Genetic Evaluation of Ancient Platycladus orientalis L. (Cupressaceae) in the Middle Reaches of the Yellow River Using Nuclear Microsatellite Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Extraction and PCR Amplification
2.3. Data Analysis
3. Results
3.1. Microsatellite Analysis
3.2. Population Genetic Diversity and Mantel Test
3.3. Population Structure and Genetic Relationships of Individuals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, W.C.; Fu, L.K. Flora of China. Vol. 7. Gymnospermae. Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita Tomus. 1978, 98, 302–316. [Google Scholar]
- Waley, A. The Book of Songs. J. Am. Oriental. Soc. 1960, 80, 188. [Google Scholar]
- Zhang, C. Research on Funerals in the Qin and Han Dynasties; Shandong Normal University: Shandong, China, 2010. [Google Scholar]
- Hua, S.Z.; Mou, J.Z. Harnessing and Development of the Loess Plateau in the Middle Reaches of the Yellow River. In Taming the Yellow River: Silt and Floods; Springer: Berlin/Heidelberg, Germany, 1989; pp. 517–528. [Google Scholar]
- Jin, Y.Q.; Ma, Y.Q.; Wang, S.; Hu, X.G.; Huang, L.S.; Li, Y.; Wang, X.R.; Mao, J.F. Genetic evaluation of the breeding population of a valuable reforestation conifer Platycladus orientalis (Cupressaceae). Sci. Rep. 2016, 6, 34821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, X. The Yellow Emperor’s Mausoleum. China Today 1994, 1, 41–43. [Google Scholar]
- Chang, E.M.; Tian, Y.X.; Wang, C.Y.; Deng, N.; Liu, C.X. Exploring the Phylogeography of Ancient Platycladus Orientalis in China by Specific-Locus Amplified Fragment Sequencing. Int. J. Mol. Sci. 2019, 20, 3871. [Google Scholar] [CrossRef] [Green Version]
- Cui, B.; Deng, P.; Zhang, S.; Zhao, Z. Genetic Diversity and Population Genetic Structure of Ancient Platycladus Orientalis L. (Cupressaceae) in the Middle Reaches of the Yellow River by Chloroplast Microsatellite Markers. Forests 2021, 12, 592. [Google Scholar] [CrossRef]
- Zhu, L.; Lou, A.R. Old-growth Platycladus orientalis as a resource for reproductive capacity and genetic diversity. PLoS ONE 2013, 8, e56489. [Google Scholar] [CrossRef]
- Kirkpatrick, J.B.; Gilfedder, L. Maintaining integrity compared with maintaining rare and threatened taxa in remnant bushland in subhumid Tasmania. Biol. Conserv. 1995, 74, 1–8. [Google Scholar] [CrossRef]
- Rodrigues, L.; Cássio, V.D.; Póvoa, O.; Monteiro, A. Low genetic diversity and significant structuring in the endangered Mentha cervina populations and its implications for conservation. Biochem. Syst. Ecol. 2013, 50, 51–61. [Google Scholar] [CrossRef]
- Rajora, O.P.; Mosseler, A. Challenges and opportunities for conservation of forest genetic resources. Euphytica 2001, 118, 197–212. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.J.; Xing, S.Y.; Kong, Q.Q.; Zhang, Y.H.; Sun, L.M.; Gao, Y. AFLP analysis of genetic diversity and a construction of the core collection of partial ancient ginkgo trees in China. Acta Hortic. Sin. 2016, 43, 249–260. [Google Scholar]
- Lupini, A.; Aci, M.M.; Mauceri, A.; Luzzi, G.; Bagnato, S.; Menguzzato, G.; Mercati, F.; Sunseri, F. Genetic diversity in old populations of sessile oak from Calabria assessed by nuclear and chloroplast SSR. J. Mt. Sci. 2019, 16, 1111–1120. [Google Scholar] [CrossRef]
- Booy, G.; Hendriks, R.; Smulders, M.; Groenendael, J.M.; Vosman, B. Genetic diversity and the survival of populations. Plant Biol. 2010, 2, 379–395. [Google Scholar] [CrossRef]
- Forest, F.; Grenyer, R.; Rouget, M.; Davies, T.J.; Cowling, R.M.; Faith, D.P.; Balmford, A.; Manning, J.C.; Proche, E.; Bank, M. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 2007, 445, 757–760. [Google Scholar] [CrossRef]
- Hou, L.; Cui, Y.H.; Li, X.; Chen, W.; Zhang, Z.Y.; Pang, X.M.; Li, Y.Y. Genetic evaluation of natural populations of the endangered conifer Thuja koraiensis using microsatellite markers by restriction-associated DNA sequencing. Genes 2018, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Mandoulakani, B.A.; Sadigh, P.; Azizi, H.; Piri, Y.; Nasri, S. Comparative assessment of IRAP, REMAP, ISSR, and SSR markers for evaluation of genetic diversity of Alfalfa (Medicago sativa L.). J. Agr. Sci. Technol. 2015, 17, 999–1010. [Google Scholar]
- Jiang, W.X.; Bai, T.D.; Dai, H.M.; Wei, Q.; Zhang, W.J.; Ding, Y.L. Microsatellite markers revealed moderate genetic diversity and population differentiation of moso bamboo (Phyllostachys edulis)—A primarily asexual reproduction species in China. Tree Genet. Genomes 2017, 13, 130. [Google Scholar] [CrossRef]
- Le, R.J.; Wieczorek, A.M. Molecular systematics and population genetics of biological invasions: Towards a better understanding of invasive species management. Annals Appl. Biol. 2008, 154, 1–17. [Google Scholar]
- Petit, R.J.; Mousadik, A.E.; Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 2010, 12, 844–855. [Google Scholar] [CrossRef]
- Guizado, S.; Nadeem, M.A.; Ali, F.; Barut, M.; Baloch, F.S. Genetic Diversity and Population Structure of Endangered Rosewood from the Peruvian Amazon Using ISSR Markers. Acta Amazon. 2020, 50, 204–212. [Google Scholar] [CrossRef]
- Varshney, R.K.; Graner, A.; Sorrells, M.E. Genic Microsatellite Markers in Plants: Features and Applications. Trends Biotechnol. 2005, 23, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Jie, Y.; Jiang, Y.; Zhong, Y.; Liu, Y.; Zhang, J. Development of simple sequence repeats (SSR) markers of ramie and comparison of SSR and inter-SSR marker systems. Prog. Nat. Sci. 2005, 15, 137–142. [Google Scholar]
- Kalia, R.K.; Rai, M.K.; Kalia, S.; Singh, R.; Dhawan, A. Microsatellite markers: An overview of the recent progress in plants. Euphytica 2011, 177, 309–334. [Google Scholar] [CrossRef]
- Chang, E.M.; Zhang, J.; Yao, X.M.; Tang, S.; Zhao, X.L.; Deng, N.; Shi, S.N.; Liu, J.F.; Jiang, Z.P. De novo characterization of the Platycladus orientalis transcriptome and analysis of photosynthesis-related genes during aging. Forests 2019, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.Y.; Jiang, Z.H.; Zhang, X.; Zhang, T.; Zhu, H.L.; Cui, B.; Li, Y.M.; Zhao, F.; Zhao, Z. Leaf anatomy and ultrastructure in senescing ancient tree, Platycladus orientalis L. (Cupressaceae). PeerJ 2019, 7, e6766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.G.; Jin, Y.Q.; Wang, X.R.; Mao, J.F.; Li, Y. Predicting impacts of future climate change on the distribution of the widespread conifer Platycladus orientalis. PLoS ONE 2015, 10, e0132326. [Google Scholar] [CrossRef]
- Jia, K.H.; Zhao, W.; Maier, P.A.; Hu, X.G.; Jin, Y.Q.; Zhou, S.S.; Jiao, S.Q.; El-Kassaby, Y.A.; Wang, T.; Wang, X.R. Landscape genomics predicts climate change-related genetic offset for the widespread Platycladus orientalis (Cupressaceae). Evol. Appl. 2020, 13, 665–676. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Lou, A.R. Development and characterization of nine highly polymorphic microsatellite primers for Platycladus orientalis (Cupressaceae). Am. J. Bot. 2012, 99, e280–e282. [Google Scholar] [CrossRef] [Green Version]
- Terauchi, R. A polymorphic microsatellite marker from the tropical tree Dryobalanops lanceolata (Dipterocarpaceae). Genes. Genet. Syst. 1994, 69, 567–576. [Google Scholar] [CrossRef]
- Petit, R.; Duminil, J.; Fineschi, S.; Hampe, A.; Vendramin, G.G. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol. Ecol. 2005, 14, 689–701. [Google Scholar] [CrossRef] [Green Version]
- Vu, D.D.; Bui, T.T.X.; Nguyen, M.T.; Vu, D.G.; Nguyen, M.D.; Bui, V.T.; Huang, X.H.; Zhang, Y. Genetic diversity in two threatened species in Vietnam: Taxus chinensis and Taxus wallichiana. J. For. Res. 2017, 28, 265–272. [Google Scholar] [CrossRef]
- Ujino, T.; Kawahara, T.; Tsumura, Y.; Nagamitsu, T.; Yoshimaru, H.; Ratnam, W. Development and polymorphism of simple sequence repeat DNA markers for Shorea curtisii and other Dipterocarpaceae species. Heredity 1998, 81, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.Z.; Wang, W.; Zhou, B.L.; Zhang, T.Z. Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium. Theor. Appl. Genet. 2006, 112, 1573–1581. [Google Scholar] [CrossRef]
- Ding, L.; Gao, D.D.; Han, J.; Liu, Z.H.; Pan, T.; Shi, L.Y.; Sun, X.J.; Sun, Z.L.; Wang, H.; Wu, B. Microsatellite records for volume 10, issue 3. Conserv. Genet. Resour. 2018, 10, 587–596. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.L.; Zhao, Z.; Li, Y.M.; Zhou, K.K.; Su, L.; Zhou, Q.Y. Root transcriptome sequencing and differentially expressed drought-responsive genes in the Platycladus orientalis (L.). Tree Genet. Genomes 2016, 12, 79. [Google Scholar] [CrossRef]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Yeh, F.C.; Yang, R.C.; Boyle, T. POPGENE Version 1.32 Microsoft Windows-Based Freeware for Populations Genetic Analysis; University of Alberta: Edmonton, AB, Canada, 1999. [Google Scholar]
- Nagy, S.; Poczai, P.; Cernák, I.; Gorji, A.M.; Hegedűs, G.; Taller, J. PICcalc: An online program to calculate polymorphic information content for molecular genetic studies. Biochem. Gents. 2012, 50, 670–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. 2005, 1, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Goudet, J. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered. 1995, 86, 485–486. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Cristescu, R.; Sherwin, W.B.; Handasyde, K.; Cahill, V.; Cooper, D.W. Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: The importance of the microsatellite structure. Conserv. Genet. 2010, 11, 1043–1049. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.J.; Donnelly, P.J. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; Vonholdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Sudhir, K.; Glen, S.; Koichiro, T. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 1870. [Google Scholar]
- Ofori, D.A. Genetic diversity and its implications for the management and conservation of Milicia species. Estud. Const. 2001, 12, 29–54. [Google Scholar]
- Schfer, D.; Vincent, H.; Fischer, M.; Kempel, A. The importance of genetic diversity for the translocation of eight threatened plant species into the wild. Glob. Ecol. Conserv. 2020, 24, e01240. [Google Scholar] [CrossRef]
- Dervishi, A.; Jake, J.; Ismaili, H.; Javornik, B.; Tajner, N. Genetic Structure and Core Collection of Olive Germplasm from Albania Revealed by Microsatellite Markers. Genes 2021, 12, 256. [Google Scholar] [CrossRef]
- Oddou-Muratorio, S.; Vendramin, G.G.; Buiteveld, J.; Fady, B. Population estimators or progeny tests: What is the best method to assess null allele frequencies at SSR loci? Conserv. Genet. 2009, 10, 1343–1347. [Google Scholar] [CrossRef]
- Wang, Y.S.; Xing, S.Y.; Tang, H.X.; Feng, D.Q. Genetic diversity of Platycladus orientalis provenances. Sci. Silva. Sin. 2011, 47, 91–96. [Google Scholar]
- Chapuis, M.P.; Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 2007, 24, 621–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.M.; Zhang, N.N.; Liu, X.J.; Yang, Z.J.; Jia, H.Y.; Xu, D.P. Genetic diversity and population structure analysis of Dalbergia Odorifera germplasm and development of a core collection using microsatellite markers. Genes 2019, 10, 281. [Google Scholar] [CrossRef] [Green Version]
- Mandel, J.R.; Milton, E.F.; Donovan, L.A.; Knapp, S.J.; Burke, J.M. Genetic diversity and population structure in the rare Algodones sunflower (Helianthus niveus ssp. tephrodes). Conserv. Genet. 2013, 14, 31–40. [Google Scholar] [CrossRef]
- Wu, Q.C.; Zang, F.Q.; Ma, Y.; Zheng, Y.Q.; Zang, D.K. Analysis of genetic diversity and population structure in endangered Populus wulianensis based on 18 newly developed EST-SSR markers. Glob. Ecol. Conserv. 2020, 24, e01329. [Google Scholar] [CrossRef]
- Androsiuk, B.P.; Shimono, A.; Westin, J.; Lindgren, D.; Fries, A.; Wang, X.R. Genetic status of Norway spruce (Picea abies) breeding populations for northern Sweden. Silvae Genet. 2013, 62, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Reisch, C.; Mayer, F.; Rüther, C.; Nelle, O. Forest history affects genetic diversity—Molecular variation of Dryopteris dilatata (Dryopteridaceae) in ancient and recent forests. Nord. J. Bot. 2010, 25, 366–371. [Google Scholar] [CrossRef]
- Ravishankar, H. Effect of planting density on growth parameters and fruit yield in guava (Psidium guajava L.) cv. Allahabad Safeda cultivated under mild humid conditions of Coorg. J. Hortic. Sci. 2008, 3, 123–126. [Google Scholar]
- Slatkin, M. Gene flow and the geographic structure of natural populations: Slatkin, Montgomery. Science 1987, 236, 787–792. [Google Scholar] [CrossRef]
- Hamrick, J.L.; Godt, M. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996, 351, 1291–1298. [Google Scholar]
- Xiang, X.Y.; Zhang, Z.X.; Duan, R.Y.; Zhang, X.P.; Wu, G.L. Genetic diversity and structure of Pinus dabeshanensis revealed by expressed sequence tag-simple sequence repeat (EST-SSR) markers. Biochem. Systemat. Ecol. 2015, 61, 70–77. [Google Scholar] [CrossRef]
- Wright, S. Evolution in mendelian populations. Bull. Math. Biol. 1990, 52, 241–295. [Google Scholar] [CrossRef] [PubMed]
- Kremer, A.; Ronce, O.; Robledo-Arnuncio, J.J.; Guillaume, F.; Bohrer, G. Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 2012, 15, 378–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfe, K.H.; Li, W.H.; Sharp, P.M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Sci. Acad. USA 1987, 84, 9054–9058. [Google Scholar] [CrossRef] [Green Version]
- Lauterbach, D.; Ristow, M.; Gemeinholzer, B. Genetic population structure, fitness variation and the importance of population history in remnant populations of the endangered plant Silene chlorantha (Willd.) Ehrh. (Caryophyllaceae). Plant Biol. 2011, 13, 667–777. [Google Scholar] [CrossRef]
- Bradshaw, R.H. Past anthropogenic influence on European forests and some possible genetic consequences. Forest. Ecol. Manag. 2004, 197, 203–212. [Google Scholar] [CrossRef]
- Yu, H.X. Sacrificial Rites in the Ancesters’ Temples and Their Cultural Features. J. South 2001, 21, 61–65. [Google Scholar]
- Lee, Y.S. Structure and Change of Urban Sacrificial Centers in Late Imperial China: Confucian Temples and City-God Temples. J. Ming-Qing Hist. Stud. 2002, 17, 1–38. [Google Scholar] [CrossRef]
- Margules, C.R.; Pressey, R.L. Systematic conservation planning. Nature 2000, 405, 243–253. [Google Scholar] [CrossRef]
Population | Location | Number of Samples | Latitude (N) | Longitude (E) | Elevation (m) | Average Age (Years) |
---|---|---|---|---|---|---|
WNBS | Cangjie Temple, Weinan, Shaanxi | 29 | 35°22′ | 109°41′ | 816 | 2314 |
WNHY | Xiyue Temple, Weinan, Shaanxi | 13 | 34°34′ | 110°06′ | 315 | 1518 |
WNHC | Sima Temple, Weinan, Shaanxi | 4 | 35°22′ | 110°24′ | 396 | 1075 |
TCYX | Medicine God Temple, Tongchuan, Shaanxi | 12 | 34°54′ | 108°59′ | 717 | 1238 |
BJQS | Zhougong Temple, Baoji, Shaanxi | 3 | 34°29′ | 107°35′ | 824 | 967 |
YAHL | Xuanyuan Temple, Yanan, Shaanxi | 19 | 35°35′ | 109°16′ | 865 | 2711 |
YLSM | Shenmu County, Yulin, Shaanxi | 19 | 38°40′ | 110°25′ | 1172 | 1668 |
LLJC | Mt. Gua shan Scenic, Lvliang, Shanxi | 6 | 37°34′ | 112°07′ | 884 | 1200 |
TYJY | Jinci Temple, Taiyuan, Shanxi | 7 | 37°42′ | 112°26′ | 816 | 1871 |
JXMS | Mt. Mianshan Scenic, Jiexiu, Shanxi | 2 | 36°56′ | 111°53′ | 985 | 1975 |
LFYD | Guangsheng Temple, Linfen, Shanxi | 4 | 36°03′ | 110°29′ | 460 | 1600 |
YCSD | Shun emperor Mausoleum, Yuncheng, Shanxi | 6 | 35°07′ | 110°54′ | 398 | 2417 |
YCYH | Guan emperor Temple, Yuncheng, Shanxi | 12 | 34°54′ | 110°50′ | 325 | 1308 |
YCWR | Wanrong County, Yuncheng, Shanxi | 8 | 35°21′ | 110°48′ | 770 | 2250 |
LYMJ | Guangwu emperor Mausoleum, Luoyang, Henan | 30 | 34°50′ | 112°35′ | 124 | 1500 |
ZZDF | Zhongyue Temple, Zhengzhou, Henan | 17 | 34°27′ | 113°04′ | 350 | 1435 |
TSQC | Fuxi Temple, Tianshui, Gansu | 24 | 34°34′ | 105°42′ | 1173 | 929 |
PLCX | Chongxin County, Pingliang, Gansu | 2 | 35°19′ | 107°01′ | 1168 | 2250 |
QYZY | Zhenyuan County, Qingyang, Gansu | 4 | 35°40′ | 107°11′ | 1235 | 1900 |
Locus | Primer Sequence (5′–3′) | Repeat Motif | Tm (°C) | Allele Size (bp) | Na | Ne | I | Ho | He | H | PIC | Fst | Nm | FNA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M01 | F: ATCCCACCATGAAGCTGTTC R: TTTACCCCCTACAGCCACTG | (TGATA)5 | 55 | 155 | 10 | 5 | 1.781 | 0.484 | 0.516 | 0.818 | 0.792 | 0.189 | 1.070 | 0.176 |
M04 | F: TGAGGGTCACTGGGAGAATC R: CAGCGTAAAATTGCCTGGTT | (AT)6 | 55 | 243 | 11 | 3 | 1.385 | 0.851 | 0.149 | 0.663 | 0.605 | 0.222 | 0.875 | 0.037 |
M07 | F: AGTTTTGGCGGGTGTTACAG R: AGGAGCAAGCCACGAGAATA | (CTC)5 | 55 | 280 | 4 | 2 | 1.049 | 0.742 | 0.258 | 0.548 | 0.520 | 0.135 | 1.607 | 0.020 |
M11 | F: CTTCGTCCCCGATACAAGAG R: CATCATGCCCGATATCATCA | (CAG)6 | 55 | 252 | 6 | 2 | 0.872 | 0.629 | 0.371 | 0.431 | 0.403 | 0.254 | 0.734 | 0.006 |
M17 | F: TCGCAGCTATGAACTCCAAT R: TCGCAGCTATGAACTCCAAT | (TC)6 | 55 | 204 | 5 | 2 | 0.707 | 0.624 | 0.376 | 0.460 | 0.365 | 0.130 | 1.671 | 0.000 |
M19 | F: GCCATCATCCCATTCATCAT R: GAGCTCAGGGGAGAGTTGTG | (CT)6 | 55 | 261 | 8 | 2 | 0.816 | 0.620 | 0.380 | 0.431 | 0.378 | 0.154 | 1.373 | 0.132 |
M22 | F: TGCATTCTATGCGCTTGTTC R: GAATGGCTTGCATGCATCTT | (AC)6 | 55 | 276 | 3 | 2 | 0.709 | 0.453 | 0.548 | 0.495 | 0.377 | 0.169 | 1.234 | 0.087 |
M23 | F: CCTACCTTTTGCTACCACGG R: CTAGGGTGAATCGCCATGTT | (AT)6 | 55 | 319 | 7 | 2 | 1.203 | 0.425 | 0.575 | 0.579 | 0.546 | 0.227 | 0.851 | 0.000 |
M25 | F: AGTGCATGCGTTCATCTCAG R: GCCATCAAACAATCAAGCCT | (TG)6 | 55 | 223 | 11 | 3 | 1.410 | 0.778 | 0.222 | 0.635 | 0.600 | 0.173 | 1.196 | 0.000 |
Mean | - | - | - | - | 7.222 | 2.556 | 1.104 | 0.623 | 0.377 | 0.562 | 0.510 | 0.184 | 1.179 | - |
Populations | Na | Ne | PPB% | Ar | Apriv | I | Ho | He | F | p Value of Bottleneck | |
---|---|---|---|---|---|---|---|---|---|---|---|
TPM | SMM | ||||||||||
WNBS | 4.111 | 2.146 | 100 | 2.058 | 0.222 | 0.915 | 0.345 | 0.510 | 0.294 | 0.590 | 0.875 |
WNHY | 3.333 | 2.162 | 100 | 2.038 | 0.111 | 0.848 | 0.462 | 0.473 | −0.011 | 0.674 | 0.820 |
WNHC | 2.222 | 1.555 | 89 | 1.738 | 0.000 | 0.532 | 0.333 | 0.319 | −0.025 | 0.994 | 0.994 |
TCYX | 3.333 | 2.399 | 100 | 2.189 | 0.111 | 0.949 | 0.509 | 0.555 | 0.064 | 0.015 | 0.125 |
BJQS | 2.111 | 1.614 | 78 | 1.800 | 0.000 | 0.526 | 0.296 | 0.321 | 0.044 | 0.594 | 0.594 |
YAHL | 3.444 | 2.095 | 100 | 1.996 | 0.111 | 0.835 | 0.345 | 0.471 | 0.261 | 0.545 | 0.633 |
YLSM | 3.889 | 2.176 | 100 | 2.045 | 0.111 | 0.890 | 0.392 | 0.493 | 0.135 | 0.674 | 0.918 |
LLJC | 2.889 | 2.118 | 100 | 2.027 | 0.111 | 0.778 | 0.370 | 0.455 | 0.264 | 0.500 | 0.545 |
TYJY | 2.889 | 2.257 | 100 | 2.111 | 0.111 | 0.842 | 0.333 | 0.506 | 0.261 | 0.150 | 0.326 |
JXMS | 1.556 | 1.556 | 56 | 1.556 | 0.000 | 0.385 | 0.444 | 0.278 | −0.600 | 0.005 | 0.006 |
LFYD | 2.556 | 2.095 | 89 | 2.059 | 0.000 | 0.735 | 0.250 | 0.441 | 0.415 | 0.230 | 0.230 |
YCSD | 2.889 | 2.139 | 100 | 2.052 | 0.000 | 0.784 | 0.352 | 0.444 | 0.128 | 0.633 | 0.715 |
YCYH | 3.667 | 2.145 | 100 | 2.081 | 0.000 | 0.894 | 0.343 | 0.493 | 0.235 | 0.545 | 0.898 |
YCWR | 3.000 | 2.061 | 100 | 1.995 | 0.000 | 0.784 | 0.389 | 0.445 | 0.084 | 0.545 | 0.715 |
LYMJ | 4.556 | 2.471 | 100 | 2.178 | 0.444 | 1.020 | 0.359 | 0.543 | 0.300 | 0.410 | 0.820 |
ZZDF | 3.556 | 2.282 | 100 | 2.127 | 0.111 | 0.932 | 0.451 | 0.522 | 0.136 | 0.125 | 0.500 |
TSQC | 4.778 | 2.727 | 100 | 2.265 | 0.444 | 1.081 | 0.352 | 0.561 | 0.345 | 0.544 | 0.633 |
PLCX | 2.000 | 1.881 | 78 | 2.000 | 0.333 | 0.602 | 0.389 | 0.403 | 0.010 | 0.004 | 0.004 |
QYZY | 2.222 | 2.146 | 100 | 1.873 | 0.000 | 0.620 | 0.389 | 0.396 | −0.063 | 0.367 | 0.545 |
Mean | 3.105 | 2.107 | 94.211 | 2.010 | 0.117 | 0.787 | 0.374 | 0.454 | 0.120 | 0.429 | 0.574 |
Source of Variation | df | Sum of Squares | Variance Components | Total Variation (%) | p Value |
---|---|---|---|---|---|
Among populations | 18 | 128.821 | 0.183 | 7 | <0.001 |
Among individuals within populations | 202 | 614.351 | 0.672 | 26 | |
Within individuals | 221 | 375.000 | 1.697 | 67 | |
Total | 441 | 1118.172 | 2.552 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, B.; Deng, P.; Tian, L.; Wang, Q.; Zhang, S.; Zhao, Z. Genetic Evaluation of Ancient Platycladus orientalis L. (Cupressaceae) in the Middle Reaches of the Yellow River Using Nuclear Microsatellite Markers. Forests 2021, 12, 1616. https://doi.org/10.3390/f12121616
Cui B, Deng P, Tian L, Wang Q, Zhang S, Zhao Z. Genetic Evaluation of Ancient Platycladus orientalis L. (Cupressaceae) in the Middle Reaches of the Yellow River Using Nuclear Microsatellite Markers. Forests. 2021; 12(12):1616. https://doi.org/10.3390/f12121616
Chicago/Turabian StyleCui, Bei, Ping Deng, Linghong Tian, Qingqi Wang, Sheng Zhang, and Zhong Zhao. 2021. "Genetic Evaluation of Ancient Platycladus orientalis L. (Cupressaceae) in the Middle Reaches of the Yellow River Using Nuclear Microsatellite Markers" Forests 12, no. 12: 1616. https://doi.org/10.3390/f12121616
APA StyleCui, B., Deng, P., Tian, L., Wang, Q., Zhang, S., & Zhao, Z. (2021). Genetic Evaluation of Ancient Platycladus orientalis L. (Cupressaceae) in the Middle Reaches of the Yellow River Using Nuclear Microsatellite Markers. Forests, 12(12), 1616. https://doi.org/10.3390/f12121616