Immediate Changes in Organic Matter and Plant Available Nutrients of Haplic Luvisol Soils Following Different Experimental Burning Intensities in Damak Forest, Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Sample Collection and Laboratory Analysis
3. Results
3.1. Burn Characteristics
3.2. Fire Intensity Treatment Effects on Haplic Luvisol Properties
3.2.1. Soil and Ash pH
3.2.2. Organic Matter and Carbon
3.2.3. Available calcium
3.2.4. Available Potassium
3.2.5. Available Magnesium
3.2.6. Available Phosphorous
4. Discussion
4.1. Burn Characteristics
4.2. Effect of Fire Intensity on Soil Properties
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Barros, A.M.G.; Pereira, J.M.C. Wildfire Selectivity for Land Cover Type: Does Size Matter? PLoS ONE 2014, 9, e84760. [Google Scholar] [CrossRef] [PubMed]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Castellnou, M.; Kraus, D.; Miralles, M. Prescribed Burning and Suppression Fire Techniques. In Best Practices of Fire Use—Prescribed Burning and Suppression Fire Programmes in Selected Case-Study Regions in Europe; Montiel, C., Kraus, D., Eds.; European Forest Institute: Joensuu, Finland, 2010; pp. 3–17. [Google Scholar]
- Ascoli, D.; Bovio, G. Prescribed burning in Italy: Issues, advances and challenges. iForest—Biogeosci. For. 2013, 6, 79–89. [Google Scholar] [CrossRef]
- Fernandes, P.; Davies, G.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Stoof, C.; Vega, J.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11, 4–14. [Google Scholar] [CrossRef]
- Tilman, D.; Lehman, C. Human-caused environmental change: Impacts on plant diversity and evolution. Proc. Natl. Acad. Sci. USA 2001, 98, 5433–5440. [Google Scholar] [CrossRef] [Green Version]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, R.; Jones, R.; Kolli, R.K.; Kwon, W.K.; Laprise, R.; et al. Regional climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 847–940. [Google Scholar]
- IPCC. Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- González-Pérez, J.; González-Vila, F.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef]
- Giovannini, G.; Lucchesi, S.; Giachetti, M. Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility. Soil Sci. 1988, 146, 255–261. [Google Scholar] [CrossRef]
- Simard, D.G.; Fyles, J.W.; Paré, D.; Nguyen, T. Impacts of clearcut harvesting and wildfire on soil nutrient status in the Quebec boreal forest. Can. J. Soil Sci. 2001, 81, 229–237. [Google Scholar]
- Badía, D.; Martí, C.; Aguirre, A.; Aznar, J.; González-Pérez, J.; De la Rosa, J.; León, J.; Ibarra, P.; Echeverría, T. Wildfire effects on nutrients and organic carbon of a Rendzic Phaeozem in NE Spain: Changes at cm-scale topsoil. Catena 2014, 113, 267–275. [Google Scholar] [CrossRef]
- Johnson, D.W.; Curtis, P.S. Effects of forest management on soil C and N storage: Meta analysis. For. Ecol. Manag. 2001, 140, 227–238. [Google Scholar] [CrossRef]
- DeBano, L.F. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231, 195–206. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Dietze, M.C.; Jackson, R.B.; Phillips, R.P.; Rhoades, C.C.; Rustad, L.E.; Vose, J.M. Forest biogeochemistry in response to drought. Glob. Chang. Biol. 2016, 22, 2318–2328. [Google Scholar] [CrossRef] [PubMed]
- Hough, D. Long Corner Creek Hydrologic Project: Aspects of the Geology, Physiography and Soils; Soil Conservation Authority: Victoria, Australia, 1981.
- John, T.V.S.; Rundel, P.W. The role of fire as a mineralizing agent in a Sierran coniferous forest. Oecologia 1976, 25, 35–45. [Google Scholar] [CrossRef]
- Binkley, D.; Fisher, R. Ecology and Management of Forest Soils, 4th ed.; Wiley-Blackwell: Chichester, UK, 2013. [Google Scholar]
- Parra, J.; Rivero, V.; Lopez, T. Forms of Mn in soils affected by a forest fire. Sci. Total Environ. 1996, 181, 231–236. [Google Scholar] [CrossRef]
- Arocena, J.M.; Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 2003, 113, 1–16. [Google Scholar] [CrossRef]
- Ulery, A.L.; Graham, R.C.; Amrhein, C. Wood-ash composition and soil pH following intense burning. Soil Sci. 1993, 156, 358–364. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Plant-soil interactions in Mediterranean forest and shrublands: Impacts of climatic change. Plant Soil 2013, 365, 1–33. [Google Scholar] [CrossRef]
- Deák, B.; Valkó, O.; Török, P.; Végvári, Z.S.; Hartel, T.; Schmotzer, A.; Kapocsi, I.; Tóthmérész, B. Grassland fires in Hungary—Experiences of nature conservationists on the effect of fire on biodiversity. Appl. Ecol. Environ. Res. 2014, 12, 267–283. [Google Scholar] [CrossRef]
- Végvári, Z.; Valkó, O.; Deák, B.; Török, P.; Konyhás, S.; Tóthmérész, B. Effects of land use and wildfires on the habitat selection of Great Bustard (Otis tarda L.)—implications for species conservation. Land Degrad. Dev. 2016, 27, 910–918. [Google Scholar] [CrossRef]
- FAO—UNESCO. Soil Map World, 5th ed.; UNESCO: Paris, France, 1981. [Google Scholar]
- FAO. World Reference Base for Soil Resources 2006: A Framework for International Classification, Correlation and Communication; FAO: Rome, Italy, 2006. [Google Scholar]
- European Soil Bureau Network and the Hungarian Soil Science Society. The Soils of Hungary. 2011. Available online: http://enfo.agt.bme.hu/drupal/sites/default/files/Soils%20of%20Hungary.pdf (accessed on 23 September 2017).
- Campo, J.; Gimeno-García, E.; Andreu, V.; González-Pelayo, O.; Rubio, J. Aggregation of under canopy and bare soils in a Mediterranean environment affected by different fire intensities. Catena 2008, 74, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Rubio, J.L.; Forteza, J.; Andreu, V.; Cerni, R. Soil profile characteristics influencing runoff and soil erosion after forest fire: A case study (Valencia, Spain). Soil Technol. 1997, 11, 67–78. [Google Scholar] [CrossRef]
- Gimeno-Garcia, E.; Andreu, V.; Rubio, J. Changes in organic matter, nitrogen, phosphorus and cations in soil as a result of fire and water erosion in a Mediterranean landscape. Eur. J. Soil Sci. 2000, 51, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, G.; Lucchesi, S. Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Sci. 1997, 162, 479–486. [Google Scholar] [CrossRef]
- Hurlbert, S.H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 1984, 54, 187–211. [Google Scholar] [CrossRef]
- Whelan, R.J. The Ecology of Fire, 2nd ed.; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1958. [Google Scholar]
- Schulte, E.E.; Hopkins, B.G. Estimation of soil organic matter by weight loss-on-ignition. In Soil Organic Matter: Analysis and Interpretation, SSSA Special Publication, 46th ed.; Magdoff, F., Tabatabai, M.A., Hanlon, E.A., Eds.; Soil Society of America: Madison, WI, USA, 1996; pp. 21–31. [Google Scholar]
- Combs, S.M.; Nathan, M.V. Soil Organic Matter. In Recommended Chemical Soil Test. Procedures, 1st ed.; Warncke, D., Brown, J., Eds.; Missouri Agricultural Experiment Station SB 1001: Columbia, MO, USA, 1998; pp. 53–59. [Google Scholar]
- Zhang, H.; Wang, J.J. Loss on Ignition Method. In Soil Test Methods from the Southeastern United States; Sikora, F.J., Moore, K.P., Huluka, G., Kissel, D.E., Miller, R., Mylavarapu, R., Oldham, J.L., Eds.; Southern Cooperative Series Bulletin: Stillwater, OK, USA, 2014; pp. 155–158. [Google Scholar]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Ball, D.F. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soil. Eur. J. Soil Sci. 1964, 15, 84–92. [Google Scholar] [CrossRef]
- Welz, B.; Sperling, M. Atomic Absorption Spectrometry, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Rossel, R.V.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- González-Pelayo, O.V.; Andreu, J.; Campo, E.; Gimeno-García, E.; Rubio, J.L. Hydrological properties of a Mediterranean soil burned with different fire intensities. Catena 2006, 68, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Granged, A.; Jordán, A.; Zavala, L.; Muñoz-Rojas, M.; Mataix-Solera, J. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 2011, 167, 125–134. [Google Scholar] [CrossRef]
- Etienne, M.; Legrand, C. A non-destructive method to estimate shrubland biomass and combustibility. In Proceedings of the 2nd International Conference on Forest Fire Research, Comissão de Coordenação da Região Centro Coimbra, Coimbra, Portugal, 1994; pp. 425–434. [Google Scholar]
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of prescribed fires on soil properties: A. review. Sci. Total Environ. 2018, 613, 944–957. [Google Scholar] [CrossRef] [PubMed]
- González-Pérez, J.A.; González-Vila, F.J.; Polvillo, O.; Almendros, G.; Knicker, H.; Salas, F.; Costa, J.C. Wildfire and Black Carbon in Andalusian Mediterranean Forest; Viegas, D.X., Ed.; Millpress: Rotterdam, The Netherlands, 2000; pp. 1–7. [Google Scholar]
- Chandler, C.; Cheney, P.; Thomas, P.; Trabaud, L.; Williams, D. Fire in Forestry Volume 1: Forest Fire Behavior and Effects; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Fernández, I.; Cabaneiro, A.; Carballas, T. Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biol. Biochem. 1997, 29, 1–11. [Google Scholar] [CrossRef]
- Rashid, G.H. Effects of fire on soil carbon and nitrogen in a Mediterranean oak forest of Algeria. Plant Soil 1987, 103, 89–93. [Google Scholar] [CrossRef]
- Smith, D.W. Concentrations of soil nutrients before and after fire. Can. J. Soil Sci. 1970, 50, 17–29. [Google Scholar] [CrossRef]
- Neary, D.G.; Ryan, K.C.; DeBano, L.F. Wildland Fire in Ecosystems: Effects of Fire on Foils and Water. General Technical Report. 2005. Available online: https://www.fs.fed.us/rm/pubs/rmrs_gtr042_4.pdf (accessed on 7 October 2017).
- DeBano, L.F.; Ffolliott, P.; Neary, D. Fire’s Effects on Ecosystems; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Ene, C.; Rogobete, G.; Adam, I.; Ciobanu, V.D. Influence of fires on soils of Berzasca and Moldova Noua forestries (wouth-west of Romania). In Proceedings of the 12th WSEAS international conference on Mathematics and computers in biology, business and acoustics, Braşov, Romania, 11–13 April 2011; pp. 114–121. [Google Scholar]
- Fonseca, F.; De Figueiredo, T.; Nogueira, C.; Queirós, A. Effect of prescribed fire on soil properties and soil erosion in a Mediterranean mountain area. Geoderma 2017, 307, 172–180. [Google Scholar] [CrossRef]
- Kuchenbuch, R.; Claassen, N.; Jungk, A. Potassium availability in relation to soil moisture. Plant Soil 1986, 95, 233–243. [Google Scholar] [CrossRef]
- Cade-Menun, B.; Berch, S.; Preston, C.; Lavkulich, L. Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. I. A comparison of two forest types. Can. J. For. Res. 2000, 30, 1714–1725. [Google Scholar] [CrossRef]
- Kutiel, P.; Shaviv, A. Effects of soil type, plant composition and leaching on soil nutrients following a simulated forest fire. For. Ecol. Manag. 1992, 53, 329–343. [Google Scholar] [CrossRef]
- Schaller, J.; Tischer, A.; Struyf, E.; Bremer, M.; Belmonte, D.U.; Potthast, K. Fire enhances phosphorus availability in topsoils depending on binding properties. Ecology 2015, 96, 1598–1606. [Google Scholar] [CrossRef]
- Raison, R.J.; Khanna, P.K.; Woods, P.V. Mechanisms of element transfer to the atmosphere during vegetation fires. Can. J. For. Res. 1985, 15, 132–140. [Google Scholar] [CrossRef]
- Lung, T.; Lavalle, C.; Hiederer, R.; Dosio, A.; Bouwer, L.M. A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change. Glob. Environ. Chang. 2013, 23, 522–536. [Google Scholar] [CrossRef]
Treatment | F0 | ||||||
---|---|---|---|---|---|---|---|
pH (soil) | OM (%) | C (mg/kg) | Ca (mg/kg) | K (mg/kg) | Mg (mg/kg) | P (mg/kg) | |
F1 | 0.03 | 0.53 | 0.50 | 242.00 ** | 190.00 ** | 6.00 ** | 0.25 |
F2 | 0.44 * | 0.14 | 0.70 | 1272.00 ** | 190.33 ** | 22.00 ** | 33.25 ** |
F3 | 0.45 * | 0.82 | 4.10 | 1452.00 ** | 187.33 ** | 13.74 ** | 39.7 ** |
Subplot | Weight of Litter Layer (kg) | Weight of Understorey Fuel (kg) | Weight of Overstorey Fuel (kg) | Total Fuel Weight (kg) |
---|---|---|---|---|
1A | 1 | 0 | 0 | 1 |
1B | 1 | 0 | 0 | 1 |
1C | 1 | 0 | 0 | 1 |
2A | 1 | 1.6 | 0 | 2.6 |
2B | 1 | 1.7 | 0 | 2.7 |
2C | 1 | 1.4 | 0 | 2.4 |
3A | 1 | 1.2 | 7.2 | 9.4 |
3B | 1 | 1.5 | 6.1 | 8.6 |
3C | 1 | 1.2 | 6.9 | 9.1 |
Variable | F0 | F1 | F2 | F3 | Reference Material Accuracy |
---|---|---|---|---|---|
pH (soil) | 6.39 ± 0.34 | 6.38 ± 0.12 | 7.17 ± 0.63 | 7.01 ± 0.36 | N/A |
pH (ash) | N/A | 8.42 ± 0.55 | 9.79 ± 0.43 | 10.33 ± 1.54 | N/A |
OM (%) | 6.60 ± 1.70 | 6.07 ± 1.88 | 6.74 ± 1.45 | 5.78 ± 1.15 | N/A |
C (mg/kg) | 33.00 ± 8.50 | 33.50 ± 9.40 | 33.70 ± 7.25 | 28.90 ± 5.75 | N/A |
Ca (mg/kg) | 2048.00 ± 39.00 | 2290.00 ± 47.00 | 3320.00 ± 78.00 | 3500.00 ± 12.00 | 97.00 |
K (mg/kg) | 402.48 ± 0.44 | 212.48 ± 0.03 | 212.15 ± 0.03 | 215.15 ± 0.05 | 85.00 |
Mg (mg/kg) | 25.67 ± 0.02 | 31.67 ± 0.05 | 47.67 ± 0.05 | 39.41 ± 0.02 | 59.00 |
P (mg/kg) | 13.30 ± 2.08 | 13.55 ± 1.96 | 46.55 ± 4.75 | 53.00 ± 4.00 | 80.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bridges, J.M.; Petropoulos, G.P.; Clerici, N. Immediate Changes in Organic Matter and Plant Available Nutrients of Haplic Luvisol Soils Following Different Experimental Burning Intensities in Damak Forest, Hungary. Forests 2019, 10, 453. https://doi.org/10.3390/f10050453
Bridges JM, Petropoulos GP, Clerici N. Immediate Changes in Organic Matter and Plant Available Nutrients of Haplic Luvisol Soils Following Different Experimental Burning Intensities in Damak Forest, Hungary. Forests. 2019; 10(5):453. https://doi.org/10.3390/f10050453
Chicago/Turabian StyleBridges, Jack M., George P. Petropoulos, and Nicola Clerici. 2019. "Immediate Changes in Organic Matter and Plant Available Nutrients of Haplic Luvisol Soils Following Different Experimental Burning Intensities in Damak Forest, Hungary" Forests 10, no. 5: 453. https://doi.org/10.3390/f10050453
APA StyleBridges, J. M., Petropoulos, G. P., & Clerici, N. (2019). Immediate Changes in Organic Matter and Plant Available Nutrients of Haplic Luvisol Soils Following Different Experimental Burning Intensities in Damak Forest, Hungary. Forests, 10(5), 453. https://doi.org/10.3390/f10050453