. Climate. In The Nature of Tatra National Park; Mirek, Z., Ed.; Tatry i Podtatrze: Krakow, Poland, 1996; Volume 3, pp. 53–68. ISBN 83-85832-08-4. [Google Scholar]
- Piękoś-Mirkowa, H.; Mirek, Z. Plant communities. In The Nature of Tatra National Park; Mirek, Z., Ed.; Tatry i Podtatrze: Krakow, Poland, 1996; Volume 3, pp. 235–274. ISBN 83-85832-08-4. [Google Scholar]
- Skiba, S. Studies on soils developed in different climatic and plant floors of the crystalline part of the Polish Tatra Mts. Soil Sci. Annu. 1977, 28, 205–239. (In Polish) [Google Scholar]
- PAN, Polish Geological Society. Geological Map of Polish Tatra Mts. 1:30,000; Geological Publishing: Warszawa, Poland, 1979. [Google Scholar]
- FAO. Guidelines for Soil Description, 4th ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; p. 109. ISBN 92-5-105521-1. [Google Scholar]
- Munsell. Standard Soil Color Charts; 1975. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; WRB: Greenwich, CT, USA, 2014; ISBN 9789251083697. [Google Scholar]
- van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed; ISRIC: Wageningen, The Netherlands, 2002. [Google Scholar]
- Polish Standard. PN-ISO 14235:2003 Soil Quality-Determination of Organic Carbon by Oxidation with Dichromate (VI) in a Sulfuric Acid (VI) Medium; Polish Committee for Standardization: Warszawa, Poland, 2003. (In Polish) [Google Scholar]
- Polish Standard. Polish Standard, PN-ISO 11261:2002 Soil Quality–Determination of Total Nitrogen-Modified Kjeldahl Method; Polish Committee for Standardization: Warszawa, Poland, 2002. (In Polish) [Google Scholar]
- Ostrowska, A.; Gawlinski, S.; Szczubiałka, Z. Methods of Analysis and Assessment of Soil and Plant Properties. A Catalogue; Institute of Environmental Protection e National Research Institute: Warsaw, Poland, 1991. (In Polish) [Google Scholar]
- Häkanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Gałuszka, A.; Migaszewski, Z. Geochemical background: An environmental perspective. Mineralogia 2011, 42, 7–17. [Google Scholar] [CrossRef]
- Jansen, B.; Nierop, K.G.J.; Verstraten, J.M. Mechanisms controlling the mobility of dissolved organic matter, aluminium and iron in podzol B horizons. Eur. J. Soil Sci. 2005, 56, 537–550. [Google Scholar] [CrossRef]
- Drewnik, M. Geomorfologiczne Uwarunkowania Rozwoju Pokrywy Glebowej W Obszarach Górskich Na Przykładzie Tatr; Wydawnictwo Uniwersytetu Jagiellońskiego: Kraków, Poland, 2008; p. 120. ISBN 978-83-233-2451-5. [Google Scholar]
- Miechówka, A.; Zaleski, T.; Kowalczyk, E. Distribution of iron and aluminum forms as an indicator of present-day soil-forming processes in soil profiles under wooded spruce Plagiothecio-Piccetum tatricum in the Gorce Mts. (southern Poland). Soil Sci. Annu. 2015, 66, 125–132. [Google Scholar] [CrossRef]
- Oleksynowa, K.; Skiba, S.; Miechówka, A. Soils formed on granitoids in Pinetum mughi communities in the Tatra Mts. Part I. Morphological and chemical properties. Soil Sci. Annu. 1983, 34, 227–249. [Google Scholar]
- Konecka-Betley, K. Reconstruction of late Pleistocene and Holocene pedological processes in the central Poland. Soil Sci. Annu. 2001, 52, 99–118, (In Polish with English Summary). [Google Scholar]
- Miles, J. The pedogenic effects of different species and vegetation types and the implications of succession. J. Soil Sci. 1985, 36, 571–584. [Google Scholar] [CrossRef]
- Waroszewski, J.; Kalinski, K.; Malkiewicz, M.; Mazurek, R.; Kozlowski, G.; Kabala, C. Pleistocene–Holocene cover-beds on granite regolith as parent material for Podzols—An example from the Sudeten Mountains. Catena 2013, 104, 161–173. [Google Scholar] [CrossRef]
- Raczuk, J. Heavy metals in the forest soils of the South Podlasie Lowland. Acta Agroph. 2001, 51, 263–274. [Google Scholar]
- Jonczak, J. Vertical distribution of Cu, Ni and Zn in Brunic Arenosols and Gleyic Podzols of the supra-flood terrace of the Słupia River as affected by litho-pedogenic factors. For. Res. Pap. 2015, 75, 333–341. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, J.D.; Hendershot, W.H. Spatial variability of trace metals in Podzols of northern forest ecosystems: Sampling implications. Can. J. Soil Sci. 2003, 83, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Starr, M.; Lindroosa, A.J.; Ukonmaanahoa, L.; Tarvainenb, T.; Tanskanen, H. Weathering release of heavy metals from soil in comparison to deposition, litter fall and leaching fluxes in a remote, boreal coniferous forest. Appl. Geochem. 2003, 18, 607–613. [Google Scholar] [CrossRef]
- Waroszewski, J.; Sprafke, T.; Kabala, C.; Musztyfaga, E.; Łabaz, B.; Woźniczka, P. Aeolian silt contribution to soils on mountain slopes (Mt. Śleȩza, southwest Poland). Quat. Res. 2018, 89, 702–717. [Google Scholar] [CrossRef]
- Souchez, R.A. The Origin of Morainic Deposits and the Characteristics of Glacial Erosion in the Western Sør-Rondane, Antarctica. J. Glaciol. 1966, 6, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Zhao, Y.; Nan, F.; Duan, Y.; Bi, R. Relative influence of soil chemistry and topography on soil available micronutrients by structural equation modeling. J. Soil Sci. Plant Nutr. 2016, 16, 1038–1051. [Google Scholar] [CrossRef] [Green Version]
- Henkner, J.; Ahlrichs, J.; Downey, S.; Fuchs, M.; James, B.; Junge, A.; Knopf, T.; Scholten, T.; Kühn, P. Archaeopedological analysis of colluvial deposits in favourable and unfavourable areas: Reconstruction of land use dynamics in SW Germany. R. Soc. Open Sci. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- De Santo, A.V.; Fierro, A.; Berg, B.; Rutigliano, F.A.; De Marco, A. Heavy metals and litter decomposition in coniferous forests. Dev. Soil Sci. 2002, 28, 63–78. [Google Scholar] [CrossRef]
- Naumov, V.D.; Kamennyh, N.L.; Lebedev, A.V.; Gemonov, A.V.; Gemonova, P.S. Heavy metals in sod-podzolic soils under forest stands of Moscow. IOP Conf. Ser. Earth Environ. Sci. 2020, 421. [Google Scholar] [CrossRef]
- McEnroe, N.A.; Helmisaari, H.S. Decomposition of coniferous forest litter along a heavy metal pollution gradient, south-west Finland. Environ. Pollut. 2001, 113, 11–18. [Google Scholar] [CrossRef]
- Falkengren-Grerup, U. Soil acidification and vegetation changes in deciduous forest in southern Sweden. Oecologia 1986, 70, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Barkan, V.S.; Lyanguzova, I.V. Changes in the Degree of Contamination of Organic Horizons of Al–Fe-Humus Podzols upon a Decrease in Aerotechnogenic Loads, the Kola Peninsula. Eurasian Soil Sci. 2018, 51, 327–335. [Google Scholar] [CrossRef]
- Steinnes, E. Impact of Long-range Atmospheric Transport of Heavy Metals to the Terrestrial Environment in Norway. Lead Mercur. Cadmium Arsen. Environ. 1987, 107–117. [Google Scholar]
- Nowack, B.; Obrecht, J.M.; Schluep, M.; Schulin, R.; Hansmann, W.; Köppel, V. Elevated lead and zinc contents in remote alpine soils of the Swiss National Park. J. Environ. Qual. 2001, 30, 919–926. [Google Scholar] [CrossRef]
- Skłodowski, P.; Maciejewska, A.; Szafranek, A. Podzolization process effect on distribution of traces elements in profile of podzol soils. Soil Sci. Annu. 1988, 39, 113–128, (In Polish with English Summary). [Google Scholar]
- Stobiński, M.; Kubica, B. Chemometric analysis of 137Cs activity and heavy metals distribution in the Tatras’ soil. Int. J. Environ. Sci. Technol. 2017, 14, 1217–1224. [Google Scholar] [CrossRef]
- Grodzińska, K.; Szarek, G.; Godzik, B. Heavy metal deposition in Polish national parks—Changes during ten years. Water Air Soil Pollut. 1990, 49, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Karczewska, A.; Szopka, K.; Kabała, C.; Bogacz, A. Zinc and lead in forest soils of Karkonosze National Park. Polish J. Environ. Stud. 2006, 15, 336–342. [Google Scholar]
- Ghazaryan, K.A.; Movsesyan, H.S.; Ghazaryan, N.P. Heavy Metals in the Soils of the Mining Regions of Kajaran, Armenia: A Preliminary Definition of Contaminated Areas. Acad. J. Sci. 2017, 7, 421–429. [Google Scholar]
- Pacyna, J.M.; Pacyna, E.G. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 2001, 44, 269–298. [Google Scholar] [CrossRef]
- Steinnes, E.; Allen, R.O.; Petersen, H.M.; Rambaek, J.P.; Varskog, P. Evidence of large scale heavy-metal contamination of natural surface soils in Norway fromlong-range atmospheric transport. Sci. Total Environ. 1997, 205, 255–266. [Google Scholar] [CrossRef]
Profile Number | Altitude a.s.l. (Slope Rating/Exposure) | Landform and Topography * | Parent Material | Vegetation | WRB Classification (WRS, IUSS Working Group 2015) |
---|---|---|---|---|---|
1 | 1080 (15°/NNW) | MS | Pleistocene moraine deposits | Plagiothecio-Piceetum (tatricum) | Endoskeletic Albic Podzol (Loamic) |
2 | 1130 (13°/NNW) | MS | Pleistocene moraine deposits | Endoskeletic Albic Podzol (Arenic) | |
3 | 1200 (15°/NNW) | MS | sandstone and bright quartzite slope deposits | Episkeletic Albic Podzol (Arenic) | |
4 | 1890 (45°/NW) | MS | Pegmatite granite slope deposits | Episkeletic Albic Podzol (Arenic) | |
5 | 1360 (15°/N) | MS | Pleistocene moraine deposits | Vaccinium myrtillus | Episkeletic Albic Stagnic Podzol (Arenic) |
6 | 1380 (15°/N) | MS | Pleistocene moraine deposits | Episkeletic Albic Podzol (Arenic) | |
7 | 1720 (/50°/NW) | US | red quartzite sandstone slope deposits | Endoskeletic Albic Podzol (Loamic) | |
8 | 1770 (45°/NW) | US | white granite gneiss slope deposits | Episkeletic Umbric Podzol (Arenic) | |
9 | 930 (15°/N) | MS | Pleistocene moraine deposits | Hieracio (vulgati)—Nardetum | Episkeletic Albic Podzol (Siltic) |
10 | 1210 (15°/SE) | MS | Pleistocene moraine deposits | Endoskeletic Albic Podzol (Loamic) | |
11 | 1385 (15°/N) | MS | Pleistocene moraine deposits | Endoskeletic Albic Podzol (Loamic) | |
12 | 1590 (45°/NE) | MS | white granite gneiss slope deposits | Episkeletic Albic Podzol (Arenic) | |
13 | 1890 (45°/N) | US | Pleistocene moraine deposits | Endoskeletic Albic Podzol (Loamic) |
Exchangeable Cations | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Profile Number | Soil Horizon | Depth (cm) | pH | Ca2+ | Mg2+ | Na+ | K+ | TEB | EA | CEC | BS | TOC | NT | C/N | |
H2O | KCl | cmol(+) · kg−1 | % | g·kg−1 | |||||||||||
1 | Ol | 0–10 | 3.5 | 2.4 | 12.4 | 13.3 | 1.52 | 17.54 | 44.8 | 203 | 248 | 18 | 379 | 17.2 | 22.1 |
Oh | 10–14 | 3.7 | 2.8 | 1.67 | 4.42 | 0.93 | 4.03 | 11.0 | 331 | 342 | 3 | 125 | 10.5 | 11.9 | |
AE | 14–27 | 4.3 | 3.5 | 0.28 | 0.52 | 0.41 | 0.82 | 2.03 | 265 | 267 | 1 | 27.9 | 2.20 | 12.7 | |
Bs | 27–44 | 4.7 | 4.1 | 0.10 | 0.25 | 0.26 | 0.70 | 1.31 | 123 | 124 | 1 | 36.0 | 1.90 | 18.9 | |
BC | 44–56 | 4.8 | 4.3 | 0.11 | 0.23 | 0.21 | 0.80 | 1.35 | 74.3 | 75.6 | 2 | 26.6 | 1.40 | 19.0 | |
2 | Ol | 0–4 | 3.4 | 2.3 | 16.1 | 9.20 | 1.07 | 9.62 | 36.0 | 271 | 307 | 12 | 379 | 18.0 | 21.1 |
Oh | 4–8 | 3.5 | 2.4 | 6.65 | 1.24 | 0.91 | 6.60 | 15.4 | 314 | 329 | 5 | 181 | 11.9 | 15.3 | |
A | 8–18 | 4.0 | 3.1 | 0.48 | 1.33 | 0.27 | 1.13 | 3.21 | 231 | 234 | 1 | 45.9 | 2.60 | 17.7 | |
E | 18–40 | 4.9 | 3.7 | 0.98 | 4.82 | 0.26 | 0.45 | 6.51 | 220 | 227 | 3 | 19.8 | 0.70 | 28.3 | |
BsC | 40–70 | 4.6 | 4.1 | 0.04 | 0.29 | 0.24 | 0.64 | 1.22 | 78.5 | 79.8 | 2 | 43.8 | 2.10 | 20.9 | |
3 | Ol | 0–4 | 3.6 | 2.5 | 19.4 | 16.1 | 1.82 | 30.4 | 67.9 | 203 | 271 | 25 | 373 | 16.7 | 22.4 |
Oh | 4–8 | 3.4 | 2.4 | 3.02 | 7.25 | 2.03 | 6.41 | 18.7 | 280 | 299 | 6 | 199 | 11.9 | 16.8 | |
AE | 8–12 | 3.6 | 2.8 | 1.07 | 2.40 | 0.54 | 1.79 | 5.80 | 212 | 218 | 3 | 61.4 | 4.10 | 15.0 | |
BsC | 12–28 | 4.4 | 3.8 | 0.11 | 0.52 | 0.26 | 0.78 | 1.67 | 140 | 141 | 1 | 34.1 | 2.0 | 17.1 | |
4 | Ol | 0–2 | 3.5 | 2.5 | 8.45 | 15.1 | 0.76 | 13.5 | 37.9 | 263 | 301 | 13 | 328 | 16.0 | 20.5 |
Oh | 2–6 | 3.5 | 2.5 | 8.32 | 9.66 | 1.01 | 8.66 | 27.6 | 118 | 146 | 19 | 210 | 12.2 | 17.2 | |
A | 6–14 | 3.8 | 2.7 | 2.56 | 4.49 | 0.44 | 3.68 | 11.1 | 180 | 191 | 6 | 80.3 | 5.90 | 13.6 | |
E | 14–20 | 4.0 | 3.0 | 1.27 | 1.77 | 0.42 | 1.86 | 5.32 | 256 | 262 | 2 | 66.7 | 3.70 | 18.0 | |
BsC | 20–39 | 4.5 | 3.8 | 0.37 | 0.60 | 0.27 | 1.20 | 2.44 | 176 | 178 | 1 | 33.8 | 2.10 | 16.1 | |
5 | Olf | 0–3 | 3.3 | 2.8 | 7.90 | 10.41 | 1.05 | 22.3 | 41.6 | 144 | 186 | 22 | 356 | 7.70 | 46.3 |
A | 3–7 | 3.6 | 2.6 | 1.51 | 2.03 | 0.37 | 2.43 | 6.35 | 114 | 121 | 5 | 63.4 | 6.20 | 10.2 | |
AE | 7–19 | 3.9 | 2.9 | 2.78 | 1.31 | 0.28 | 1.44 | 5.81 | 116 | 122 | 5 | 24.7 | 2.40 | 10.3 | |
E | 19–37 | 4.0 | 2.7 | 1.40 | 1.15 | 0.21 | 0.92 | 3.67 | 159 | 162 | 2 | 9.8 | 1.00 | 9.80 | |
BsC | 37–50 | 4.3 | 3.5 | 0.98 | 0.77 | 0.21 | 1.10 | 3.07 | 172 | 175 | 2 | 23.5 | 2.00 | 11.8 | |
6 | Olf | 0–6 | 4.1 | 2.8 | 7.35 | 26.5 | 0.98 | 45.9 | 80.7 | 152 | 233 | 35 | 378 | 17.9 | 21.1 |
A | 6–11 | 4.0 | 3.0 | 1.25 | 5.36 | 0.59 | 5.69 | 12.8 | 152 | 165 | 8 | 84.1 | 8.10 | 10.4 | |
E | 11–16 | 4.2 | 3.2 | 1.16 | 1.56 | 0.26 | 2.35 | 5.33 | 138 | 143 | 4 | 33.3 | 3.70 | 9.00 | |
BsC | 16–39 | 4.8 | 4.1 | 0.28 | 0.40 | 0.26 | 1.25 | 2.19 | 67.9 | 70.1 | 3 | 21.3 | 1.70 | 12.5 | |
7 | Ol | 0–3 | 3.6 | 2.7 | 13.1 | 7.57 | 0.60 | 7.46 | 28.8 | 229 | 258 | 11 | 341 | 18.7 | 18.2 |
Oh | 3–8 | 3.7 | 2.9 | 6.66 | 7.50 | 1.03 | 7.01 | 22.2 | 229 | 251 | 9 | 177 | 12.1 | 14.7 | |
A | 8–23 | 4.4 | 3.6 | 1.53 | 0.80 | 0.33 | 1.32 | 3.98 | 133 | 137 | 3 | 25.5 | 2.20 | 11.6 | |
E | 23–38 | 4.5 | 3.5 | 1.21 | 1.08 | 0.48 | 1.70 | 4.47 | 150 | 155 | 3 | 29.8 | 2.90 | 10.3 | |
BsC | 38–58 | 4.6 | 3.8 | 0.57 | 0.68 | 0.39 | 1.27 | 2.91 | 114 | 117 | 2 | 31.3 | 2.60 | 12.0 | |
8 | Olf | 0–10 | 3.5 | 2.6 | 19.4 | 22.4 | 1.19 | 20.0 | 63.2 | 203 | 267 | 24 | 339 | 13.1 | 25.9 |
AE | 10–33 | 3.7 | 2.8 | 2.62 | 3.47 | 0.55 | 3.26 | 9.89 | 186 | 196 | 5 | 73.3 | 4.40 | 16.7 | |
BsC1 | 33–40 | 4.0 | 3.1 | 0.74 | 1.48 | 0.41 | 1.79 | 4.42 | 231 | 235 | 2 | 45.4 | 2.70 | 16.8 | |
BsC2 | 40–60 | 4.7 | 4.0 | 0.75 | 0.68 | 0.35 | 1.12 | 2.90 | 110 | 113 | 3 | 30.1 | 2.20 | 13.7 | |
9 | Olf | 0–6 | 3.8 | 3.0 | 2.73 | 8.23 | 1.27 | 9.17 | 21.4 | 237 | 259 | 8 | 172 | 12.6 | 13.7 |
A | 6–10 | 4.6 | 3.6 | 1.88 | 2.40 | 0.35 | 2.33 | 6.96 | 108 | 115 | 6 | 37.2 | 4.20 | 8.90 | |
E | 10–18 | 4.6 | 3.7 | 1.98 | 0.67 | 0.23 | 1.08 | 3.95 | 104 | 108 | 4 | 21.9 | 2.70 | 8.10 | |
Bs | 18–24 | 4.7 | 3.9 | 1.42 | 0.63 | 0.30 | 0.97 | 3.32 | 84.9 | 88.2 | 4 | 31.9 | 3.70 | 8.60 | |
BC | 24–60 | 4.8 | 3.9 | 3.20 | 0.85 | 0.27 | 1.18 | 5.49 | 93.4 | 98.9 | 6 | 9.50 | 1.20 | 7.90 | |
10 | Olf | 0–2 | 3.9 | 3.0 | 12.2 | 14.7 | 0.89 | 13.3 | 41.2 | 135. | 177 | 23 | 213 | 9.80 | 21.8 |
A | 2–6 | 4.0 | 3.1 | 3.21 | 4.25 | 0.34 | 2.93 | 10.7 | 118 | 129 | 8 | 49.4 | 4.50 | 11.0 | |
AE | 6–23 | 4.0 | 3.5 | 2.13 | 0.70 | 0.26 | 0.86 | 3.95 | 40.3 | 44.3 | 9 | 9.80 | 1.10 | 8.90 | |
E | 23–45 | 5.7 | 4.4 | 8.67 | 0.14 | 0.22 | 0.35 | 9.38 | 10.6 | 19.9 | 47 | 1.30 | 0.30 | 4.30 | |
BsC | 45–70 | 5.8 | 4.4 | 2.79 | 1.58 | 0.25 | 0.82 | 5.44 | 25.4 | 30.9 | 18 | 14.1 | 1.30 | 10.8 | |
11 | Olf | 0–3 | 4.0 | 3.0 | 7.90 | 17.1 | 1.17 | 21.0 | 47.2 | 161 | 208 | 23 | 355 | 18.8 | 18.9 |
A | 3–8 | 3.5 | 3.2 | 0.92 | 3.70 | 0.72 | 3.91 | 9.24 | 148 | 157 | 6 | 59.5 | 6.10 | 9.80 | |
AE | 8–16 | 4.4 | 3.7 | 1.28 | 1.17 | 0.42 | 1.68 | 4.56 | 121 | 125 | 4 | 29.2 | 3.80 | 7.70 | |
BsC1 | 16–40 | 4.7 | 4.0 | 1.17 | 0.39 | 0.29 | 0.99 | 2.84 | 121 | 123 | 2 | 14.4 | 2.00 | 7.20 | |
BsC2 | 40–65 | 4.9 | 4.2 | 0.89 | 0.34 | 0.26 | 0.88 | 2.37 | 42.4 | 44.8 | 5 | 16.4 | 1.50 | 10.9 | |
12 | Olf | 0–3 | 3.8 | 3.0 | 9.63 | 5.14 | 0.43 | 4.96 | 20.1 | 144 | 164 | 12 | 61.5 | 4.5 | 13.7 |
A | 3–26 | 4.2 | 3.2 | 2.38 | 1.17 | 0.22 | 1.73 | 5.50 | 146 | 152 | 4 | 22.4 | 2.4 | 9.30 | |
AE | 26–43 | 4.4 | 3.3 | 1.68 | 0.80 | 0.18 | 1.46 | 4.12 | 172 | 176 | 2 | 14.6 | 1.5 | 9.70 | |
BsC | 43–62 | 4.4 | 3.6 | 1.31 | 0.49 | 0.24 | 1.24 | 3.28 | 157 | 160 | 2 | 25.2 | 1.6 | 15.8 | |
13 | Ol | 0–3 | 4.3 | 3.4 | 16.5 | 15.4 | 1.18 | 28.5 | 61.5 | 170 | 232 | 27 | 356.9 | 21.7 | 16.4 |
Oh1 | 3–6 | 4.0 | 3.3 | 4.17 | 7.44 | 0.77 | 11.4 | 23.8 | 229 | 253 | 9 | 198.4 | 17.6 | 11.3 | |
Oh2 | 6–20 | 4.7 | 4.0 | 0.25 | 1.91 | 0.43 | 3.39 | 5.98 | 195 | 201 | 3 | 114.2 | 10.3 | 11.1 | |
AE | 20–50 | 4.6 | 3.7 | 0.43 | 1.51 | 0.52 | 2.39 | 4.85 | 125 | 130 | 3.73 | 81.6 | 8.0 | 10.2 | |
BsC | 50–70 | 4.9 | 4.2 | 0.08 | 0.48 | 0.27 | 1.17 | 2.01 | 61.5 | 63.6 | 3.15 | 60.9 | 5.2 | 11.7 |
Profile Number | Soil Horizon | Alo | Feo | Alp | Fep | Cp | Index of Alp, Fep, Cp Complex Content in Spodic Horizon | Molar Ratio of Organic Carbon to the Sum of Alp and Fep | The Displacement Ratio of Amorphous Forms of Alo and Feo | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alp + Fep + Cp * | Cp/Alp + Fep * | Alo + 0.5 Feo ** | ||||||||||
% | % | mol | % | mol | % | mol | mol | |||||
1 | AE | 0.37 | 0.93 | 0.29 | 0.01 | 0.71 | 0.01 | 1.69 | 0.14 | 2.70 | 6.00 | 0.83 |
Bs | 1.24 | 2.13 | 0.77 | 0.03 | 1.51 | 0.03 | 3.28 | 0.27 | 5.55 | 4.93 | 2.31 | |
BC | 1.53 | 0.92 | 0.83 | 0.03 | 0.84 | 0.02 | 2.58 | 0.21 | 4.26 | 4.67 | 2.00 | |
2 | A | 0.30 | 0.43 | 0.21 | 0.01 | 0.25 | 0.00 | 1.85 | 0.15 | 2.31 | 12.53 | 0.51 |
E | 0.29 | 0.42 | 0.20 | 0.01 | 0.19 | 0.00 | 0.65 | 0.05 | 1.04 | 5.05 | 0.50 | |
BsC | 2.52 | 1.46 | 1.06 | 0.04 | 0.96 | 0.02 | 1.98 | 0.17 | 4.01 | 2.92 | 3.25 | |
3 | AE | 0.35 | 0.69 | 0.23 | 0.01 | 0.50 | 0.01 | 2.74 | 0.23 | 3.48 | 13.03 | 0.70 |
BsC | 0.75 | 1.03 | 0.56 | 0.02 | 0.65 | 0.01 | 2.54 | 0.21 | 3.75 | 6.55 | 1.27 | |
4 | E | 0.31 | 0.38 | 0.35 | 0.01 | 0.11 | 0.00 | 1.73 | 0.14 | 2.19 | 9.53 | 0.50 |
BsC | 0.68 | 1.33 | 0.58 | 0.02 | 0.96 | 0.02 | 2.90 | 0.24 | 4.44 | 6.25 | 1.34 | |
5 | AE | 0.11 | 0.40 | 0.08 | 0.00 | 0.24 | 0.00 | 1.78 | 0.15 | 2.09 | 21.20 | 0.31 |
E | 0.41 | 0.08 | 0.04 | 0.00 | 0.07 | 0.00 | 0.84 | 0.07 | 0.94 | 26.28 | 0.45 | |
BsC | 0.54 | 0.89 | 0.38 | 0.01 | 0.66 | 0.01 | 2.02 | 0.17 | 3.06 | 6.50 | 0.98 | |
6 | E | 0.20 | 0.41 | 0.27 | 0.01 | 0.16 | 0.00 | 1.09 | 0.09 | 1.52 | 7.08 | 0.40 |
BsC | 0.90 | 1.28 | 0.37 | 0.01 | 0.86 | 0.02 | 2.08 | 0.17 | 3.31 | 5.93 | 1.54 | |
7 | E | 0.23 | 0.17 | 0.17 | 0.01 | 0.13 | 0.00 | 1.12 | 0.09 | 1.42 | 10.74 | 0.31 |
BsC | 0.66 | 0.76 | 0.61 | 0.02 | 0.73 | 0.01 | 2.66 | 0.22 | 3.99 | 6.22 | 1.04 | |
8 | AE | 0.20 | 0.18 | 0.11 | 0.00 | 0.16 | 0.00 | 2.04 | 0.17 | 2.31 | 23.67 | 0.29 |
BsC1 | 0.29 | 0.42 | 0.10 | 0.00 | 0.17 | 0.00 | 1.65 | 0.14 | 1.92 | 20.13 | 0.50 | |
BsC2 | 0.93 | 1.77 | 0.40 | 0.01 | 1.03 | 0.02 | 2.37 | 0.20 | 3.80 | 5.91 | 1.82 | |
9 | E | 0.43 | 0.83 | 0.28 | 0.01 | 0.42 | 0.01 | 0.93 | 0.08 | 1.63 | 4.30 | 0.85 |
Bs | 0.64 | 0.95 | 0.42 | 0.02 | 0.43 | 0.01 | 1.39 | 0.12 | 2.24 | 4.93 | 1.11 | |
BC | 0.44 | 0.19 | 0.21 | 0.01 | 0.19 | 0.00 | 0.49 | 0.04 | 0.89 | 3.63 | 0.54 | |
10 | AE | 0.03 | 0.18 | 0.03 | 0.00 | 0.07 | 0.00 | 0.38 | 0.03 | 0.48 | 13.14 | 0.11 |
E | 0.04 | 0.03 | 0.02 | 0.00 | 0.02 | 0.00 | 0.08 | 0.01 | 0.13 | 5.81 | 0.05 | |
BsC | 1.01 | 1.33 | 0.65 | 0.02 | 0.92 | 0.02 | 1.39 | 0.12 | 2.96 | 2.84 | 1.68 | |
11 | AE | 0.36 | 0.36 | 0.30 | 0.01 | 0.27 | 0.00 | 1.69 | 0.14 | 2.25 | 8.91 | 0.55 |
BsC1 | 0.51 | 0.33 | 0.36 | 0.01 | 0.33 | 0.01 | 0.93 | 0.08 | 1.62 | 4.04 | 0.68 | |
BsC2 | 0.79 | 0.83 | 0.57 | 0.02 | 0.81 | 0.01 | 1.45 | 0.12 | 2.84 | 3.39 | 1.20 | |
12 | A | 0.21 | 0.54 | 0.11 | 0.00 | 0.30 | 0.01 | 1.04 | 0.09 | 1.46 | 9.17 | 0.48 |
AE | 0.19 | 0.24 | 0.11 | 0.00 | 0.19 | 0.00 | 0.50 | 0.04 | 0.80 | 5.53 | 0.31 | |
13 | BsC | 0.60 | 1.36 | 0.42 | 0.02 | 0.87 | 0.02 | 2.02 | 0.17 | 3.31 | 5.39 | 1.28 |
AE | 0.91 | 0.82 | 0.64 | 0.02 | 0.38 | 0.01 | 1.97 | 0.16 | 3.00 | 5.36 | 1.32 | |
BsC | 2.07 | 1.31 | 1.00 | 0.04 | 0.94 | 0.02 | 1.99 | 0.17 | 3.92 | 3.07 | 2.73 |
Profile | Horizon Symbol | Depth (cm) | Cd | Pb | Zn | Cr | Cu | Ni |
---|---|---|---|---|---|---|---|---|
mg·kg−1 | ||||||||
1 | Ol | 0–10 | 1.38 | 24.8 | 26.8 | 9.55 | 9.73 | 3.33 |
Oh | 10–14 | 1.28 | 32.8 | 23.6 | 12.1 | 10.7 | 4.03 | |
AE | 14–27 | 1.00 | 16.7 | 19.3 | 14.9 | 8.60 | 4.85 | |
Bs | 27–44 | 1.03 | 19.7 | 33.5 | 22.4 | 11.5 | 8.95 | |
BC | 44–56 | 0.75 | 17.5 | 49.3 | 26.2 | 13.6 | 17.0 | |
2 | Ol | 0–4 | 1.33 | 49.3 | 45.3 | 15.2 | 14.4 | 4.25 |
Oh | 4–8 | 0.03 | 9.50 | 19.4 | 5.78 | 5.05 | 1.68 | |
A | 8–18 | 2.03 | 16.5 | 19.0 | 5.10 | 5.83 | 1.63 | |
E | 18–40 | 1.53 | 12.5 | 12.7 | 4.70 | 3.65 | 1.55 | |
BsC | 40–70 | 0.38 | 19.4 | 34.8 | 14.1 | 6.03 | 5.13 | |
3 | Ol | 0–4 | 0.23 | 11.5 | 21.2 | 5.93 | 5.63 | 2.00 |
Oh | 4–8 | 0.10 | 49.5 | 35.3 | 10.3 | 7.55 | 3.23 | |
AE | 8–12 | 0.05 | 14.1 | 26.3 | 8.45 | 2.95 | 2.35 | |
BsC | 12–28 | 1.53 | 20.8 | 11.8 | 3.28 | 1.13 | 0.95 | |
4 | Ol | 0–2 | 1.15 | 34.3 | 38.3 | 6.85 | 8.00 | 2.53 |
Oh | 2–6 | 0.13 | 18.7 | 24.7 | 6.78 | 5.20 | 1.80 | |
A | 6–14 | 0.20 | 11.2 | 13.3 | 3.80 | 2.15 | 0.75 | |
E | 14–20 | 1.18 | 17.1 | 11.3 | 4.83 | 3.00 | 1.08 | |
BsC | 20–39 | 1.33 | 18.0 | 24.2 | 9.00 | 3.38 | 2.00 | |
5 | Olf | 0–3 | 0.00 | 8.6 | 15.8 | 6.95 | 8.95 | 3.98 |
A | 3–7 | 0.20 | 11.7 | 15.6 | 9.10 | 9.73 | 4.68 | |
AE | 7–19 | 1.50 | 17.7 | 11.1 | 11.2 | 5.70 | 3.53 | |
E | 19–37 | 1.20 | 9.00 | 17.3 | 11.1 | 11.9 | 6.50 | |
BsC | 37–50 | 1.43 | 16.6 | 16.5 | 13.1 | 12.0 | 8.00 | |
6 | Olf | 0–6 | 0.60 | 13.8 | 44.3 | 4.33 | 8.20 | 2.83 |
A | 6–11 | 1.13 | 31.0 | 24.9 | 9.25 | 6.15 | 2.80 | |
E | 11–16 | 0.93 | 10.7 | 44.8 | 12.4 | 5.08 | 2.58 | |
BsC | 16–39 | 1.70 | 26.8 | 39.8 | 12.6 | 17.1 | 13.3 | |
7 | Ol | 0–3 | 0.73 | 34.3 | 41.3 | 13.2 | 13.3 | 3.65 |
Oh | 3–8 | 1.23 | 14.3 | 20.2 | 6.50 | 6.00 | 1.73 | |
A | 8–23 | 0.28 | 4.90 | 13.7 | 3.15 | 1.83 | 0.85 | |
E | 23–38 | 1.10 | 13.7 | 16.3 | 4.13 | 3.18 | 1.10 | |
BsC | 38–58 | 0.90 | 11.7 | 25.5 | 3.65 | 1.70 | 1.58 | |
8 | Olf | 0–10 | 1.05 | 44.8 | 49.3 | 9.63 | 13.9 | 4.55 |
AE | 10–33 | 0.40 | 13.4 | 34.5 | 12.7 | 25.7 | 10.5 | |
BsC1 | 33–40 | 1.28 | 20.1 | 44.8 | 18.3 | 35.0 | 13.2 | |
BsC2 | 40–60 | 1.60 | 28.0 | 65.8 | 19.7 | 35.5 | 14.7 | |
9 | Olf | 0–6 | 0.30 | 19.5 | 60.8 | 27.7 | 14.3 | 12.6 |
A | 6–10 | 0.15 | 27.5 | 88.8 | 33.0 | 17.0 | 18.5 | |
E | 10–18 | 1.45 | 26.0 | 71.3 | 42.7 | 15.5 | 15.2 | |
Bs | 18–24 | 0.38 | 18.9 | 68.0 | 32.5 | 14.4 | 18.6 | |
BC | 24–60 | 1.30 | 22.6 | 61.0 | 30.7 | 16.5 | 27.0 | |
10 | Olf | 0–2 | 4.28 | 16.4 | 30.8 | 10.9 | 6.13 | 2.25 |
A | 2–6 | 0.08 | 10.0 | 24.6 | 14.3 | 5.95 | 2.53 | |
AE | 6–23 | 1.08 | 12.8 | 12.1 | 6.43 | 1.35 | 1.40 | |
E | 23–45 | 1.18 | 15.0 | 12.5 | 6.60 | 2.98 | 2.73 | |
BsC | 45–70 | 0.20 | 14.2 | 72.3 | 24.9 | 6.85 | 12.5 | |
11 | Olf | 0–3 | 0.38 | 37.3 | 42.5 | 7.85 | 10.5 | 3.60 |
A | 3–8 | 0.28 | 34.3 | 30.8 | 9.35 | 5.50 | 2.75 | |
AE | 8–16 | 0.10 | 15.1 | 34.0 | 15.8 | 2.83 | 5.18 | |
BsC1 | 16–40 | 0.88 | 16.0 | 35.8 | 21.0 | 2.58 | 6.35 | |
BsC2 | 40–65 | 0.93 | 15.8 | 38.5 | 15.2 | 3.38 | 6.53 | |
12 | Olf | 0–3 | 0.08 | 14.4 | 19.4 | 6.48 | 6.88 | 2.78 |
A | 3–26 | 0.08 | 9.80 | 14.7 | 4.13 | 3.78 | 2.00 | |
AE | 26–43 | 0.08 | 4.50 | 14.6 | 4.90 | 4.68 | 2.18 | |
BsC | 43–62 | 0.05 | 11.1 | 16.1 | 6.53 | 8.68 | 3.43 | |
13 | Ol | 0–3 | 1.23 | 25.3 | 43.3 | 12.4 | 12.0 | 4.50 |
Oh1 | 3–6 | 0.18 | 33.3 | 43.8 | 14.0 | 10.6 | 5.08 | |
Oh2 | 6–20 | 1.48 | 32.8 | 31.3 | 12.4 | 5.45 | 3.78 | |
AE | 20–50 | 0.20 | 19.1 | 30.0 | 12.0 | 6.25 | 4.48 | |
BsC | 50–70 | 0.00 | 5.40 | 58.0 | 18.2 | 10.6 | 10.4 |
E | B | U | p | |
---|---|---|---|---|
Cd | 0.80 (0.15) | 0.85 (0.16) | 81.50 | 0.898 |
Pb | 14.38 (1.42) | 16.82 (1.48) | 54.00 | 0.124 |
Zn | 26.53 (4.72) | 37.01 (5.38) | 54.50 | 0.130 |
Cr | 11.96 (2.81) | 15.38 (2.40) | 58.00 | 0.182 |
Cu | 7.42 (1.88) | 10.09 (2.50) | 70.00 | 0.473 |
Ni | 4.64 (1.15) | 8.05 (1.51) | 55.00 | 0.137 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, J.B.; Gąsiorek, M.; Zadrożny, P.; Nicia, P.; Waroszewski, J. Deep Subsoil Storage of Trace Elements and Pollution Assessment in Mountain Podzols (Tatra Mts., Poland). Forests 2021, 12, 291. https://doi.org/10.3390/f12030291
Kowalska JB, Gąsiorek M, Zadrożny P, Nicia P, Waroszewski J. Deep Subsoil Storage of Trace Elements and Pollution Assessment in Mountain Podzols (Tatra Mts., Poland). Forests. 2021; 12(3):291. https://doi.org/10.3390/f12030291
Chicago/Turabian StyleKowalska, Joanna Beata, Michał Gąsiorek, Paweł Zadrożny, Paweł Nicia, and Jarosław Waroszewski. 2021. "Deep Subsoil Storage of Trace Elements and Pollution Assessment in Mountain Podzols (Tatra Mts., Poland)" Forests 12, no. 3: 291. https://doi.org/10.3390/f12030291
APA StyleKowalska, J. B., Gąsiorek, M., Zadrożny, P., Nicia, P., & Waroszewski, J. (2021). Deep Subsoil Storage of Trace Elements and Pollution Assessment in Mountain Podzols (Tatra Mts., Poland). Forests, 12(3), 291. https://doi.org/10.3390/f12030291