Next Article in Journal
Immediate Changes in Organic Matter and Plant Available Nutrients of Haplic Luvisol Soils Following Different Experimental Burning Intensities in Damak Forest, Hungary
Previous Article in Journal
Comparison of Horizontal Accuracy, Shape Similarity and Cost of Three Different Road Mapping Techniques
Open AccessArticle

Generalized Nonlinear Mixed-Effects Individual Tree Diameter Increment Models for Beech Forests in Slovakia

Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague 6, Czech Republic
National Forest Centre, Forest Research Institute, T.G. Masaryka 22, SK-960 01 Zvolen, Slovakia
Author to whom correspondence should be addressed.
Forests 2019, 10(5), 451;
Received: 2 April 2019 / Revised: 4 May 2019 / Accepted: 22 May 2019 / Published: 24 May 2019
(This article belongs to the Section Forest Inventory, Quantitative Methods and Remote Sensing)
Individual tree growth and yield models precisely describe tree growth irrespective of stand complexity and are capable of simulating various silvicultural alternatives in the stands with diverse structure, species composition, and management history. We developed both age dependent and age independent diameter increment models using long-term research sample plot data collected from both monospecific and mixed stands of European beech (Fagus sylvatica L.) in the Slovak Republic. We used diameter at breast height (DBH) as a main predictor and other characteristics describing site quality (site index), stand development stage (dominant height and stand age), stand density or competition (ratio of individual tree DBH to quadratic mean diameter), species mixture (basal area proportion of a species of interest), and dummy variable describing stand management regimes as covariate predictors to develop the models. We evaluated eight versatile growth functions in the first stage using DBH as a single predictor and selected the most suitable one, i.e., Chapman-Richards function for further analysis through the inclusion of covariate predictors. We introduced the random components describing sample plot-level random effects and stochastic variations on the diameter increment, into the models through the mixed-effects modelling. The autocorrelation caused by hierarchical data-structure, which is assumed to be partially reduced by mixed-effects modelling, was removed through the inclusion of the parameter accounting for the autoregressive error-structures. The models described about two-third parts of a total variation in the diameter increment without significant trends in the residuals. Compared to the age independent mixed-effects model (conditional coefficient of determination, R c 2 = 0.6566; root mean square error, RMSE = 0.1196), the age dependent model described a significantly larger proportion of the variations in diameter increment ( R c 2 = 0.6796, RMSE = 0.1141). Diameter increment was significantly influenced differently by covariate predictors included into the models. Diameter increment decreased with the advancement of stand development stage (increased dominant height and stand age), increasing intraspecific competition (increased basal area proportion of European beech per sample plot), and diameter increment increased with increasing site quality (increased site index) and decreased competition (increased ratio of DBH to quadratic mean diameter). Our mixed-effects models, which can be easily localized with the random effects estimated from prior measurement of diameter increments of four randomly selected trees per sample plot, will provide high prediction accuracies. Our models may be used for simulating growth of European beech irrespective of its stand structural complexity, as these models have included various covariate variables describing both tree-and stand-level characteristics, thinning regimes, except the climate characteristics. Together with other forest models, our models will be used as inputs to the growth simulator to be developed in the future, which is important for decision-making in forestry. View Full-Text
Keywords: Chapman-Richards function; EBLUP equation; random effect; site index; species mixing effect; thinning effect Chapman-Richards function; EBLUP equation; random effect; site index; species mixing effect; thinning effect
Show Figures

Figure 1

MDPI and ACS Style

Sharma, R.P.; Štefančík, I.; Vacek, Z.; Vacek, S. Generalized Nonlinear Mixed-Effects Individual Tree Diameter Increment Models for Beech Forests in Slovakia. Forests 2019, 10, 451.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Back to TopTop