Fire Intensity Affects the Relationship between Species Diversity and the N Utilization Stability of Dominant Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Sampling
2.3. Measurements
2.4. Data Analysis
3. Results
3.1. The Concentration of Soil N and Dominant Species Changed Significantly under Different Fire Intensities
3.2. N Utilization Stability of Different Dominant Species in Burned Areas
3.3. N utilization Stability Showed Different Correlations to the Diversity of the Species
4. Discussion
4.1. The Leaf Response is Consistent with Changes of Soil N in Burned Areas
4.2. The Difference in N Utilization Stability among Dominant Species Depends on the Intensity of Wildfire
4.3. The Relationship between Species Diversity and N Utilization Stability Varies among Burned Areas
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fernandez-Fernandez, M.; Rutting, T.; Gonzalez-Prieto, S. Effects of a high-severity wildfire and post-fire straw mulching on gross nitrogen dynamics in Mediterranean shrubland soil. Geoderma 2017, 305, 328–335. [Google Scholar] [CrossRef]
- Koyama, A.; Stephan, K.; Kavanagh, K.L. Fire effects on gross inorganic N transformation in riparian soils in coniferous forests of central Idaho, USA: Wildfires v. prescribed fires. Int. J. Wildland Fire 2012, 21, 69–78. [Google Scholar] [CrossRef]
- Alcaniz, M.; Outeiro, L.; Francos, M.; Ubeda, X. Effects of prescribed fires on soil properties: A review. Sci. Total Environ. 2018, 613, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Smithwick, E.A.; Naithani, K.J.; Balser, T.C.; Romme, W.H.; Turner, M.G. Post-fire spatial patterns of soil nitrogen mineralization and microbial abundance. PLoS ONE 2012, 7, e50597. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, A.; Gundale, M.J. Canopy cover type, and not fine-scale resource availability, explains native and exotic species richness in a landscape affected by anthropogenic fires and posterior land-use change. Biol. Invasions 2017, 20, 385–398. [Google Scholar] [CrossRef]
- Fultz, L.M.; Moore-Kucera, J.; Dathe, J.; Davinic, M.; Perry, G.; Wester, D.; Schwilk, D.W.; Rideout-Hanzak, S. Forest wildfire and grassland prescribed fire effects on soil biogeochemical processes and microbial communities: Two case studies in the semi-arid Southwest. Appl. Soil Ecol. 2016, 99, 118–128. [Google Scholar] [CrossRef]
- Boby, L.A.; Schuur, E.A.; Mack, M.C.; Verbyla, D.; Johnstone, J.F. Quantifying fire severity, carbon, and nitrogen emissions in Alaska’s boreal forest. Ecol. Appl. 2010, 20, 1633–1647. [Google Scholar] [CrossRef] [PubMed]
- Ohlson, M.; Brown, K.J.; Hjb, B.; Grytnes, J.A.; Hörnberg, G.; Niklasson, M.; Seppä, H.; Rhw, B. Invasion of Norway spruce diversifies the fire regime in boreal European forests. J. Ecol. 2015, 99, 395–403. [Google Scholar] [CrossRef]
- Wang, Q.; Zhong, M.; Wang, S. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For. Ecol. Manag. 2012, 271, 91–97. [Google Scholar] [CrossRef]
- Gao, B.; Taylor, A.R.; Searle, E.B.; Kumar, P.; Ma, Z.; Hume, A.M.; Chen, H.Y.H. Carbon storage declines in old boreal forests irrespective of succession pathway. Ecosystems 2017, 21, 1168–1182. [Google Scholar] [CrossRef]
- Cai, W.; Yang, J.; Liu, Z.; Hu, Y.; Weisberg, P.J. Post-fire tree recruitment of a boreal larch forest in Northeast China. For. Ecol. Manag. 2013, 307, 20–29. [Google Scholar] [CrossRef]
- Atkinson, C.L.; Capps, K.A.; Rugenski, A.T.; Vanni, M.J. Consumer-driven nutrient dynamics in freshwater ecosystems: From individuals to ecosystems. Biol. Rev. 2016, 92, 2003–2023. [Google Scholar] [CrossRef] [PubMed]
- Elser, J.J.; Hamilton, A. Stoichiometry and the new biology—The future is now. PLoS Biol. 2007, 5, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Elser, J.; Fagan, W.; Kerkhoff, A.; Swenson, N.; Enquist, B. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002; pp. 225–226. [Google Scholar]
- Bunemann, E.K.; Bongiorno, G.; Bai, Z.G.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mader, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Tokuchi, N.; Hirobe, M.; Kondo, K.; Arai, H.; Hobara, S.; Fukushima, K.; Matsuura, Y. Soil Nitrogen Dynamics in Larch Ecosystem; Springer: Berlin, Germany, 2010; Volume 209, pp. 229–243. [Google Scholar]
- Güsewell, S.; Bollens, U. Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply. Basic Appl. Ecol. 2003, 4, 453–466. [Google Scholar] [CrossRef]
- Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Butler, O.M.; Lewis, T.; Chen, C. Prescribed fire alters foliar stoichiometry and nutrient resorption in the understorey of a subtropical eucalypt forest. Plant Soil 2017, 410, 1–11. [Google Scholar] [CrossRef]
- Niu, S.; Classen, A.T.; Dukes, J.S.; Kardol, P.; Liu, L.; Luo, Y.; Rustad, L.; Sun, J.; Tang, J.; Templer, P.H. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecol. Lett. 2016, 19, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Mingyu, W.U.; Han, Y.I.; Xia, J.; Zhang, Z.; Yang, H.; Wan, S. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Glob. Chang. Biol. 2010, 16, 144–155. [Google Scholar] [CrossRef]
- Stark, S.; Männistö, M.K.; Eskelinen, A. Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant Soil 2014, 383, 373–385. [Google Scholar] [CrossRef]
- Vernay, A.; Malagoli, P.; Fernandez, M.; Perot, T.; Améglio, T.; Balandier, P. Carry-over benefit of high internal N pool on growth and function of oak seedlings (Quercus petraea) competing with Deschampsia cespitosa. For. Ecol. Manag. 2018, 419–420, 130–138. [Google Scholar] [CrossRef]
- Pausas, J.G.; Bradstock, R.A.; Keith, D.A.; Keeley, J.E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 2004, 85, 1085–1100. [Google Scholar] [CrossRef]
- Carreira, J.A.; Niell, F.X. Plant nutrient changes in a semi-arid Mediterranean shrubland after fire. J. Veg. Sci. 1992, 3, 457–466. [Google Scholar] [CrossRef]
- Peñuelas, J.; Munné-Bosch, S.; Llusia, J.; Filella, I. Leaf reflectance and photo- and antioxidant protection in field-grown summer stressed Phillyrea angustifolia. Optical signals of oxidative stress. New Phytologist. 2004, 162, 115–124. [Google Scholar] [CrossRef]
- Burnham, M.B.; Cumming, J.R.; Adams, M.B.; Peterjohn, W.T. Soluble soil aluminum alters the relative uptake of mineral nitrogen forms by six mature temperate broadleaf tree species: Possible implications for watershed nitrate retention. Oecologia 2017, 185, 327. [Google Scholar] [CrossRef] [PubMed]
- Kronzucker, H.J.; Siddiqi, M.Y.; Glass, A.D.M. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 1996, 385, 59–61. [Google Scholar] [CrossRef]
- Delsol, R.; Loreau, M.; Haegeman, B. The relationship between the spatial scaling of biodiversity and ecosystem stability. Glob. Ecol. Biogeogr. 2018, 27, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Floresmoreno, H.; Reich, P.B.; Lind, E.M.; Sullivan, L.L.; Seabloom, E.W.; Yahdjian, L.; Macdougall, A.S.; Reichmann, L.G.; Alberti, J.; Báez, S. Climate modifies response of non-native and native species richness to nutrient enrichment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150273. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.; Bernhardt, E.S.; Bodegom, P.M.; Cornelissen, J.H.C.; Kattge, J.; Laughlin, D.C.; Niinemets, Ü.; Peñuelas, J.; Reich, P.B.; Yguel, B. Invasive species and rsquo; leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: A meta-analysis. New Phytol. 2016, 213, 128. [Google Scholar] [CrossRef] [PubMed]
- Ives, A.R.; Carpenter, S.R. Stability and diversity of ecosystems. Science 2007, 317, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Tatarko, A.R.; Knops, J.M.H. Nitrogen addition and ecosystem functioning: Both species abundances and traits alter community structure and function. Ecosphere 2018, 9, 1–15. [Google Scholar] [CrossRef]
- Bobbink, R.; Hicks, K.; Galloway, J.; Spranger, T.; Alkemade, R.; Ashmore, M.; Bustamante, M.; Cinderby, S.; Davidson, E.; Dentener, F. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecol. Appl. 2010, 20, 30–59. [Google Scholar] [CrossRef] [PubMed]
- Arévalo, J.R.; Fernández-Lugo, S.; Naranjo, A.; Salas, M.; Ruíz, R.; Ramos, R.; Moreno, M. Post-fire recovery of an endemic Canarian pine forest. Int. J. Wildland Fire 2014, 23, 403–409. [Google Scholar] [CrossRef]
- Yu, Q.; Elser, J.J.; He, N.; Wu, H.; Chen, Q.; Zhang, G.; Han, X. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia 2011, 166, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Liu, Q.; Zhou, G.; Jia, Q.; Zhuang, H.; Zhou, H. Aboveground tree additive biomass equations for two dominant deciduous tree species in Daxing’anling, northernmost China. J. For. Res. 2017, 22, 1–8. [Google Scholar] [CrossRef]
- Hu, T.; Sun, L.; Hu, H.; Weise, D.R.; Guo, F. Soil respiration of the Dahurian Larch (Larix gmelinii) Forest and the response to fire disturbance in Da Xing’an Mountains, China. Sci. Rep. 2017, 7, 2967. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, J.; Chang, Y.; Weisberg, P.J.; He, H.S. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Glob. Chang. Biol. 2012, 18, 2041–2056. [Google Scholar] [CrossRef]
- Lentile, L.B.; Smith, F.W.; Shepperd, W.D. Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA. Int. J. Wildland Fire 2006, 15, 557–566. [Google Scholar] [CrossRef]
- Alexander, M.E. Erratum: Calculating and interpreting forest fire intensities. Can. J. Bot. 1982, 60, 349–357. [Google Scholar] [CrossRef]
- Kurth, V.J.; Hart, S.C.; Ross, C.S.; Kaye, J.P.; Fulé, P.Z. Stand-replacing wildfires increase nitrification for decades in southwestern ponderosa pine forests. Oecologia 2014, 175, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.J.; Yang, J.; Chu, H.; Xiang, X. Effects of wildfire and topography on soil nitrogen availability in a boreal larch forest of northeastern China. Int. J. Wildland Fire 2015, 24, 433–442. [Google Scholar] [CrossRef]
- Li, Y.Y.; Chapman, S.J.; Nicol, G.W.; Yao, H.Y. Nitrification and nitrifiers in acidic soils. Soil Biol. Biochem. 2018, 116, 290–301. [Google Scholar] [CrossRef]
- James, J.A.; Kern, C.C.; Miesel, J.R. Legacy effects of prescribed fire season and frequency on soil properties in a Pinus resinosa forest in northern Minnesota. For. Ecol. Manag. 2018, 415–416, 47–57. [Google Scholar] [CrossRef]
- Braun, S.; Thomas, V.F.; Quiring, R.; Flückiger, W. Does nitrogen deposition increase forest production? The role of phosphorus. Environ. Pollut. 2010, 158, 2043–2052. [Google Scholar] [CrossRef] [PubMed]
- Lasse, T.; Martina, L.; Mats, R.; Torgny, N.; Göran, W. Increased needle nitrogen contents did not improve shoot photosynthetic performance of mature nitrogen-poor scots pine trees. Front. Plant. Sci. 2016, 7, 1051. [Google Scholar]
- Scoffoni, C.; Rawls, M.; Mckown, A.; Cochard, H.; Sack, L. Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture. Plant. Physiol. 2011, 156, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Stemarie, C.; Pare, D. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol. Biochem. 1999, 31, 1579–1589. [Google Scholar] [CrossRef]
- Kampowski, T.; Mylo, M.D.; Speck, T.; Poppinga, S. On the morphometry, anatomy and water stress behaviour of the anisocotyledonous Monophyllaea horsfieldii (Gesneriaceae) and their eco-evolutionary significance. Bot. J. Linn. Soc. 2017, 185, 425–442. [Google Scholar] [CrossRef]
- Wright, J.P.; Sutton-Grier, A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Funct. Ecol. 2012, 26, 1390–1398. [Google Scholar] [CrossRef]
- Shenoy, A.; Kielland, K.; Johnstone, J.F. Effects of fire severity on plant nutrient uptake reinforce alternate;pathways of succession in boreal forests. Plant. Ecol. 2013, 214, 587–596. [Google Scholar] [CrossRef]
- Lefcheck, J.S.; Byrnes, J.E.K.; Isbell, F.; Gamfeldt, L.; Griffin, J.N.; Eisenhauer, N.; Hensel, M.J.S.; Hector, A.; Cardinale, B.J.; Duffy, J.E. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 2011, 6, 6936. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Loreau, M.; Lü, X.; He, N.; Zhang, G.; Han, X. Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Glob. Chang. Biol. 2016, 22, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Hautier, Y.; Tilman, D.; Isbell, F.; Seabloom, E.W.; Borer, E.T.; Reich, P.B. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 2015, 348, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Jiang, L.; Li, L.; Li, A.; Wu, M.; Wan, S. Diversity-dependent stability under mowing and nutrient addition: Evidence from a 7-year grassland experiment. Ecol. Lett. 2012, 15, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ruijven, J.V.; Du, G. The effects of long-term fertilization on the temporal stability of alpine meadow communities. Plant. Soil 2011, 345, 315–324. [Google Scholar] [CrossRef]
- Grman, E.; Lau, J.A.; Schoolmaster, D., Jr.; Gross, K.L. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett. 2010, 13, 1400–1410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, J.; Isbell, F.; Lu, X.; Han, X. Productivity depends more on the rate than the frequency of N addition in a temperate grassland. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.F.; Wu, J.G.; Clark, C.M.; Naeem, S.; Pan, Q.M.; Huang, J.H.; Zhang, L.X.; Han, X.G. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from inner Mongolia Grasslands. Glob. Chang. Biol. 2010, 16, 358–372. [Google Scholar] [CrossRef]
- Sasaki, T.; Lauenroth, W.K. Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 2011, 166, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Han, X.; Wu, J.; Chen, Z.; Li, L. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 2004, 431, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Chen, Q.; Elser, J.J.; He, N.; Wu, H.; Zhang, G.; Wu, J.; Bai, Y.; Han, X. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecol. Lett. 2010, 13, 1390–1399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Loreau, M.; He, N.; Zhang, G.; Han, X. Mowing exacerbates the loss of ecosystem stability under nitrogen enrichment in a temperate grassland. Funct. Ecol. 2017, 31, 1637–1646. [Google Scholar] [CrossRef] [PubMed]
Fire Intensity | Differenced Normalized Burn Ratio (dNBR) (%) | Site Coordinates | Main Tree Species Ab. | Main Tree Species |
---|---|---|---|---|
Unburned | 0 | 52°32′01″ N 122°38′15″ E | LGK; BPS; LPL | Larix gmelinii (Ruprecht) Kuzeneva; Betula platyphylla Sukaczev; Ledum palustre Linn |
Low | 10–30 | 52°32′35″ N 122°38′50″ E | LGK; BPS; LPL | Larix gmelinii (Rupr.) Kuzen.; Betula platyphylla Sukaczev; Ledum palustre Linn |
Medium | 40–60 | 52°32′11″ N 122°38′19″ E | LGK; BPS; LPL | Larix gmelinii (Ruprecht) Kuzeneva; Betula platyphylla Sukaczev; Ledum palustre Linn |
Heavy | 70–90 | 52°32′31″ N 122°38′54″ E | LGK; BPS; LPL | Larix gmelinii (Ruprecht) Kuzeneva; Betula platyphylla Sukaczev; Ledum palustre Linn |
0–10 cm | 10–20 cm | |||||||
---|---|---|---|---|---|---|---|---|
Species | S | H | HSTN-LTN | S | H | HSTN-LTN | ||
LGK | H | −0.33 | H | −0.33 | ||||
HSTN-LTN | −0.32 | 0.15 | HSTN-LTN | 0.8 | −0.83 * | |||
HSMN-LTN | −0.25 | −0.83 * | −0.26 | HSMN-LTN | −0.32 | −0.6 | 0.37 | |
BPS | H | −0.33 | H | −0.33 | ||||
HSTN-LTN | −0.56 | 0.83 * | HSTN-LTN | 0.54 | −0.78 | |||
HSMN-LTN | −0.74 | −0.42 | −0.05 | HSMN-LTN | 0.68 | −0.35 | 0.57 | |
LPL | H | −0.33 | H | −0.33 | ||||
HSTN-LTN | 0.68 | 0.36 | HSTN-LTN | 0.26 | −0.91 ** | |||
HSMN-LTN | 0.13 | −0.66 | −0.94 ** | HSMN-LTN | 0.79 | −0.6 | −0.73 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Liu, Y. Fire Intensity Affects the Relationship between Species Diversity and the N Utilization Stability of Dominant Species. Forests 2019, 10, 207. https://doi.org/10.3390/f10030207
Song Z, Liu Y. Fire Intensity Affects the Relationship between Species Diversity and the N Utilization Stability of Dominant Species. Forests. 2019; 10(3):207. https://doi.org/10.3390/f10030207
Chicago/Turabian StyleSong, Zhaopeng, and Yanhong Liu. 2019. "Fire Intensity Affects the Relationship between Species Diversity and the N Utilization Stability of Dominant Species" Forests 10, no. 3: 207. https://doi.org/10.3390/f10030207
APA StyleSong, Z., & Liu, Y. (2019). Fire Intensity Affects the Relationship between Species Diversity and the N Utilization Stability of Dominant Species. Forests, 10(3), 207. https://doi.org/10.3390/f10030207