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Abstract: The Urban Heat Island (UHI) phenomenon, namely urban areas where the atmospheric
temperature is significantly higher than in the surrounding rural areas, is currently a very well-known
topic both in the scientific community and in public debates. Growing urbanization is one of the
anthropic causes of UHI. The UHI phenomenon has a negative impact on the life quality of the local
population (thermal discomfort, summer thermal shock, etc.), thus investigations and analyses on
this topic are really useful and important for correct and sustainable urban planning; this study is
included in this context. A multi-temporal analysis was performed in the municipality of Modena
(Italy) to identify and estimate the Surface Urban Heat Island (SUH], strictly correlated to the UHI
phenomenon) from 2014 to 2017. For this purpose, Landsat-8 satellite images were processed with
Quantum Geographic Information System (QGIS) to obtain the Land Surface Temperature (LST)
and the Normalized Difference Vegetation Index (NDVI). For every pixel, LST and NDVI values
of three regions of interest (RO], i.e., Countryside, Suburbs, and City Center) were extracted and
their correlations were investigated. A maximum variation of 6.4 °C in the LST values between City
Center and Countryside was highlighted, confirming the presence of the SUHI phenomenon even in
a medium-sized municipality like Modena. The implemented procedure demonstrates that satellite
data are suitable for SUHI identification and estimation, therefore it could be a useful tool for public
administration for urban planning policies.

Keywords: urban heat island; land surface temperature; remote sensing; Landsat-8; semi-automatic
classification plugin; QGIS; global warming; urbanization

1. Background

About half of the world population lives in urban areas [1]. The global urbanization rate is
expected to increase by 70% compared to the current world population [2], both because of the
continued emergence of new urban areas [3] and because of the constant population migration from
rural to urban and suburban areas [4,5]. It is not therefore surprising that the negative impacts of
urbanization are an ever-growing global concern [6-10]. Urbanization has a negative impact on
the environment, mainly due to pollution, changes in the physical and chemical properties of the
atmosphere, and in the type of cover of the soil surface [11]. These phenomena lead to so-called Urban
Heat Islands (UHI), namely urban areas where the atmospheric temperature is significantly higher
than that in the surrounding rural areas [12]. The presence of UHIs is an increasing phenomenon
studied by the international scientific community because of its dangerous and significant effects.
In fact, the temperature increase has effects on the environment (higher temperatures cause higher
energy consumption, photochemical smog, and worsening of the air quality), on the climate and on
human health [13-16].
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Concerning urban planning policies, nowadays, public administrations have to take into account
not only socioeconomic perspectives but also environmental sustainability [17]. Obviously, the
UHI phenomenon is also a topic that has to be considered in administration decisions because it
negatively influences population life quality. It leads to thermal discomfort and thermal shock,
especially during the hot seasons [18,19]. The presence of UHI is typical of highly urbanized areas,
but there is currently a progressive increase of this phenomenon not only for metropolises but also for
medium-sized municipalities.

The main objective of this study is to investigate the presence, extent, and intensity of Surface
Urban Heat Islands (SUHIs) in the municipality of Modena through the use of remote sensing images.
Environmental remote sensing is a very useful tool to analyze this phenomenon by calculating the
Land Surface Temperature (LST); this is why this study deals with SUHI instead of UHI [20-25]. The
trend of the LST and the SUHI intensity are highly correlated—an increase of 0.1 °C of the urban LST
compared to the rural LST corresponds to an increase of 0.04 °C of SUHI intensity [26]. This result,
however, is retrieved only in the Mediterranean area, due to the specific characteristics of the cities of
this region, which may not be found in other parts of the world.

Also, SUHI and UHI phenomena are strictly correlated and in particular the SUHI represents
an indirect estimate of the UHI [27,28]. In scientific literature, a variety of studies have combined
LST, usually used for the SUHI phenomenon, and air temperature data, usually used for the UHI
phenomenon [29-33].

Some preliminary assessments on the study area are mandatory to understand and analyze results.
First of all, Modena has different characteristics from the American cities that are usually used to define
the UHI phenomenon [34]. Modena is a medium-sized municipality, without a high urban density and
with a surrounding countryside with a lot of little villages. Instead, American metropolises usually
have a very high urban density and the surrounding areas are empty. For these reasons, the difference
of temperatures between cities and the countryside are not as high as in other studies in scientific
literature dealing with bigger cities.

Furthermore, Modena has many well-distributed green areas that contribute to reduce the UHI
phenomenon and to mitigate the temperatures in the areas that have a high urban density. Indeed,
green areas are one of the most common strategies used to mitigate UHIs [17,35-38].

The city of Modena therefore represents a different area from those usually studied for the
analysis of the SUHI phenomenon in the existing scientific literature. In the current state of the art,
in fact, it is possible to find numerous studies on UHI related to large cities [39] both in America
and in Asia [40,41]. In the Mediterranean area there are many studies focused on large cities such as
Barcelona [42], Athens [43,44], Salonicco [45], and Tel Aviv [46]. In Italy, numerous studies considered
the UHI of Rome or Milan [47-50], while recently other studies have been implemented on cities like
Bologna [51], Padua [52], and Venice [53]. Concerning the southern part of Italy, currently there is only
one study that reports an analysis of the LST of the major southern cities (Bari, Naples, Palermo, and
Catania) [54]. In this study, the LST value of the rural area is not present, thus it is not possible to
quantify the SUHL

For the city of Modena, some considerations of the UHI phenomenon have been carried out in the
studies of Bonafe and Zauli Sajani [51,55]. Contrary to the methodology presented in this paper, these
studies use ground station measurements for UHI intensity estimation. Furthermore, in Reference [51],
not the entire area of Modena is considered but only specific districts.

No existing study in the scientific literature uses remote sensing data on a medium-sized city like
Modena, placed in a highly polluted area (Po Valley), to identify and estimate SUHIs. In addition,
there are only few studies that use Quantum Geographic Information System (QGIS) procedures (open
source software) applied to remote sensing data for these purposes [56].

Another observation concerns the climate that has characterized the study area in the last two
years. In this period, various climatic anomalies occurred as a consequence of the global climate
change. In particular, winter was very humid with high temperatures and no snow. Also, summer was
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quite wet, especially in July and between the end of August and the beginning of September. These
weather and climate conditions surely have an influence on the results obtained by remote sensing,
because evapotranspiration influences the temperatures of urban and rural areas [57-61].

In this framework it is important to highlight that the municipality of Modena, in 2010, put in
place a plan of action for sustainable energy (SEAP). This plan is included in the “good practices” for
the European Green Infrastructure Strategies because it provides an increase in green infrastructures
in agricultural areas, ecological zones, and public green. In particular, an increase in urban forest of
127.5 ha has been planned for implementation between 2011 and 2020 [62,63].

Thus, using the methodology developed in this paper, the city administrators will have a powerful
tool to identify SUHIs and their intensity in different years. In this way, urban policies can be directed
to those areas where the SUHI phenomenon is still present and creates discomfort in the population.
Furthermore, the public administration could evaluate appropriate mitigation measures such as green
roofs, cool materials, and green areas [64,65] that lead to a more sustainable life quality. In addition,
using this methodology, it is possible to evaluate whether the policies entailed within the framework
of the European Green Infrastructure Strategies are producing the desired results.

2. Materials and Methods

The analysis of the SUHI phenomenon in these areas was carried out using an experimental
plugin for QGIS [66], called the Semi-Automatic Classification Plugin (SCP) [67], that allows use of the
free open source software QGIS as a remote sensing software. With this plugin, temperature maps can
be obtained from “raw” remote sensing images acquired by the Landsat-8 satellite sensor.

The study area includes the municipality of Modena located in the Emilia Romagna region, Italy.
The environmental context is the Po Valley, which is characterized by a high population density and
intensive agriculture. The LST was computed using the equation suggested by Weng [23]. Then,
additional processing was conducted in order to create three Regions of Interest (ROI) within each
image: the City Center region, the Suburbs region, and the Countryside region. For each ROI, LST
maps and Normalized Difference Vegetation Index (NDVI) maps were retrieved. Creating these ROIs
also allowed the estimation of the temperature difference between Countryside and City Center, and
thus allowed us to correlate it with the SUHI phenomenon in the studied period (2014-2017) [68-70].
Finally, NDVI maps were used to analyze the correlation between land cover and LST maps.

2.1. Study Area

The study area is the municipality of Modena, Italy (Figure 1). Modena has 184,826 inhabitants
and an area of 183.19 km? [71]. Modena is located in the north of Italy, along the “via Aemilia”,
an ancient Roman road running from Rimini to Piacenza on the river Po (Figure 2). The Po Valley
is characterized by a high population density and by processes of industrialization and intensive
agriculture (it is among the most productive agricultural areas within Europe) [72]. The climate of this
region is partially continental: summers are hot with intense heat waves while winters are cold and
wet, usually with atmospheric stability conditions and fog. Normally precipitation is concentrated
during autumn and spring. Summer and winter are the driest seasons [57,58,72,73]. In order to have
a clear climate situation of the study area, Table 1 reports some climate information. The data are
divided into two series: an historical series from 1971-2000 and another time series from 2001 to
2017. For each series, Table 1 shows values of seasonal mean temperature, seasonal mean of the
maximum daily temperatures, seasonal mean of the minimum daily temperatures, and seasonal mean
of precipitation. The data referred to the City Center region were acquired by the Weather Station
“Osservatorio Geofisico di Modena”, located in the urban area of Modena (Long: 10°55'47.2"" E, Lat:
44°38/52.9" N) [74], while the data referred to the Countryside region were acquired by the ARPAE
Weather Station of Albareto (Long: 10°57'24" E, Lat: 44°42'7"" N). In Table 1, all temperature values of
the historical series increase in the time series in every season. The increase of the values vary between
1.4 °Cand 2 °C. Also, the values of precipitation increase in every season except summer. In Modena,
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starting from the 1980s, climate change has exhibited the same trend as the global climate change.
The changes cause extreme events such as jumps in temperature or increases in the distribution and
amount of precipitation [57].

The area of Modena was chosen as a first area of interest for the proposed methodology for its
characteristics in terms of:

e Dimensions. Modena is a medium-sized municipality and the scientific literature does not
investigate SUHISs of these kind of cities with remote sensing data;

e  (Climate situation;

e  Geographical position. Modena is located in one of the most industrialized areas of Europe, as
well as one with the highest levels of air pollutants [75];

e  Active urban policies. Analyzing three years of data allowed us to investigate whether urban
policies on green infrastructures are effective or not.

These characteristics render Modena an ideal test site for the developed methodology.
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Figure 1. Ortho image of the city from an aerial photograph of Modena provided by the cartographic
archive of the Emilia Romagna region (AGEA 2011). the municipality borders are shown in red (Source:
Geodatabase Emilia Romagna region—http://geoportale.regione.emilia-romagna.it, image elaborated
by the authors).
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Figure 2. Digital Terrain Model (DTM) of Italy with the location of the city of Modena. (Source: The
Ministry of the Environment and Protection of Land and Sea of Italy—www.pcn.minambiente.it/
mattm/, image elaborated by the authors).

Table 1. Seasonal mean temperature, seasonal mean of the maximum daily temperatures, seasonal
mean of the minimum daily temperatures, and seasonal mean of precipitation of Modena between 1971
and 2000 (historical series) and between 2001 and 2017 (Source: Osservatorio Geofisico di Modena).

HISTORICAL SERIES FROM 1971 TO 2000

Season Tm (°C) TMAXp (°C) TMINp (°C) Precy; (mm)
Spring 17.5 21.7 13.3 53.5
Summer 23.1 27.3 18.8 49.5
Autumn 8.8 11.2 6.3 62.2
Winter 5.8 8.7 2.9 40.6
TIME SERIES FROM 2001 TO 2017

Season Tm (CO) TMAXM (°C) TMINp (°C) Precyp (mm)
Spring 19.5 23.7 15.3 60.5
Summer 24.5 28.7 20.3 459
Autumn 10.4 12.9 8.0 67.5
Winter 7.2 10.1 4.2 53.8

Tm: seasonal mean temperature; TMAX): seasonal mean of the maximum daily temperatures; TMIN)y: seasonal
mean of the minimum daily temperatures; Precys: seasonal mean of precipitation.

2.2. Landsat-8 Data

The Landsat-8 satellite was successfully launched on 11 February 2013 and deployed into orbit
with two instruments on board: (1) the Operational Land Imager (OLI), whose spatial resolution
is 30 m, with nine bands in the visible (VIS), the near infrared (NIR), and the short-wave infrared
(SWIR) spectral regions; and (2) the Thermal Infrared Sensor (TIRS) with two spectral bands in the
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long-wave infrared (LWIR) region. The spatial resolution of TIRS data is 100 m with a revisit time of 16
days [75-79] (Table 2).

Table 2. Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) (Landsat-8) spectral bands.

Spectral Band Wavelength (um) Spatial Resolution (m)

Band 1—Coastal/ Aerosol 0.435-0.451 30
Band 2—Blue 0.452-0.512 30
Band 3—Green 0.533-0.590 30
Band 4—Red 0.636-0.673 30
Band 5—NIR 0.851-0.879 30
Band 6—SWIR 1.566-1.651 30
Band 7—SWIR 2.107-2.294 30
Band 8—Panchromatic 0.503-0.676 15
Band 9—Cirrus 1.363-1.384 30

Band 10—LWIR 10.60-11.19 100 (resampled to 30)

Band 11—LWIR 11.50-12.51 100 (resampled to 30)

The data used for this study are the “raw” remote sensing images acquired from the Landsat-8
satellite sensors, provided free of charge by the United States Geological Survey (USGS) (Table 3).

Table 3. Image dataset used in this study.

Acquisition Time—Coordinated

Acquisition Date Day of the Week Season Universal Time (UTC)
26 January 2014 Sunday Cold 10.00
7 April 2014 Monday Mid 10.00
6 August 2014 Wednesday Hot 10.00
25 October 2014 Saturday Mid 10.00
12 December 2014 Friday Cold 10.00
15 January 2015 Wednesday Hot 10.00
10 September 2015 Thursday Mid 10.00
16 January 2016 Saturday Cold 10.00
21 April 2016 Thursday Mid 10.00
26 July 2016 Tuesday Hot 10.00
5 October 2016 Wednesday Mid 10.00
9 January 2017 Monday Cold 10.00
17 May 2017 Wednesday Hot 10.00
4 July 2017 Tuesday Hot 10.00
22 September 2017 Friday Mid 10.00

Images were divided into three seasons depending on mean LST values retrieved by satellite data:
hot season (LST > 30 °C); mid season (10 °C < LST < 30 °C); cold season (LST < 10 °C).

As reported in Table 3, there are 15 daily images covering about the hot, mid, and cold seasons
of four years. The scene center time is about 10:00 UTC. Only images with a clear-sky condition
were selected.

There are only two images from 2015 because of the cloud cover, but winter 2015 can be
represented by the image taken on 12 December 2014. Autumn 2015 can be represented by the
image taken on 10 September 2015, which presents typical autumnal climatic conditions. Therefore,
the year 2015 can be considered completely covered, except for spring.

For the entire procedure, the Semi-Automatic Classification Plugin (SCP) on the open source
software QGIS was used. The SCP plugin allows one to use remote sensing functions in QGIS [22,24,67].
The methodology, from input data to obtained results, is shown in the conceptual diagram in Figure 3.
Each step is described in detail in the following subsections.
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ANALYSIS OF THE SURFACE URBAN HEAT ISLAND PHENOMENON WITH REMOTE
SENSING DATA

DATA
SOURCE
Landsat 8 Weather Stations
OLI and TIRS sensors
SD:TTA Images from 2014 to 2017
(hot, mid and cold
seasons)
Definition of ROI (City Centre, Suburbs, Air Temperature
Countryside) values for each ROI

PROCESSING

QGIS - SCP
procedures

LST
RESULTS l l
Correlation ALST Correlation
LST-NDVI (LST - LST ) T-LST

Identification of SUHI and SUHI
intensity estimation for the studied
period (2014-2017)

Vegetation
influence on UHI

Remote Sensing
Data Validation

Figure 3. Conceptual diagram of the proposed methodology.
2.3. Data Processing

a. Conversion to Top of Atmosphere (TOA) Radiance

OLI and TIRS band data can be converted to top of atmosphere (TOA) spectral radiance using
radiance rescaling factors provided in the metadata file [80]:

LA = ML X Qcal + AL (1)
where:

e L, = top of atmosphere spectral radiance (TOA) (W/(m? srad um)).

e M =band-specific multiplicative rescaling factor from the image metadata (W /(m? srad pm)).
e A; =band-specific additive rescaling factor from the image metadata (W/(m? srad um)).

o (. = digital number (DN).

b. Conversion to TOA Reflectance

OLI band data were converted to TOA planetary reflectance using reflectance rescaling coefficients
provided in the image metadata files [80]. The following equation is used to convert DN values to
TOA reflectance for OLI data:

pA = Mp X Qear + Ap )
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where:

e oA =TOA reflectance.

e M), =band-specific multiplicative rescaling factor from the metadata.
e A, =band-specific additive rescaling factor from the metadata.

o (g =digital number.

c. Conversion to At-Satellite Brightness Temperature

TIRS band data were converted from spectral radiance to brightness temperature using the
thermal constants provided in the image the metadata file [80]:

T=Kz/In((K1/Ly) +1) ®)

where:

e T = at-satellite brightness temperature (K).

e L, =TOA spectral radiance (W/ (m? srad pm)).

e K =band-specific thermal conversion constant from the metadata (W/ (m? srad pm)).
e  K; =Dband-specific thermal conversion constant from the metadata (K).

d. Clip of the image using the shapefile of Modena municipality, provided for free by the cartographic
archive of the Emilia Romagna region (official website “Geoportale dell’Emilia Romagna”)
e. Calculation of Normalized Different Vegetation Index (NDVI)

This index is computed using spectral reflectance in the near infrared band and in the red band. It
provides a rapid estimation of the presence of vegetation. NDVI values ranges from —1 to 1. Higher
NDVI values indicate dense vegetation while lower values (typically from 0 to 0.2) identify light or
dark soils [24]. NDVI is computed using the following equation:

NDVI = (pNIR — PRed)/ (PNIR + PRed) 4)
where:
e  pNir = near infrared band reflectance.

e  prep = red band reflectance.

f. Fractional Vegetation Cover (FVC)

NDVI was used to calculate FVC, an index that estimates the proportion of an area covered by a
set of predefined type of vegetation or soil cover [24].
The following equation is used to calculate FVC:

FVC = (NDVI — NDVI)/(NDVI, — NDVI;) (5)

where:

e NDVI; = NDVI value for bare soils.
e NDVI, = NDVI value for fully vegetated soils.

The NDVI; value was set equal to 0.1, while the NDVI; value was set equal to 0.65 [22].

g. Calculation of Land Surface Emissivity (LSE), which is a measurement of the capacity of a material
to radiate energy [24]
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e =(eg X (1 — FVQ)) + (ey x FVQ) 6)
where:

e ¢ = typical soil emissivity (0.93).
e ¢, = typical vegetation emissivity (0.98).

h. Estimation of LST

LST can be calculated from the at-satellite brightness temperature Tg [23]. LST was first computed
in K, then converted to °C.

LST=Tg/(1 + (A x s x Tg/c2) x In(e)) (7)

where:

e A =wavelength of the emitted radiance (11.5 um for band 10 in Landsat-8 OLI).
e 2=hxc/s=14388 x 107 2mK.

e 5= Boltzmann constant = 1.38 x 10~23 J/K.

e h=Planck’s constant = 6.626 x 10734 Js.

e ¢ =velocity of light = 2.998 x 108 m/s.

. € = emissivity.
3. Results and Discussion

3.1. LST Maps

The methodology was applied to the dataset in order to obtain LST maps of Modena for different
climate seasons. In this section only a few significant images are shown of the 15 processed. The
statistical results on the next pages were, however, retrieved using all of the images listed in Table 3.

Figure 4 shows the LST map of the study area on 7 April 2014. The minimum value is 17.5 °C,
the maximum value is 29 °C. Thanks to the spatial resolution of the TIRS sensor, inside the city in
the industrial areas (LST values between 28 °C and 29 °C) it is possible to identify dense areas (most
with LST values between 25.5 °C and 27.8 °C) and vegetation areas (LST values between 17.5 °C to
22 °C). Also, small residential areas and bare soils (LST values from 23 °C to 29 °C) could identified.
Furthermore, main roads are clearly visible (LST values of about 23 °C). In the main urban area, LSTs
are on average higher than in the countryside (the maximum temperature difference between the
urban area and rural area is about 11 °C), confirming the presence of the SUHI phenomenon. In the
following section, the difference between the urban LST and the rural LST will be further analyzed.

In winter, the LST maps show a more homogeneous distribution of temperatures and sometimes
the urban LST values (from 0 °C to 2 °C) are slightly lower than the rural LST values (highly variable
values that average between 0 °C and 5 °C). The map in Figure 5, for example, shows the study
area on 9 January 2017. The situation is significantly different from that of Figure 4. LST values
are very similar both in urban and in rural zones, thus in this period the SUHI phenomenon is not
visible from this kind of data. In accordance with the scientific literature [61,81], during the winter
period an inversion of temperature trends could occur (urban areas have lower temperatures than
rural areas), especially in medium-sized municipalities like Modena. In order to explain this map, an
investigation of the presence of water in the study area is required. When humidity levels are very
high, the water evaporation and the plant transpiration saturate the atmosphere, thus countryside and
city temperatures tend to flatten, out becoming much more similar to each other [61,81]. For this reason,
in humid periods the SUHI is barely identifiable using remote sensing techniques, which however
does not mean that the SUHI does not exist. For example, a temperature increase of just one or two
degrees with humidity levels exceeding 90% does not allow the definition of the UHI phenomenon on
an urban scale, but the population feels health discomforts nonetheless [82].
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Figure 4. Land Surface Temperature (LST) map of Modena, 7 April 2014. (Source: Quantum Geographic

Information System (QGIS) elaboration of LST map provided by the authors).
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3.2. Region of Interest

To analyze temperature variations between urban areas and rural areas, three ROIs were created.
A shapefile built thanks to municipality information was overlaid on each image in order to divide the
municipality of Modena in three areas: City Center, Suburbs, and Countryside (Figure 6). These ROIs
correspond to three specific Local Climate Zones (LCZs) defined by Stewart and Oke as “regions of
uniform surfaces cover, structure, material, and human activity that span hundreds of meters to several
kilometers in horizontal scale” [83]. City Center corresponds to LCZ1 (Compact Midrise) characterized
by a building surface fraction between 40% and 70%. Suburbs corresponds to LCZ5 (Open Midrise)
characterized by a building surface fraction between 20% and 40%. Countryside corresponds to LCZD
(Low Plants) characterized by a building surface fraction less than 10% [83]. The building surface
fraction represents the ratio of building plan area to total plan area (%). For Modena’s ROIs, the
building surface fraction is equal to 46% for City Center, 20% for Suburbs, and 2% for Countryside.
LCZs are defined in a univocal way based on specific parameters. The link between ROIs and LCZs
allows the repeatability of the present methodology as well as comparison with other study areas.
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Figure 6. Region of Interest (ROI) map of Modena. ROIs shapefile source: municipality of Modena.
(Source: Geodatabase Emilia Romagna region—http://geoportale.regione.emilia-romagna.it, image
elaborated by the authors).

Table 4 shows the average LST value of each ROI for every image and the difference (ALST)
between the City Center LST values (LSTcc) and the Countryside LST values (LST¢s). These values
allow to have a first evaluation of the intensity of the SUHI phenomenon. Suburbs LST values are not
considered for this estimation because they are often very similar to City Center LST values.
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Table 4. Average LST value of each ROI for the processed images.

LST Mean (°C)

Date Season
City Center Suburbs Countryside ALST (LST¢cc — LSTcs)

26 January 2014 Cold 7.6 7.0 59 1.7
7 April 2014 Mid 26.1 25.5 21.0 5.1
6 August 2014 Hot 34.6 33.1 28.2 6.4
25 October 2014 Mid 19.9 19.0 17.9 2.0
12 December 2014 Cold 8.1 74 6.2 1.9
15 January 2015 Hot 36.3 35.4 314 52
10 September 2015 Mid 25.4 25.6 25.2 0.2
16 January 2016 Cold 4.8 4.8 4.8 0.0
21 April 2016 Mid 21.7 21.7 19.2 2.5
26 July 2016 Hot 30.5 30.3 27.4 3.1

5 October 2016 Mid 21.2 21.5 21.5 -0.3

9 January 2017 Cold 0.7 0.7 1.8 —-1.1
17 May 2017 Mid 30.3 30.2 26.6 3.7
4 July 2017 Hot 32.0 32.6 30.2 1.8
22 September 2017 Mid 224 23.4 22.0 0.4

Looking at Table 4, it can be observed that the images of cold seasons are usually associated with
low LST variations (<2 °C). Accordingly, with Figure 4 the SUHI phenomenon is not visible in these
seasons with Landsat-8 data and thus it is not possible to correlate SUHIs with the UHI phenomenon.

Otherwise, images of hot seasons (spring and summer) are mostly associated with high LST
variations (>2 °C). In this case it is possible to clearly identify the SUHI phenomenon and estimate its
intensity. In Table 4 it is possible to observe the maximum and the minimum LST variation in the three
seasons of interest. For the hot season, this value reached 6.4 °C, confirming the presence of the SUHI
phenomenon and thus of the UHI phenomenon.

An exception of this analysis is represented by the image acquired on 9 January 2017. LST values
for different regions are very close and the ALST between City Center and Countryside is lower than
2 °C. This anomaly is due to particular weather conditions of the days prior to the image acquisition;
2 and 3 July 2017 were in fact cloudy days with temperatures below the usual seasonal means.

Figure 7 shows a graphical representation of mean LST values for each acquired image and for
each ROI—during hot seasons, the SUHI phenomenon is clearly visible.

For example, between April 2014 and October 2014, the difference between City Center LST
values and Countryside LST values is clear, ranging from 3 °C and 5 °C. Similarly, from April 2015 to
September 2015, the LST variation ranges from 1 °C to 5 °C (July 2015). From April 2016 to October 2016
and also from April 2017 to September 2017, this difference in LST values is not so remarkable, with
ALST values ranging from 1 °C to 3 °C.

During cold seasons, the temperature lines in Figure 7 are almost completely overlapped, showing
no SUHI presence. Thus, from October 2014 to March 2015, from October 2015 to April 2016, and from
October 2016 to April 2017, LST values are very close for all three regions of interest.

In general, the LST peaks are higher in 2014-2015 and lower in 2016-2017. Winter 2017 had very
low LST values compared to the other winters.

The results highlighted in Table 5 and visually shown in Figure 7 could be compared to scientific
studies on UHI even if the present study deals with SUHI. In Asian large cities, the UHI intensity ranges
from 0.4 to 11 °C. These values are largely influenced by the monsoon circulation [40]. In Europe, in
particular in the Mediterranean area, it is possible to find UHI intensity values from 3 °C to 7 °C for
cities like Athens and Salonicco [44,45]. Focusing on small cities, two interesting studies show the
presence of UHI even in cities with less than 100,000 inhabitants [84,85]. These studies revealed a mean
summer UHI intensity from 2.6 to 8 °C.



Sustainability 2018, 10, 1678 13 of 23

Mean LST values and mean T values for each ROI
40
35
30
25
~ 20
@)
<
5 15
—_
10
5
0
= DN o [Io] o (L9} (=1 o i =l wn =] o~ =+ o
N < Y q b - by - Q9 QN Y < n < q
— <+ % = o [N A — - N = — b o A
< < < in in e Y < < < i NG < < <
=+ =+ -+ - =+ L9} [I9] o O O O (SN [ SN o~ o~
(=] (=} (=] S (=] (=] (=] (=] S (=] (=] (=] S S (=}
N [N} [N} [V} o~ N [N} [N} [V} (V] [} [N} [N} [V} N
Acquisition Date

Figure 7. Mean LST values for each ROI from 2014 to 2017 compared with air temperature values for
City Center (Tcc) and Countryside (T¢s). (Source: Data elaboration provided by the authors).

Table 5. Minimum ALST and maximum ALST divided by seasons.

Season ALST;n—ALSTmax (°C)
Hot (6.4)~(1.8)
Mid (—0.3)-(5.1)
Cold (-1.1)-(1.9)

Table 6 show the UHI intensity retrieved for Italian cities in the scientific literature during the
hot seasons. Even if these values are related to UHI and not to SUHI and these cities exhibit some
differences from Modena (size, position, and inhabitants), it is possible to notice that the results
obtained from this study are comparable with the values in Table 6. In particular, Zauli Sajani et al. [51]
analyzed a large area that includes Bologna as well as Modena: the UHI intensity values measured by
the meteorological station during the summer period are coherent with the results obtained from the
methodology presented in this paper.

Table 6. Summer Urban Heat Island (UHI) intensity for major Italian cities.

Methodology for UHI Summer UHI Intensity

Intensity Estimation Qo) References

City

Remote sensing data
Milan (Moderate Resolution Imaging Maximum of 8-10 °C Anniballe et al., 2014 [49]
Spectroradiometer—MODIS sensor)

Temperature data collected by
Rome meteorological stations/remote 25-75°C
sensing data

Guattari et al., 2018 [50]
Fabrizi et al., 2010 [86]

Temperature data collected by Zauli Sajani et al.,

Bologna-Modena meteorological stations 4-8°C 2016 [51]
Padua Temperature data collected by 2-6°C Busato et al., 2014 [52]
meteorological stations
Venice Temperature data collected by 47°C Peron et al., 2015 [53]

meteorological stations
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In Figure 7, the air temperature values are also reported. In particular, air temperature data for
City Center and Countryside were retrieved from two weather stations provided by ARPAE Emilia
Romagna, TCC and TCS, respectively.

These air temperature values are highly correlated to satellite LST values as it is possible to observe
both in Figures 7 and 8. The Pearson coefficients (r) shown in Figure 8 and in Table 7 have values closer
to 1, which means there is an excellent correlation between LST values and air temperature values.

Correlation between T - LST

T Q)

e City Centre

e Countryside
——CC trend line
——CS trend line

0 10 20 30 40
LST (°O)

Figure 8. Scatterplot showing the correlation between air temperature (T) and LST considering the
whole dataset. (Source: Data elaboration provided by the authors).

Table 7. Pearson coefficient of LST vs. T for each ROI.

ROI Pearson Coefficient
City Center 0.98
Countryside 0.97

The results shown in Figure 8 are very important because they prove the effectiveness and
reliability of satellite measurements for the study of SUHIs and consequently of UHIs. The high
correlation with air temperatures measured by weather stations demonstrates that the methodology
is repeatable and can be transferred to other areas similar to the city of Modena (medium-sized
municipalities). In urban areas with different dimensions (large cities or small municipalities), the
methodology can still be applied, only requiring the foresight to choose carefully the ROIs. In particular,
the number and size of these regions must be appropriate to the study area. In this framework, the
reference to LCZs [83] allows, for cities of different dimensions, the identification of the correct ROI
number and size to study the SUHI phenomenon. Weather stations must also be chosen accurately
as they are representative of the investigated ROI. Possible influences from traffic or emissions from
industrial activities must be avoided if possible.

3.3. NDVI Maps

NDVI maps were retrieved in order to partially identify surface land cover and correlate it with
LST values [87]. Figure 9 represents the NDVI map of the “Modena 7 April 2014” Landsat image. High
values of NDVI (0.6 to 0.9) suggest a high density of vegetation, and low values of NDVI (from 0 to
0.3) suggest the presence of bare soil or artificial surfaces.
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Figure 9. Normalized Different Vegetation Index (NDVI) map of Modena, 7 April 2014. (Source: QGIS
elaboration of NDVI map provided by the authors).

Obviously, urban areas present low NDVI values and rural areas have high NDVI values. From
the NDVI map presented in Figure 9, it is possible to recognize built-up areas (or bare soil areas)
and vegetation areas. NDVI maps are consistent with scientific literature data [28,88]. As reported
by Yuan et al. [15], lower LSTs usually are found in areas with high NDVI. This negative correlation
between NDVI and LST is valuable for urban climate studies. However, NDVI measurements are
subject to seasonal variations, which may influence the results of SUHI studies.

3.4. LST-NDVI Correlation

For every pixel of the images from 7 April 2014, 15 July 2015, and 9 January 2017, the LST and
NDVI values were extracted to make a correlation analysis.

Focusing on the image from 7 April 2014 and the image from 15 July 2015, Figure 10 shows that
high values of NDVI correspond to low values of LST and vice versa. Thus, the presence of vegetation
corresponds to lower LST values.

Regarding the 9 January 2017 image, it is difficult to make observations by just looking at the
maps; it is necessary to analyze Table 8. This table reports the Pearson correlation coefficient between
LST and NDVI computed for each ROl in the three images analyzed in Figure 10 (“Modena 7 April
2014”, “Modena 15 July 2015”, and “Modena 9 January 2017”).

For the images of April 2014 and July 2015, r values are close to 1, suggesting a strong correlation
between NDVI and LST. Instead, for the image of January 2017, the r value is close to 0, thus a poor
correlation between NDVI and LST is highlighted.
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Figure 10. (a) LST map of Modena, 7 April 2014. (b) NDVI map of Modena, 7 April 2014. (c) LST map of Modena, 9 January 2017. (d) NDVI map of Modena, 9 January
2017. (e) LST map of Modena, 15 July 2015. (f) NDVI map of Modena, 15 July 2015. (Source: QGIS elaboration of LST and NDVI maps provided by the authors).



Sustainability 2018, 10, 1678 18 of 23

Compared to “Modena 7 April 2014” and to “Modena 15 July 2015”7, the January 2017 image has
two main differences: the low LST-NDVI correlation and lower LST values in the city Center. This is
probably due to the difference in thermal inertia of the materials mainly present in each ROI. When,
the night before the image acquisition day, the air temperature is really low and there is a clear sky
condition, the surface of the city becomes very cold. Thus, on the image acquisition day, more time
is needed by the urban surfaces (mainly concrete roofs and asphalt) to increase their temperature
compared to the countryside [59-61]. The countryside has more vegetation and bare soils compared to
the city, therefore the temperature increase is faster here than in urban areas.

Table 8. Pearson correlation coefficient r between LST and NDVI for each ROI of Modena within
different images (“Modena 7 April 2014”, “Modena 15 July 2015” and “Modena 9 January 2017”).

Date ROI Pearson Coefficient r

City Center 0.92

7 April 2014 Suburbs 0.85
Countryside 0.88

City Center 091

15 July 2015 Suburbs 0.79
Countryside 0.77

City Center 0.14

9 January 2017 Suburbs 0.20
Countryside 0.06

4. Conclusions

In this work the presence, extension, and intensity of the SUHI in the municipality of Modena
were studied using Landsat-8 data.

The results showed that with satellite data, the SUHI is clearly visible during hot and mid seasons,
while an opposite phenomenon is observed during cold seasons.

In particular, during hot seasons, Modena records a significant SUHI phenomenon, with a
difference between City Center LST values and Countryside LST values of up to 6.4 °C.

Observing the entire studied period (from 2014 to 2017), the following assessments can be made:

e  Mean LST values are on average higher from 2014 to 2015 than from 2016 to 2017;
e  The SUHI phenomenon is more evident during hot seasons, especially in the years 2014 and 2015.

These assessments are certainly consistent with the policies implemented by the municipality of
Modena in recent years concerning European Green Infrastructures Strategies. Thus, the application of
the methodology presented in this paper highlights the mitigation effect on the SUHI (and therefore
on the UHI) of the Modena SEAP agreement.

NDVI maps were useful to identify the vegetation cover and to correlate it with LST maps. This
study confirmed that, for hot and mid seasons, high values of LST correspond to low values of NDVI
(bare soil or artificial covers). For example, for the image of 15 July 2015, the Pearson coefficient
(r) shows a correlation between LST values and NDVI values equal to 0.91 for City Center, 0.79 for
Suburbs, and 0.77 for Countryside. For the mid season, the correlation between NDVI and LST is
still strong. For example, for the image from 7 April 2014, the Pearson coefficient values are between
0.85 and 0.92. Otherwise, during cold seasons, this study revealed a null or opposite trend of the
phenomenon and a low correlation between NDVI values and LST values.

Remote sensing LST values were also compared with air temperature values measured by two
weather stations (one for the City Center region and one for the Countryside region). These values
showed a high correlation with the Pearson coefficient equal to 0.98 for City Center and to 0.97 for
Countryside. Remote sensing data are therefore representative of real surface temperatures and thus
they can be used for the identification of the SUHI and the estimation of its intensity.
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In conclusion, this study showed that the SUHI is a phenomenon that can also be observed in
medium-sized municipalities like Modena and that can be investigated with a free and accessible
methodology. The proposed methodology could be easily used not only for the identification of
SUHI but also for its intensity estimation thanks to the good correlation between LST values and air
temperature values. This study could thus represent a powerful tool for public administration for
sustainable planning policies based on UHI mitigation strategies. Using the proposed methodology
for several images acquired in different years allows one to monitor the UHI mitigation actions and
verify their effect on the territory.

Furthermore, the proposed methodology could be used not only for cities similar to Modena but
also for different kind of cities, from large metropolises to small municipalities. For the transferability of
the methodology, the choice of ROIs is important: each ROI has to be compared with LCZs definitions
in order to set universal benchmarks to compare obtained results.

This study is not concluded. More images will be analyzed, in particular during hot seasons,
and, for each image, the Albedo parameter will be calculated to correlate the SUHI to surface
reflectance. Moreover, complete meteorological data will be collected in order to better understand the
SUHI phenomenon, taking the local climate into consideration. Additionally, data such as the daily
precipitation of the three days before the image acquisition time, the average daily wind speed, and
the main wind direction will provide a complete climatic and environmental characterization of the
acquisition time for each image.
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Abbreviations

ARPAE Agenzia Regionale Prevenzione Ambiente ed Energia
DN Digital Number

FVC Fractional Vegetation Cover

LCZ Local Climate Zone

LSE Land Surface Emissivity

LST Land Surface Temperature

LWIR Long-Wave Infrared

MODIS Moderate Resolution Imaging Spectroradiometer
NDVI Normalized Difference Vegetation Index
NIR Near Infrared

OLI Operational Land Imager

QGIS Quantum Geographic Information System
ROI Region of Interest

SCP Semi-Automatic Classification Plugin
SEAP Plan of Action for Sustainable Energy
SUHI Surface Urban Heat Island

SWIR Short-Wave Infrared

TIRS Thermal Infrared Sensor

TOA Top of Atmosphere

UHI Urban Heat Island

USGS United States Geological Survey

UTC Coordinated Universal Time

VIS Visible
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