The Cooling and Humidifying Effects and the Thresholds of Plant Community Structure Parameters in Urban Aggregated Green Infrastructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of Study Area
2.1.1. Study Area
2.1.2. Sample Collection
2.2. Data Source
2.2.1. Time and Index of Measurement
2.2.2. Measurement Methods
2.3. Dummy Variable Regression Model
- (1)
- VCD: The measured concentration range of vcd was 0.60–0.95. This variable is an ordered categorical variable. Therefore, six dummy variables could be generated after quantification: vcd2 (canopy density 0.65–0.70), vcd3 (canopy density 0.71–0.75), vcd4 (canopy density 0.76–0.80), vcd5 (canopy density 0.81–0.85), vcd6 (canopy density 0.86–0.90), and vcd7 (canopy density 0.91–0.95);
- (2)
- VP: The measured concentration range of vp was 0.15–0.60. This variable is an ordered categorical variable. Therefore, six dummy variables could be generated after quantification: vp2 (porosity 0.26–0.30), vp3 (porosity 0.31–0.35), vp4 (porosity 0.36–0.40), vp5 (porosity 0.41–0.45), vp6 (porosity 0.46–0.50), and vp7 (porosity 0.51–0.60);
- (3)
- Type: There were nine types of plant in the trial site. This variable is an unordered variable that was equally distributed. Therefore, eight dummy variables could be generated after quantification: type2 (Cerasus), type3 (Acer palmatum), type4 (Liquidambar formosana), type5 (Sapium sebiferum), type6 (Osmanthus fragrans), type7 (Cercis chinensis), type8 (Cinnamomum camphora), and type9 (Atropurpureum).
3. Results
3.1. Regression Equation of Cooling Volume and Relevance Test
3.2. Regression Equation of Humidifying Volume and Relevance Test
3.3. Average Analysis of Regression Model Based on Dummy Variables
3.3.1. Mean Value of Regression Model of Canopy Density, Porosity, and Cooling Volume
3.3.2. Mean Value Results of Regression Model of Canopy Density, Porosity, and Humidifying Volume
3.3.3. Analysis on Threshold of Community Structure Parameters of the Aggregated Green Infrastructure
4. Discussion
4.1. The Dummy Variable Method
4.2. Threshold Value of Plant Community Structure Parameters in the Aggregated Green Infrastructure
4.3. Effects of Plant Community Structure Parameters on Cooling and Humidifying in Aggregated Green Infrastructure
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lionel, S.V.; Madhumitha, J.; Harini, N. Effect of street trees on microclimate and air pollution in a tropical city. Urban For. Urban Green. 2013, 12, 408–415. [Google Scholar]
- Barbieri, T.; Despini, F.; Teggi, S. A multi-temporal analyses of land surface temperature using landsat-8 data and open source software: The case study of Modena. Sustainability 2018, 10, 1678. [Google Scholar] [CrossRef] [Green Version]
- Ariane, M.; Kathrin, H.; Anthony, J.B. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar]
- Amani-Beni, M.; Zhang, B.; Xie, G.; Xu, J. Impact of urban park’s tree, grass and water body on microclimate in hot summer days: A case study of Olympic Park in Beijing, China. Urban For. Urban Green. 2018, 32, 1–6. [Google Scholar] [CrossRef]
- Richard, T.F. Some general principles of landscape and regional ecology. Landsc. Ecol. 1995, 10, 133–142. [Google Scholar]
- Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc. Urban Plan. 2010, 96, 224–231. [Google Scholar] [CrossRef]
- Chang, C.R.; Li, M.H.; Chang, S.D. A preliminary study on the local cool-island intensity of Taipei city parks. Landsc. Urban Plan. 2007, 80, 386–395. [Google Scholar] [CrossRef]
- Wu, F.; Li, S.H.; Liu, J.M. Research on the relationship between urban green spaces of different areas and the temperature and humidity benefit. Chin. Landsc. Architect. 2007, 27, 71–74. [Google Scholar]
- Gudina, L.F.; Klaus, D.; Henrik, M. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar]
- Zhang, B.; Xie, G.D.; Gao, G.X.; Yang, Y. The Cooling Effect of Urban Green Spaces As a study in Beijing, China. Build. Environ. 2014, 76, 37–43. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Assessing the Ecosystem Service of Air Pollutant Removal by Urban Trees in Guangzhou (China). J. Environ. Manag. 2008, 88, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xie, G.D.; Gai, L.Q.; Pei, S.; Zhang, C.-S.; Zhang, B.; Xiao, Y. Research on Noise Reduction Service of Road Green Spaces—A Case Study of Beijing. J. Nat. Resour. 2011, 26, 1526–1534. [Google Scholar]
- Xia, B.; Zhang, B.; Xie, G.D.; Zhang, C.Q. The Value-Added Effect of Park Green Space on Residential Property in Beijing. Resour. Sci. 2012, 34, 1347–1353. [Google Scholar]
- Gao, J.X.; Song, T.; Zhang, B.; Han, Y.W.; Gao, X.T.; Feng, C.Y. The Relationship Between Urban Green Space Community Structure and Air Temperature Reduction and Humidity Increase in Beijing. Resour. Sci. 2016, 38, 1028–1038. [Google Scholar]
- Gao, K.; Qin, J.; Song, K.; Hu, Y. Fallen Temperature Effects at Green Patches of Urban Residential Areas and Analysis of Its Influence Factors. J. Plant Resour. Environ. 2009, 18, 50–55. [Google Scholar]
- Li, Z.D.; Qin, Z. Influence of canopy structural characteristics on cooling and humidifying effects of Populus tomentosa community on calm sunny summer days. Landsc. Urban Plan. 2014, 127, 75–82. [Google Scholar]
- Han, H.J.; Zhou, Y.W. Cooling and Moisturizing Effect of Different Afforested Tree Species in July. J. Hebei Agric. Sci. 2007, 5, 28–30. [Google Scholar]
- Liu, J.M.; Li, S.H.; Yang, Z.F. Temperature and Humidity Effect of Urban Green Spaces in Beijing in Summer. Chin. J. Ecol. 2008, 27, 1972–1978. [Google Scholar]
- Qin, Z.; Li, Z.D. Impact of canopy structural characteristics on inner air temperature and relative humidity of Koelreuteria paniculata community in summer. Chin. J. Appl. Ecol. 2015, 26, 1634–1640. [Google Scholar]
- Leuning, R.; Hughes, D. A Multi-Angle Spectrometer for Automatic Measurement of Plant Canopy Reflectance Spectra. Remote Sens. Environ. 2015, 103, 236–245. [Google Scholar] [CrossRef]
- Kermavnar, J.; Marinsek, A. Evaluating Short-Term Impacts of Forest Management and Microsite Conditions on Understory Vegetation in Temperate Fir-Beech Forests: Floristic, Ecological, and Trait-Based Perspective. Forests 2019, 10, 909. [Google Scholar] [CrossRef] [Green Version]
- Aude, E.; Lawesson, J.E. Vegetation in Danish Beech Forests: The Importance of Soil, Microclimate and Management Factors, Evaluated by Variation Partitioning. Plant Ecol. 1998, 134, 53–65. [Google Scholar] [CrossRef]
- Sun, C.H.; Su, Y.X.; Han, L.S.; Wu, J.P.; Liu, L.Y.; Chen, X.Z.; Deng, Y.J.; Yang, H.Z.; Jiang, J.; Lin, H. The Simulation and Spatial-temporal variations of Atmospheric Rainfall Interception by Vegetation Canopies Based on MODIS LAI Data at the Basin Scale in the Guangdong Province from 2004 to 2016. Acta Ecol. Sin. 2020, 4040, 2252–2266. [Google Scholar]
- Bian, H.J.; Fu, H.M. Effects of Tree Canopy on the Concentration and Dry Deposition Velocity of Particles in Outdoors. J. Donghua Univ. Nat. Sci. 2019, 45, 924–937. [Google Scholar]
- Navarret, H.P.; Laffan, K. A Greener Urban Environment: Designing Green Infrastructure Interventions to Promote Citizens’ Subjective Well-Being. Landsc. Urban Plan. 2019, 109, 103618. [Google Scholar] [CrossRef]
- Aram, F.; Solgi, E. The Cooling Effect of Large-Scale Urban Parks on Surrounding Area Thermal Comfort. Energies 2019, 12, 3904. [Google Scholar] [CrossRef] [Green Version]
- Buijs, A.; Hansen, R. Mosaic Governance for Urban Green Infrastructure: Upscaling Active Citizenship from a Local Government Perspective. Urban For. Urban Green. 2019, 40, 53–62. [Google Scholar] [CrossRef]
- Sasaki, T.; Ishii, H. Evaluating Restoration Success of a 40-year-old Urban Forest in Reference to Mature Natural Forest. Urban For. Urban Green. 2018, 32, 123–132. [Google Scholar] [CrossRef]
- Qin, Z. Cooling and Humidifying Effects and Driving Mechanisms of Beijing Olympic Forest Park in Summer. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2016. [Google Scholar]
- Jansson, C.; Jansson, P.E.; Gustafsson, D. Near surface climate in an urban vegetated park and its surroundings. Theor. Appl. Climatol. 2007, 89, 185–193. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Pope, R.L.; Martin, C.A.; Brazel, A.J. Observing and modeling the nocturnal park cool island of an arid city:Horizontal and vertical impacts. Theor. Appl. Climatol. 2011, 103, 197–211. [Google Scholar] [CrossRef]
- Yu, Z.W.; Yang, G.Y.; Jørgensen, G. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Sha, X.M. Effects of Seasonal Changes of Garden Plants on the Construction of Spatial Landscape Pattern. Mol. Plant Breed. 2018, 16, 3078–3084. [Google Scholar]
- Zhang, Z.J.; Zhang, Y.F.; Jin, L. Thermal comfort in interior and semi-open spaces of rural folk houses in hot-humid areas. Build. Environ. 2018, 128, 336–347. [Google Scholar] [CrossRef]
- Skoulika, F.; Santamouris, M.; Kolokotsa, D.; Boemi, N. On the thermal characteristics and the mitigation potential of a medium size urban park in Athens, Greece. Landsc. Urban Plan. 2014, 123, 73–86. [Google Scholar] [CrossRef]
- Jaganmohan, M.; Knapp, S.; Buchmann, C.M.; Schwarz, N. The bigger, the better? The influence of urban green space design on cooling effects for residential areas. J. Environ. Qual. 2016, 45, 134. [Google Scholar] [CrossRef]
- Zheng, J.J.; Zhang, J.L. Calculation on Microclimate Benefits Urban Green Space in Huanggang City. Hubei For. Sci. Technol. 2010, 3, 6–9. [Google Scholar]
- Wang, X.S.; Teng, M.J.; Zhou, Z.X. Canopy density effects on particulate matter attenuation coefficients in street canyons during summer in the Wuhan metropolitan area. Atmos. Environ. 2020, 240, 117739. [Google Scholar] [CrossRef]
- Zhu, J.J.; Matsuzaki, T.; Gonda, Y. Optical stratification porosity as a measure of vertical canopy structure in a Japanese coastal forest. For. Ecol. Manag. 2003, 173, 89–104. [Google Scholar] [CrossRef]
- Kong, F.; Yan, W.; Zheng, G.; Yin, H.; Cavan, G.; Zhan, W.; Zhang, N.; Cheng, L. Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agric. For. Meteorol. 2016, 217, 22–34. [Google Scholar] [CrossRef]
- Liu, X.H. Influence of Plantation Ecosystems on Atmospheric Particles Concentration in Beijing Region. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2016. [Google Scholar]
- Roh, H.J. Developing Cold Region Winter Weather Traffic Models and Testing Their Temporal Transferability and Model Specification. J. Cold Regions Eng. 2019, 33. [Google Scholar] [CrossRef]
- Xu, J.M. Study on Evaluation and Sustainable Utilization of the Wetlands in Yellow River Delta (Dongying). Ph.D. Thesis, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China, 2001. [Google Scholar]
- Cao, Y.R. Analysis and Implementation of Virtual Variable Regression in SPSS. Stat. Decis. 2018, 34, 66–69. [Google Scholar]
- Mihai, F.V.; Philip, G.C. Microclimatic and spruce growth gradients adjacent to young aspen stands. For. Ecol. Manag. 2006, 221, 13–26. [Google Scholar]
- Tao, W.G.; Xu, B.; Liu, L.J.; Yabg, X.-C.; Qin, Z.-H. Yield Estimation Model for Different Utilization Status Grassland Based on Remote Sensing Data. Chin. J. Ecol. 2007, 3, 332–337. [Google Scholar]
- Xie, X.Q.; Xu, Y. Comprehensive Prediction about PM2.5 Concentrations in the Atmosphere. Electr. Power Technol. Environ. Protect. 2015, 2, 1–4. [Google Scholar]
- Liu, H.X.; Lu, Z.Y.; Jin, G.X.; Sun, G.P.; Wu, J.; Xu, L.J.; Xu, C.Y. The Influence of Canopy Structure on Comfort and Microclimate in Urban Forest in Summer in Beijing. J. Fujian Agric. For. Univ. Nat. Sci. Ed. 2018, 47, 736–742. [Google Scholar]
- Mao, X.Q.; Zhang, Q.Y. Evaluation of the effectiveness of “2 + 26” Cities’Haze Control Scheme: A case study of Shandong Province. China Popul. Resour. Environ. 2020, 30, 83–92. [Google Scholar]
- Shen, J.P.; Chen, D.S.; Sun, X.M. Modeling a single-tree biomass equation by seemingly unrelated regression and dummy variables with Larix kaempferi. J. Zhejiang A F Univ. 2019, 36, 877–885. [Google Scholar]
- Jin, J.; Wang, Q. Evaluation of Informative Bands Used in Different PLS Regressions for Estimating Leaf Biochemical Contents from Hyperspectral Reflectance. Remote Sens. 2019, 11, 197. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.; Magda, J.; Jakub, L. Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data. Remote Sens. Environ. 2009, 113, 835–845. [Google Scholar]
- Qin, Z.; Ba, C.B.; Li, Z.D. Effects of Different Plant Communities on Temperature Reduction and Humidity Increase in Beijing. Ecol. Sci. 2012, 5, 567–571. [Google Scholar]
- Emily, B.P.; McFadden, J.P. Influence of seasonality and vegetation type on suburban microclimates. Urban Ecosyst. 2010, 13, 443–460. [Google Scholar]
- Zhu, C.Y.; Ji, P.; Li, S.H. Effects of the Different Structure of Urban Green Belts on the Air Quality. J. Nanjing For. Univ. Nat. Sci. Ed. 2013, 1, 18–24. [Google Scholar]
- Zhu, C.Y.; Li, S.H.; Ji, P. Relationships between urban green belt structure and temperature-humidity effect. Chin. J. Appl. Ecol. 2011, 22, 1255–1260. [Google Scholar]
- Kabila, A.; Divine, O.A.; Kwadwo, A. Does green space matter? Public knowledge and attitude towards urban greenery in Ghana. Urban For. Urban Green. 2019, 46, 126462. [Google Scholar]
- Sarah, L.; Stephan, P.; Kumelachew, Y. Rethinking urban green infrastructure and ecosystem services from the perspective of sub-Saharan African cities. Landsc. Urban Plan. 2018, 180, 328–338. [Google Scholar]
- Bertrand, F.N.; Daniel, C.; Alexander, A.; Manfred, D. Urban Green Spaces Enhance Climate Change Mitigation in Cities of the Global South: The Case of Kumasi, Ghana. Procedia Eng. 2017, 198, 69–83. [Google Scholar]
- Zhang, M.L.; Qin, J.; Hu, Y.H. Effects of Temperature Reduction and Humidity Increase of Plant Communities in Shanghai. J. Beijing For. Univ. 2008, 2, 39–43. [Google Scholar]
- Zhang, Z.; Lv, Y.M.; Pan, H.T. Cooling and humidifying effect of plant communities in subtropical urban parks. Urban For. Urban Green. 2013, 12, 323–329. [Google Scholar] [CrossRef]
- Yuan, J.H.; Kazuo, E.; Craig, F. Is urban albedo or urban green covering more effective for urban microclimate improvement?: A simulation for Osaka. Sustain. Cities Soc. 2017, 32, 78–86. [Google Scholar] [CrossRef]
- Joseph, L.M.; Kieron, J.D.; Stefan, S. Influence of evaporative cooling by urban forests on cooling demand in cities. Urban For. Urban Green. 2019, 37, 65–73. [Google Scholar]
- Shashua-Bar, L.; Hoffman, M.E. Quantitative evaluation of passive cooling of the UCL microclimate in hot regions in summer, case study: Urban streets and courtyards with trees. Build. Environ. 2004, 39, 1087–1099. [Google Scholar] [CrossRef]
Vegetation Types | ACD (m) | ADBH (cm) | CD | P |
---|---|---|---|---|
Acer palmatum | 2.91 ± 0.21 | 11.03 ± 1.27 | 0.70 ± 0.05 | 0.50 ± 0.05 |
Cerasus | 2.52 ± 0.27 | 10.19 ± 0.61 | 0.77 ± 0.10 | 0.37 ± 0.07 |
Sapium sebiferum | 3.52 ± 0.66 | 14.80 ± 1.71 | 0.85 ± 0.04 | 0.38 ± 0.02 |
Magnolia grandiflora | 3.34 ± 0.27 | 13.95 ± 0.89 | 0.76 ± 0.12 | 0.40 ± 0.02 |
Osmanthus fragrans | 2.61 ± 0.56 | 10.40 ± 1.13 | 0.87 ± 0.07 | 0.21 ± 0.03 |
Liquidambar formosana | 3.68 ± 0.52 | 13.69 ± 0.72 | 0.81 ± 0.10 | 0.35 ± 0.09 |
Atropurpureum | 2.49 ± 0.20 | 7.43 ± 0.35 | 0.76 ± 0.10 | 0.37 ± 0.08 |
Cinnamomum camphora | 4.25 ± 0.33 | 22.02 ± 1.46 | 0.73 ± 0.12 | 0.44 ± 0.12 |
Cercis chinensis | 3.05 ± 0.20 | 10.50 ± 0.68 | 0.83 ± 0.06 | 0.32 ± 0.05 |
Structure Parameter | Section | Coefficients | Standard Deviation |
---|---|---|---|
Canopy Density | 0.65–0.70 | 0.852 *** | 0.259 |
0.71–0.75 | 0.981 *** | 0.270 | |
0.76–0.80 | 1.123 *** | 0.250 | |
0.81–0.85 | 1.215 *** | 0.251 | |
0.86–0.90 | 1.680 *** | 0.242 | |
0.91–0.95 | 1.579 *** | 0.277 | |
Porosity | 0.26–0.30 | 0.630 * | 0.342 |
0.31–0.35 | 0.595 * | 0.353 | |
0.36–0.40 | −0.079 | 0.358 | |
0.41–0.45 | 0.012 | 0.367 | |
0.46–0.50 | 0.926 ** | 0.387 | |
0.51–0.60 | 0.518 | 0.408 | |
Vegetation Types | Cerasus | −1.717 *** | 0.273 |
Acer palmatum | −0.866 *** | 0.287 | |
Liquidambar formosana | 0.379 | 0.292 | |
Sapium sebiferum | 1.897 *** | 0.265 | |
Osmanthus fragrans | 0.740 * | 0.423 | |
Cercis chinensis | 0.178 | 0.287 | |
Cinnamomum camphora | −0.535 * | 0.302 | |
Atropurpureum | −1.376 *** | 0.260 | |
Constants | 1.309 *** | 0.438 |
Structure Parameter | Section | Coefficients | Standard Deviation |
---|---|---|---|
Canopy Density | 0.65–0.70 | 0.001 ** | 0.005 |
0.71–0.75 | 0.010 * | 0.005 | |
0.76–0.80 | 0.013 *** | 0.004 | |
0.81–0.85 | 0.020 *** | 0.004 | |
0.86–0.90 | 0.023 *** | 0.004 | |
0.91–0.95 | 0.026 *** | 0.005 | |
Porosity | 0.26–0.30 | −0.005 * | 0.006 |
0.31–0.35 | −0.003 * | 0.006 | |
0.36–0.40 | −0.007 | 0.007 | |
0.41–0.45 | −0.012 * | 0.008 | |
0.46–0.50 | −0.006 | 0.007 | |
0.51–0.60 | −0.011 | 0.007 | |
Vegetation Types | Cerasus | −0.011 ** | 0.005 |
Acer palmatum | −0.013 ** | 0.005 | |
Liquidambar formosana | 0.019 *** | 0.005 | |
Sapium sebiferum | 0.017 *** | 0.005 | |
Osmanthus fragrans | 0.002 | 0.008 | |
Cercis chinensis | 0.019 *** | 0.005 | |
Cinnamomum camphora | 0.002 | 0.005 | |
Atropurpureum | −0.003 | 0.005 | |
Constants | 0.023 *** | 0.008 |
P | 0.15–0.25 | 0.26–0.30 | 0.31–0.35 | 0.36–0.40 | 0.41–0.45 | 0.46–0.50 | 0.51–0.57 | |
---|---|---|---|---|---|---|---|---|
CD | ||||||||
0.60–0.64 | - | 0.6 | 0.3 | 1.7 | 0.1 | 1.9 | 1.2 | |
0.65–0.67 | 0 | 2.55 | 2.7 | 2 | 1.5 | 2.6 | 2.4 | |
0.71–0.75 | 3.6 | 2.6 | 1.2 | 2.2 | 1.13 | 3.1 | 1 | |
0.76–0.8 | 3.6 | 3.8 | 3.1 | 2.93 | 1.9 | 2.1 | 1.7 | |
0.81–0.85 | 2.1 | 2.25 | 4.2 | 3.875 | 2.7 | 3.75 | 2.7 | |
0.86–0.9 | 3.9 | 4.1 | 3.65 | 2.766 | 2.667 | 1.7 | 3.1 | |
0.91–0.95 | 3.35 | 3.8 | 3.3 | 2.55 | 2.7 | - | - |
P | 0.15–0.25 | 0.26–0.30 | 0.31–0.35 | 0.36–0.40 | 0.41–0.45 | 0.46–0.50 | 0.51–0.57 | |
---|---|---|---|---|---|---|---|---|
CD | ||||||||
0.60–0.64 | - | 0.01 | 0.004 | 0.014 | 0.001 | 0.033 | 0.005 | |
0.65–0.67 | 0.009 | 0.0185 | 0.019 | 0.021 | 0.0165 | 0.017333 | 0.02 | |
0.71–0.75 | 0.033 | 0.031 | 0.05 | 0.034 | 0.008667 | 0.001 | 0.014 | |
0.76–0.8 | 0.052 | 0.05 | 0.0585 | 0.038 | 0.021 | 0.007 | 0.004 | |
0.81–0.85 | 0.044 | 0.0425 | 0.064 | 0.0505 | 0.03 | 0.0545 | 0.034 | |
0.86–0.9 | 0.050333 | 0.055 | 0.054 | 0.0505 | 0.035667 | 0.026 | 0.04 | |
0.91–0.95 | 0.052 | 0.067 | 0.0545 | 0.047667 | 0.034 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Li, H.; Wang, Y.; Xu, X. The Cooling and Humidifying Effects and the Thresholds of Plant Community Structure Parameters in Urban Aggregated Green Infrastructure. Forests 2021, 12, 111. https://doi.org/10.3390/f12020111
Wei J, Li H, Wang Y, Xu X. The Cooling and Humidifying Effects and the Thresholds of Plant Community Structure Parameters in Urban Aggregated Green Infrastructure. Forests. 2021; 12(2):111. https://doi.org/10.3390/f12020111
Chicago/Turabian StyleWei, Jiaxing, Hongbo Li, Yuncai Wang, and Xizi Xu. 2021. "The Cooling and Humidifying Effects and the Thresholds of Plant Community Structure Parameters in Urban Aggregated Green Infrastructure" Forests 12, no. 2: 111. https://doi.org/10.3390/f12020111
APA StyleWei, J., Li, H., Wang, Y., & Xu, X. (2021). The Cooling and Humidifying Effects and the Thresholds of Plant Community Structure Parameters in Urban Aggregated Green Infrastructure. Forests, 12(2), 111. https://doi.org/10.3390/f12020111