On the Reconstruction of Three-dimensional Protein Structures from Contact Maps
Abstract
:1. Introduction
2. Protein contact maps
3. Computational complexity of the reconstruction problem
4. Approaches to the reconstruction problem from protein contact maps
4.1. Methods based on the gradient minimization of a cost function
Bohr et al. (1993)
Galaktionov and Marshall (1994)
4.2. Methods based on simulated annealing
Vendruscolo et al. (1997)
Pollastri et al. (2006)
4.3. Methods based on distance geometry and local search
Vassura et al. (2007)
4.4. Computational complexity of the methods
5. Discussion and perspectives
Acknowledgements
References and Notes
- Anfinsen, C. Principles that govern the folding of protein chains. Science 1973, 181, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Baker, D. Prediction and design of macromolecular structures and interactions. Phil. Trans. R. Soc. London B Biol. Sci. 2006, 361, 495–463. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, L.; Capriotti, E.; Fariselli, P.; Martelli, P.L.; Casadio, R. The pros and cons of predicting protein contact maps. In Protein Structure Prediction; Zaki, M.J., Bystroff, C., Eds.; Humana Press: New York, NY, USA, 2008; pp. 199–217. [Google Scholar]
- Bartoli, L.; Fariselli, P.; Casadio, R. LETTERS AND COMMENTS: The effect of backbone on the small-world properties of protein contact maps. Physical Biology 2007, 1, 1–5. [Google Scholar]
- Blumental, L.M. Theory and applications of distance geometry; Clarendon Press: Oxford, United Kingdom, 1953. [Google Scholar]
- Breu, H.; Kirkpatrick, D. Unit disk graph recognition is NP-hard. Computational Geometry 1998, 9, 3–24. [Google Scholar] [CrossRef]
- Bohr, J.; Bohr, H.; Brunak, S.; Cotterill, R.M.; Fredholm, H.; Lautrup, B.; Petersen, S.B. Protein structures from distance inequalities. J. Molecular Biology 1993, 231, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Izarzugaza, J.M.; Grana, O.; Tress, M.L.; Valencia, A.; Clarke, N.D. Assessment of intramolecular contact predictions for CASP7. Proteins 2007, 69, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 2nd ed.; MIT Press: Cambridge, MA; McGraw-Hill Book Co.: Boston, MA, 2001. [Google Scholar]
- Fariselli, P.; Osvaldo, O.; Valencia, A.; Rita, C. Prediction of contact maps with neural networks and correlated mutations. Protein Engineering 2001, 14, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Fariselli, P.; Rossi, I.; Capriotti, E.; Rita, C. The WWWH of remote homolog detection: The state of the art. Briefings in Bioinformatics 2007, 8, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Galaktionov, S.G.; Marshall, G.R. Properties of intraglobular contacts in proteins: An approach to prediction of tertiary structure. In Proceedings of the 27th Hawaii International Conference on System Sciences, IEEE Society Press, USA, 1994; pp. 326–335.
- Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Crippen, G.M.; Havel, T.F. Distance geometry and molecular conformation; Research Studies Press Ltd: Taunton, England, 1988. [Google Scholar]
- Havel, T.F. Distance Geometry: Theory, Algorithms, and Chemical Applications. In Encyclopedia of Computational Chemistry; Ragué, V., Schreiner, P.R., Allinger, N.L., Clark, T., Gasteiger, J., Kollman, P.A., Schaefer, H.F., Eds.; J. Wiley & Sons: New York, 1998; pp. 723–742. [Google Scholar]
- Moré, J.; Wu, Z. ϵ-Optimal solutions to distance geometry problems via global continuation. In Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding; Pardalos, P. M., Shalloway, D., Xue, G., Eds.; American Mathematical Society, 1995; pp. 151–168. [Google Scholar]
- Kuhn, F.; Moscibroda, T.; Wattenhofer, R. Unit disk graph approximation. In Proceedings of 2nd ACM Joint Workshop on Foundations of Mobile Computing, Philadelphia, Pennsylvania, USA, October 2004.
- Baú, D.; Pollastri, G.; Vullo, A. Distill: a machine learning approach to ab initio protein structure prediction. In Analysis of Biological Data: A Soft Computing Approach; Bandyopadhyay, S., Maulik, U., Wang, J. T. L., Eds.; World Scientific, 2007. [Google Scholar]
- Saxe, J. B. Embeddability of weighted graphs in k-space is strongly NP-hard. In Proceedings of the 17th Allerton Conference on Communications, Control, and Computing, 1979; pp. 480–489.
- Snyman, J.A. Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms; Springer-Verlag: New York, NY, USA, 2005. [Google Scholar]
- Vassura, M.; Margara, L.; Di Lena, P.; Medri, F.; Fariselli, P.; Casadio, R. Reconstruction of 3D Structures From Protein Contact Maps. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2008, 5, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Vassura, M.; Margara, L.; Di Lena, P.; Medri, F.; Fariselli, P.; Casadio, R. FT-COMAR: fault tolerant three-dimensional structure reconstruction from protein contact maps. Bioinformatics 2008, 24, 1313–1315. [Google Scholar] [CrossRef] [PubMed]
- Vassura, M.; Margara, L.; Di Lena, P.; Medri, F.; Fariselli, P.; Casadio, R. Fault Tolerance for Large Scale Protein 3D Reconstruction from Contact Maps. Springer Verlag Lecture Notes in Bioinformatics 2007, 4645, 25–37. [Google Scholar]
- Vendruscolo, M.; Kussell, E.; Domany, E. Recovery of protein structure from contact maps. Folding and Design 1997, 2, 295–306. [Google Scholar] [CrossRef]
- *Freely available at http://www.pdb.org.
- †Freely available at http://distill.ucd.ie/distill/.
- ‡Freely available at http://bioinformatics.cs.unibo.it/FT-COMAR.
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Di Lena, P.; Vassura, M.; Margara, L.; Fariselli, P.; Casadio, R. On the Reconstruction of Three-dimensional Protein Structures from Contact Maps. Algorithms 2009, 2, 76-92. https://doi.org/10.3390/a2010076
Di Lena P, Vassura M, Margara L, Fariselli P, Casadio R. On the Reconstruction of Three-dimensional Protein Structures from Contact Maps. Algorithms. 2009; 2(1):76-92. https://doi.org/10.3390/a2010076
Chicago/Turabian StyleDi Lena, Pietro, Marco Vassura, Luciano Margara, Piero Fariselli, and Rita Casadio. 2009. "On the Reconstruction of Three-dimensional Protein Structures from Contact Maps" Algorithms 2, no. 1: 76-92. https://doi.org/10.3390/a2010076
APA StyleDi Lena, P., Vassura, M., Margara, L., Fariselli, P., & Casadio, R. (2009). On the Reconstruction of Three-dimensional Protein Structures from Contact Maps. Algorithms, 2(1), 76-92. https://doi.org/10.3390/a2010076