A Deep Learning Approach for Calamity Assessment Using Sentinel-2 Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Digital Orthophotos
2.3. Labels
2.4. Sentinel-2 Data
3. Methods
3.1. Preprocessing
3.2. Model Implementation
3.3. Evaluation Metrics
3.4. Postprocessing Geoprocessing Tool
3.5. Experiments
- Tile size: Using the above specified settings we tested for tile sizes of 32 × 32, 64 × 64, 128 × 128 and 256 × 256.
- Learning rate: Using the same settings as in experiment one and a tile size of 32 × 32 different learning rates were tested: 0.1 to 0.0001. A very small learning rate means that the model needs to very long to train, but a big learning rate might cause the model to not converge.
- Reducing the tiles to areas within the state forest of Hesse: Using the provided mask we tested to train the model, on this area only, as we can exclude private forests that are not labelled, as well as other landcover types. This also means that the number of tiles is reduced and depends on the tile size that was changed during the experiment (the bigger the tile size, the less data).
- Input spectral bands: To estimate the redundant data in the Sentinel-2 images a Principal Component Transformation (PCA) was conducted. We found that most information was contained in the first two PCs, indicating that using all bands for modelling might not be necessary. Thus, we used only the 10 m spectral bands as those were shown by other studies e.g., Wessel et al. [36] to be the most important ones for forest applications such as tree classification and are, due to the higher spatial resolution, also more appropriate for feature extraction. This experiment was conducted with tile sizes of 32 and 64.
- Testing and Transfer study: The model with the highest accuracy in the previous experiments was then tested on an unseen area, a part of Area5 (see Section 3.1).
4. Results
4.1. Results from Experiments
4.2. Inference Using the New Geoprocessing Tool and Qualitative Assessment of the Results
5. Discussion
5.1. Discussion of the Results and Limitations of the Approach
5.2. Comparison to Other Remote Sensing Methods
6. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gardiner, B.; Blennow, K.; Carnus, J.M.; Fleischer, P.; Ingemarsson, F.; Landmann, G.; Lindner, M.; Marzano, M.; Nicoll, B.; Orazio, C.; et al. Destructive Storms in European Forests: Past and Forthcoming Impacts. 2010. Available online: https://ec.europa.eu/environment/forests/pdf/STORMS%20Final_Report.pdf (accessed on 3 February 2020).
- Seidl, R.; Schelhaas, M.-J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirici, G.; Bottalico, F.; Giannetti, F.; Del Perugia, B.; Travaglini, D.; Nocentini, S.; Kutchartt, E.; Marchi, E.; Foderi, C.; Fioravanti, M.; et al. Assessing forest windthrow damage using single-date, post-event airborne laser scanning data. For. Int. J. For. Res. 2018, 91, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Forzieri, G.; Pecchi, M.; Girardello, M.; Mauri, A.; Klaus, M.; Nikolov, C.; Rüetschi, M.; Gardiner, B.; Tomaštík, J.; Small, D.; et al. A spatially explicit database of wind disturbances in European forests over the period 2000–2018. Earth Syst. Sci. Data 2020, 12, 257–276. [Google Scholar] [CrossRef] [Green Version]
- Mölter, T.; Schindler, D.; Albrecht, A.; Kohnle, U. Review on the Projections of Future Storminess over the North Atlantic European Region. Atmosphere 2016, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Fink, A.H.; Brücher, T.; Ermert, V.; Krüger, A.; Pinto, J.G. The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci. 2009, 9, 405–423. [Google Scholar] [CrossRef] [Green Version]
- Forster, B.; Meier, F. Sturm, Witterung und Borkenkäfer. Risikomanagement im Forstschutz; Merkblatt für die Praxis No. 44. 2010. Available online: https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A9138/datastream/PDF/view (accessed on 5 April 2020).
- Seidl, R.; Rammer, W. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landsc. Ecol. 2017, 32, 1485–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanewinkel, M.; Peyron, J.L. The economic impact of storms. In Living with Storm Damage to Forests What Science Can Tell Us; Gardiner, B., Schuck, A., Schelhaas, M.-J., Orazio, C., Blennow, K., Nicoll, B., Eds.; European Forest Institute: Joensuu, Finland, 2013; pp. 55–63. [Google Scholar]
- Fuhrer, J.; Beniston, M.; Fischlin, A.; Frei, C.; Goyette, S.; Jasper, K.; Pfister, C. Climate Risks and Their Impact on Agriculture and Forests in Switzerland. Clim. Chang. 2006, 79, 79–102. [Google Scholar] [CrossRef] [Green Version]
- UN. Sustainable Development Goals: Sustainable Development Knowledge Platform. Available online: https://sustainabledevelopment.un.org/?menu=1300 (accessed on 6 April 2020).
- Seitz, R.; Straub, C. »FastResponse«—Die Schnelle Antwort Nach Dem Sturm, LWF Aktuell No. 4. 2017. Available online: https://www.lwf.bayern.de/mam/cms04/informationstechnologie/dateien/a115_fast_response_seitz.pdf (accessed on 5 April 2020).
- Honkavaara, E.; Litkey, P.; Nurminen, K. Automatic Storm Damage Detection in Forests Using High-Altitude Photogrammetric Imagery. Remote Sens. 2013, 5, 1405–1424. [Google Scholar] [CrossRef] [Green Version]
- Tanase, M.A.; Aponte, C.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Heurich, M. Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park. Remote Sens. Environ. 2018, 209, 700–711. [Google Scholar] [CrossRef]
- Fransson, J.E.S.; Walter, F.; Blennow, K.; Gustavsson, A.; Ulander, L.M.H. Detection of storm-damaged forested areas using airborne CARABAS-II VHF SAR image data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2170–2175. [Google Scholar] [CrossRef]
- Fransson, J.E.S.; Pantze, A.; Eriksson, L.E.B.; Soja, M.J.; Santoro, M. Mapping of wind-thrown forests using satellite SAR images. In Proceedings of the 2010 IEEE International Geoscience & Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1242–1245, ISBN 978-1-4244-9565-8. [Google Scholar]
- Eriksson, L.E.B.; Fransson, J.E.S.; Soja, M.J.; Santoro, M. Backscatter signatures of wind-thrown forest in satellite SAR images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 6435–6438, ISBN 978-1-4673-1159-5. [Google Scholar]
- Ningthoujam, R.; Tansey, K.; Balzter, H.; Morrison, K.; Johnson, S.; Gerard, F.; George, C.; Burbidge, G.; Doody, S.; Veck, N.; et al. Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar. Remote Sens. 2016, 8, 577. [Google Scholar] [CrossRef] [Green Version]
- Rüetschi, M.; Small, D.; Waser, L. Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data. Remote Sens. 2019, 11, 115. [Google Scholar] [CrossRef] [Green Version]
- Nyström, M.; Holmgren, J.; Fransson, J.E.S.; Olsson, H. Detection of windthrown trees using airborne laser scanning. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 21–29. [Google Scholar] [CrossRef]
- Mokroš, M.; Výbošťok, J.; Merganič, J.; Hollaus, M.; Barton, I.; Koreň, M.; Tomaštík, J.; Čerňava, J. Early Stage Forest Windthrow Estimation Based on Unmanned Aircraft System Imagery. Forests 2017, 8, 306. [Google Scholar] [CrossRef] [Green Version]
- Duan, F.; Wan, Y.; Deng, L. A Novel Approach for Coarse-to-Fine Windthrown Tree Extraction Based on Unmanned Aerial Vehicle Images. Remote Sens. 2017, 9, 306. [Google Scholar] [CrossRef]
- Chehata, N.; Orny, C.; Boukir, S.; Guyon, D.; Wigneron, J.P. Object-based change detection in wind storm-damaged forest using high-resolution multispectral images. Int. J. Remote Sens. 2014, 35, 4758–4777. [Google Scholar] [CrossRef]
- Chehata, N.; Orny, C.; Boukir, S.; Guyon, D. Object-based forest change detection using high resolution satellite images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, XXXVIII-3/W22, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Haidu, I.; Furtuna, P.R.; Lebaut, S. Detection of old scattered windthrow using low cost resources. The case of Storm Xynthia in the Vosges Mountains, 28 February 2010. Open Geosci. 2019, 11, 492–504. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens. Environ. 2012, 122, 75–91. [Google Scholar] [CrossRef]
- Einzmann, K.; Immitzer, M.; Böck, S.; Bauer, O.; Schmitt, A.; Atzberger, C. Windthrow Detection in European Forests with Very High-Resolution Optical Data. Forests 2017, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, Z.M.; Brandmeier, M.; Straub, C. Forest Damage Assessment Using Deep Learning on High Resolution Remote Sensing Data. Remote Sens. 2019, 11, 1976. [Google Scholar] [CrossRef] [Green Version]
- Deigele, W.; Brandmeier, M.; Straub, C. A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection on PlanetScope and High-Resolution Aerial Image Data. Remote Sens. 2020, 12, 2121. [Google Scholar] [CrossRef]
- Statistisches Bundesamt. Bodenfläche nach Nutzungsarten und Bundesländern. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Flaechennutzung/Tabellen/bodenflaeche-laender.html (accessed on 19 February 2020).
- Statistisches Bundesamt. 30% der Fläche in Deutschland Sind Wald, Pressemitteilung Nr. 12; Statistisches Bundesamt: Wiesbaden, Germany, 2019.
- Thünen-Institut. Waldfläche [ha] nach Land und Eigentumsart Filter: Jahr=2012. 2012. Available online: https://bwi.info (accessed on 19 February 2020).
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015. Available online: http://arxiv.org/pdf/1505.04597v1 (accessed on 27 January 2020).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. 2014. Available online: http://arxiv.org/pdf/1412.6980v9 (accessed on 27 January 2020).
- Wessel, M.; Brandmeier, M.; Tiede, D. Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree Types and Tree Species Based on Sentinel-2 Data. Remote Sens. 2018, 10, 1419. [Google Scholar] [CrossRef] [Green Version]
- ImageNet. Available online: http://www.image-net.org/ (accessed on 24 March 2020).
- Zhou, Z.-H. A brief introduction to weakly supervised learning. Natl. Sci. Rev. 2018, 5, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Song, K.; Kim, S.; Townshend, J.R.G.; Davis, P.; Masek, J.G.; Goward, S.N. Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sens. Environ. 2008, 112, 970–985. [Google Scholar] [CrossRef]
Deciduous Trees | ∑ = | 58% | Coniferous Trees | ∑ = | 42% | |||
---|---|---|---|---|---|---|---|---|
tree species | oak | beech | o. deciduous trees | spruce | pine | o. coniferous trees | ||
composition | 10% | 35% | 13% | 21% | 11% | 10% |
Area1 | Area2 | Area3 | Area4 | Area5 | Area6 | Area7 | |
---|---|---|---|---|---|---|---|
24 April 2018 | × | ||||||
20 April 2018 | × | × | × | × | × | × | × |
18 April 2018 | × | × | |||||
12 April 2018 | × | ||||||
10 April 2018 | × | × | × | × | |||
8 April 2018 | × | × | |||||
7 April 2018 | × | × | × | × | × | ||
2 April 2018 | × | ||||||
21 March 2018 | × | × | |||||
11 March 2018 | × | ||||||
1 March 2018 | × | × | |||||
24 February 2018 | × | × | |||||
14 February 2018 | × | × |
Exported Tile Size | Undamaged Pixel in % | Damaged Pixel in % |
---|---|---|
32 × 32 | 92.01 | 7.99 |
64 × 64 | 96.46 | 3.54 |
128 × 128 | 98.07 | 1.93 |
256 × 256 | 99.24 | 0.76 |
15 Epochs | 30 Epochs | ||
---|---|---|---|
Tile Size | Max IoU | Max IoU | Ø Seconds/Epoch |
32 × 32 | 0.396 | 0.382 | 625 |
64 × 64 | 0.338 | 0.332 | 424 |
128 × 128 | 0.285 | 0.284 | 388 |
256 × 256 | 0.302 | 0.248 | 559 |
Learning Rate | Max IoU | Ø Seconds/Epoch |
---|---|---|
0.1 * | 0.096 | 582 |
0.01 ** | 0.107 | 567 |
0.001 | 0.401 | 550 |
0.0001 | 0.351 | 555 |
0.00001 | 0.317 | 590 |
Model Depth | Max IoU | Ø Seconds/Epoch |
---|---|---|
8,16,32,64,128 | 0.401 | 550 |
128,64,32,16,8 | 0.368 | 621 |
8,16,32,64,128,256 | 0.370 | 728 |
256,128,64,32,16,8 | 0.360 | 706 |
8,16,32,64 | 0.398 | 462 |
64,32,16,8 | 0.435 | 471 |
32,16,8 | 0.419 | 434 |
64,32,16 | 0.424 | 447 |
16,8,16,8,16 | 0.409 | 647 |
512,256,512,256,512 | 0.317 | 1233 |
15 Epochs | 30 Epochs | ||
---|---|---|---|
Tile Size | Max IoU | Max IoU | Ø Seconds/Epoch |
32 × 32 | 0.363 | 0.370 | 316 |
64 × 64 | 0.270 | 0.297 | 96 |
128 × 128 | 0.208 | 0.182 | 22 |
15 Epochs | 30 Epochs | ||
---|---|---|---|
Tile Size | Max IoU | Max IoU | Ø Seconds/Epoch |
32 × 32 | 0.354 | 0.321 | 322 |
64 × 64s | 0.263 | 0.267 | 94 |
Test Area | Max IoU | Max Acc |
---|---|---|
full Area5 | 0.449 | 0.927 |
evaluation area | 0.466 | 0.925 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scharvogel, D.; Brandmeier, M.; Weis, M. A Deep Learning Approach for Calamity Assessment Using Sentinel-2 Data. Forests 2020, 11, 1239. https://doi.org/10.3390/f11121239
Scharvogel D, Brandmeier M, Weis M. A Deep Learning Approach for Calamity Assessment Using Sentinel-2 Data. Forests. 2020; 11(12):1239. https://doi.org/10.3390/f11121239
Chicago/Turabian StyleScharvogel, Daniel, Melanie Brandmeier, and Manuel Weis. 2020. "A Deep Learning Approach for Calamity Assessment Using Sentinel-2 Data" Forests 11, no. 12: 1239. https://doi.org/10.3390/f11121239
APA StyleScharvogel, D., Brandmeier, M., & Weis, M. (2020). A Deep Learning Approach for Calamity Assessment Using Sentinel-2 Data. Forests, 11(12), 1239. https://doi.org/10.3390/f11121239