Algorithmic Efficiency Analysis in Innovation-Driven Labor Markets: A Super-SBM and Malmquist Productivity Index Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. DEA Super Efficiency Slacks-Based Measure Model
2.3. DEA Malmquist Productivity Index (MPI)
3. Results
3.1. Efficiency Analysis Using Super-SBM Model
3.2. Performance Trends over Time Analysis Using Malmquist Productivity Index (MPI)
3.2.1. Overall Efficiency Analysis
3.2.2. Frontier Shift Index
3.2.3. Malmquist Productivity Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
DMU | GDP | CI | TO | II | HTE | LF | UR |
---|---|---|---|---|---|---|---|
SWZ | 492.398 | 9.439 | 74.427 | 30.184 | 7.439 | 0 | 0 |
USA | 0 | 43.5 | 27.909 | 18.668 | 28.153 | 981.83 | 2.469 |
SWD | 263.607 | 4.06 | 21.596 | 11.527 | 6.263 | 0 | 0 |
UNK | 2137.791 | 3.214 | 22.395 | 26.935 | 16.301 | 0 | 0 |
NDL | 630.887 | 7.515 | 118.215 | 32.1 | 17.529 | 0 | 0 |
KOR | 1102.145 | 17.361 | 38.695 | 25.03 | 30.79 | 0 | 0 |
SGP | 204.033 | 12.286 | 286.871 | 30.517 | 47.064 | 0 | 0 |
GMN | 3091.238 | 8.718 | 53.065 | 29.627 | 10.151 | 0 | 0 |
FNL | 367.086 | 4.83 | 24.954 | 13.421 | 7.366 | 3.499 | 0 |
DMK | 145.641 | 4.946 | 52.482 | 16.833 | 6.027 | 0 | 0 |
CHN | 82,526.38 | 55.81 | 92.084 | 227.715 | 55.183 | 0 | 14.004 |
FRN | 0 | 13.637 | 41.008 | 29.195 | 0 | 6.775 | 0 |
JPN | 3287.267 | 16.555 | 18.43 | 37.968 | 8.663 | 0 | 0 |
HNK | 203.989 | 12.231 | 347.069 | 31.776 | 61.106 | 0 | 0 |
CND | 1184.654 | 2.649 | 4.751 | 5.282 | 7.647 | 0 | 0 |
AST | 220.707 | 8.699 | 55.575 | 11.312 | 5.513 | 0 | 0 |
EST | 36.966 | 0 | 129.618 | 22.735 | 5.407 | 0 | 0 |
ISR | 183.657 | 10.283 | 17.273 | 24.995 | 17.648 | 0 | 0 |
LXM | 5.051 | 52.578 | 0 | 70.926 | 38.159 | 1.429 | 7.747 |
ICL | 10.864 | 8.017 | 15.272 | 25.809 | 14.334 | 0.132 | 0 |
DMU | GDP | CI | TO | II | HTE | LF | UR |
---|---|---|---|---|---|---|---|
SWZ | 487.598 | 10.522 | 71.965 | 27.902 | 6.766 | 0 | 0 |
USA | 0 | 43.437 | 27.287 | 20.35 | 27.476 | 993.764 | 3.158 |
SWD | 211.593 | 0.434 | 10.217 | 2.601 | 5.013 | 0 | 0 |
UNK | 2096.97 | 3.762 | 20.952 | 27.267 | 16.879 | 0 | 0 |
NDL | 627.342 | 9.649 | 115.24 | 31.041 | 18.121 | 0 | 0 |
KOR | 1004.007 | 17.041 | 31.783 | 22.585 | 26.372 | 0 | 0 |
SGP | 211.389 | 13.359 | 284.864 | 30.649 | 47.471 | 0 | 0 |
GMN | 2976.968 | 9.067 | 51.979 | 29.349 | 10.688 | 0 | 0 |
FNL | 254.427 | 0.515 | 9.946 | 2.594 | 4.993 | 2.588 | 0 |
DMK | 127.539 | 3.74 | 50.506 | 13.51 | 5.099 | 0 | 0 |
CHN | 84,924.71 | 55.672 | 86.834 | 231.479 | 55.806 | 0 | 12.468 |
FRN | 0 | 10.468 | 37.939 | 27.766 | 0 | 0.692 | 0 |
JPN | 3334.989 | 16.588 | 17.209 | 37.529 | 8.187 | 0 | 0 |
HNK | 195.106 | 7.579 | 319.059 | 29.348 | 61.452 | 0 | 0 |
CND | 1120.522 | 2.127 | 0 | 3.375 | 7.23 | 0 | 0 |
AST | 210.933 | 8.834 | 53.693 | 10.089 | 5.114 | 0 | 0 |
EST | 13.598 | 0 | 0 | 15.765 | 27.455 | 0 | 0.282 |
ISR | 205.535 | 10.029 | 11.945 | 24.012 | 17.873 | 0 | 0 |
LXM | 12.777 | 50.598 | 0 | 79.491 | 38.487 | 1.542 | 6.246 |
ICL | 45.186 | 37.889 | 240.28 | 60.897 | 0 | 1.354 | 6.493 |
DMU | GDP | CI | TO | II | HTE | LF | UR |
---|---|---|---|---|---|---|---|
SWZ | 509.782 | 14.229 | 77.428 | 30.623 | 6.533 | 0 | 0 |
USA | 0 | 42.819 | 32.002 | 20.307 | 26.515 | 905.631 | 0 |
SWD | 75.908 | 0 | 10.531 | 4.093 | 4.072 | 0 | 0 |
UNK | 1462.009 | 6.188 | 30.302 | 34.708 | 15.114 | 0 | 0 |
NDL | 618.249 | 9.39 | 111.386 | 30.561 | 17.957 | 0 | 0 |
KOR | 592.272 | 21.952 | 44.009 | 34.105 | 28.844 | 0 | 0 |
SGP | 164.916 | 9.589 | 295.024 | 26.439 | 49.919 | 0 | 0 |
GMN | 2566.758 | 11.557 | 56.511 | 34.351 | 8.261 | 0 | 0 |
FNL | 200.371 | 0 | 13.089 | 1.221 | 4.966 | 2 | 0 |
DMK | 137.185 | 4.641 | 51.809 | 16.049 | 5.942 | 0 | 0 |
CHN | 80,856.15 | 52.126 | 71.317 | 221.621 | 57.094 | 0 | 31.52 |
FRN | 1024.262 | 5.056 | 5.896 | 9.859 | 10.006 | 0 | 0 |
JPN | 3397.928 | 16.077 | 13.242 | 35.256 | 12.156 | 0 | 0 |
HNK | 105.54 | 0.554 | 297.175 | 11.483 | 62.117 | 0 | 0 |
CND | 0 | 8.096 | 22.602 | 17.893 | 0 | 0 | 0 |
AST | 198.706 | 9.096 | 51.84 | 11.842 | 5.48 | 0 | 0 |
EST | 14.144 | 0 | 0 | 25.077 | 18.229 | 0 | 1.509 |
ISR | 216.596 | 10.788 | 12.577 | 22.812 | 22.75 | 0 | 0 |
LXM | 10.637 | 66.879 | 0 | 79.052 | 49.816 | 1.562 | 11.511 |
ICL | 20.967 | 21.092 | 119.74 | 16.293 | 0 | 0.729 | 3.741 |
DMU | GDP | CI | TO | II | HTE | LF | UR |
---|---|---|---|---|---|---|---|
SWZ | 543.953 | 9.86 | 77.41 | 26.282 | 7.238 | 0 | 0 |
USA | 0 | 35.341 | 23.321 | 10.397 | 19.308 | 854.793 | 0.603 |
SWD | 0 | 1.876 | 0 | 3.245 | 0 | 0.865 | 0 |
UNK | 2084.15 | 2.414 | 10.82 | 23.97 | 15.222 | 0 | 0 |
NDL | 681.748 | 7.92 | 113.403 | 26.085 | 16.039 | 0 | 0 |
KOR | 1055.031 | 19.809 | 42.799 | 30.666 | 30.369 | 0 | 0 |
SGP | 203.815 | 8.346 | 285.243 | 22.148 | 48.633 | 0 | 0 |
GMN | 3183.631 | 10.158 | 51.945 | 28.292 | 9.172 | 0 | 0 |
FNL | 265.53 | 0 | 8.027 | 0 | 2.826 | 2.005 | 0 |
DMK | 181.35 | 8 | 58.458 | 18.591 | 6.917 | 0 | 0 |
CHN | 91,658.99 | 55.938 | 82.345 | 233.043 | 63.436 | 0 | 20.572 |
FRN | 0 | 1.268 | 8.565 | 4.247 | 0 | 0 | 0 |
JPN | 2960.941 | 14.368 | 13.546 | 32.739 | 10.666 | 0 | 0 |
HNK | 122.452 | 0.361 | 348.919 | 13.974 | 63.489 | 0 | 0 |
CND | 0 | 0 | 8.09 | 2.836 | 0 | 0 | 0 |
AST | 174.646 | 7.15 | 44.016 | 1.266 | 2.203 | 0 | 0 |
EST | 16.45 | 0 | 0 | 21.003 | 21.054 | 0 | 1.999 |
ISR | 244.972 | 10.021 | 5.339 | 16.424 | 23.01 | 0 | 0 |
LXM | 7.57 | 57.178 | 0 | 75.985 | 45.602 | 1.423 | 10.229 |
ICL | 34.773 | 26.819 | 178.103 | 29.206 | 0 | 0.916 | 4.002 |
DMU | GDP | CI | TO | II | HTE | LF | UR |
---|---|---|---|---|---|---|---|
SWZ | 564.126 | 7.619 | 80.744 | 28.136 | 23.567 | 0 | 0 |
USA | 0 | 40.608 | 26.654 | 16.517 | 14.893 | 938.009 | 3.403 |
SWD | 0 | 1.924 | 5.421 | 3.987 | 0 | 0.787 | 0 |
UNK | 2183.211 | 2.983 | 18.901 | 27.563 | 21.286 | 0 | 0 |
NDL | 669.795 | 7.202 | 128.292 | 28.054 | 16.107 | 0 | 0 |
KOR | 916.105 | 21.136 | 58.037 | 33.112 | 12.866 | 0 | 0 |
SGP | 270.63 | 7.815 | 287.218 | 26.869 | 20.623 | 0 | 0 |
GMN | 2970.151 | 11.431 | 58.094 | 29.888 | 11.247 | 0 | 0 |
FNL | 251.4 | 0 | 4.537 | 0 | 7.498 | 2.211 | 0 |
DMK | 184.901 | 6.51 | 67.626 | 18.369 | 10.423 | 0 | 0 |
CHN | 99,566.35 | 52.342 | 88.261 | 230.211 | 59.346 | 0 | 11.883 |
FRN | 0 | 3.612 | 31.163 | 10.878 | 0 | 0 | 0 |
JPN | 2602.444 | 14.417 | 13.373 | 30.443 | 8.737 | 0 | 0 |
HNK | 0 | 16.275 | 0 | 25.897 | 0 | 0 | 1.399 |
CND | 1120.356 | 3.92 | 0 | 7.325 | 4.484 | 0 | 0 |
AST | 200.127 | 7.946 | 54.686 | 7.903 | 10.404 | 0 | 0 |
EST | 17.862 | 1.708 | 0 | 21.303 | 26.968 | 0 | 0 |
ISR | 305.552 | 12.428 | 9.506 | 18.908 | 17.304 | 0 | 0 |
LXM | 269.048 | 0 | 0 | 5.628 | 29.602 | 3.409 | 0.196 |
ICL | 43.658 | 34.401 | 229.385 | 44.994 | 0 | 1.144 | 6.695 |
References
- Lind, N.; Ramondo, N. Global Knowledge and Trade Flows: Theory and Measurement. J. Int. Econ. 2024, 151, 103960. [Google Scholar] [CrossRef]
- Cervantes, C.V.; Cooper, R. Labor market implications of education mismatch. Eur. Econ. Rev. 2022, 148, 104179. [Google Scholar] [CrossRef]
- Lerner, J.; Stern, S. Innovation Policy and the Economy: Introduction to Volume 19. Innov. Policy Econ. 2019, 19, xi–xiv. [Google Scholar] [CrossRef]
- Maryam, K.; Jehan, Z. Total Factor Productivity Convergence in Developing Countries: Role of Technology Diffusion. S. Afr. J. Econ. 2018, 86, 247–262. [Google Scholar] [CrossRef]
- Innovation Index by Country, Around the World TheGlobalEconomy.com. Available online: https://www.theglobaleconomy.com/rankings/GII_Index/OECD/ (accessed on 21 March 2024).
- Goel, R.K.; Nelson, M.A. Employment effects of R&D and process innovation: Evidence from small and medium-sized firms in emerging markets. Eurasian Bus. Rev. 2022, 12, 97–123. [Google Scholar] [CrossRef]
- Aldieri, L.; Vinci, C. Green Economy and Sustainable Development: The Economic Impact of Innovation on Employment. Sustainability 2018, 10, 3541. [Google Scholar] [CrossRef]
- Ou, D.; Zhao, Z. Higher Education Expansion in China, 1999–2003: Impact on Graduate Employability. China World Econ. 2022, 30, 117–141. [Google Scholar] [CrossRef]
- Choi, D.S.; Sung, C.S.; Park, J.Y. How Does Technology Startups Increase Innovative Performance? The Study of Technology Startups on Innovation Focusing on Employment Change in Korea. Sustainability 2020, 12, 551. [Google Scholar] [CrossRef]
- Moradi, A.; Amirteimoori, A.; Kordrostami, S.; Vaez, M. Closest reference point on the strong efficient frontier in data envelopment analysis. AIMS Math. 2019, 5, 811–827. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.; Gui, B. Two-stage network data envelopment analysis production games. AIMS Math. 2024, 9, 4925–4961. [Google Scholar] [CrossRef]
- Shakouri, R.; Salahi, M.; Kordrostami, S. Stochastic p-robust approach to two-stage network DEA model. Quant. Financ. Econ. 2019, 3, 315–346. [Google Scholar] [CrossRef]
- Akram, M.; Shah, S.M.U.; Al-Shamiri, M.M.A.; Edalatpanah, S.A. Extended DEA method for solving multi-objective transportation problem with Fermatean fuzzy sets. AIMS Math. 2022, 8, 924–961. [Google Scholar] [CrossRef]
- Lyu, Y.; Zhang, J.; Wang, L.; Yang, F.; Hao, Y. Towards a win-win situation for innovation and sustainable development: The role of environmental regulation. Sustain. Dev. 2022, 30, 1703–1717. [Google Scholar] [CrossRef]
- Yi, M.; Wang, Y.; Yan, M.; Fu, L.; Zhang, Y. Government R&D Subsidies, Environmental Regulations, and Their Effect on Green Innovation Efficiency of Manufacturing Industry: Evidence from the Yangtze River Economic Belt of China. Int. J. Env. Res. Public Health 2020, 17, 1330. [Google Scholar] [CrossRef]
- Zeng, G.; Guo, H.; Geng, C. A Five-Stage DEA Model for Technological Innovation Efficiency of China’s Strategic Emerging Industries, Considering Environmental Factors and Statistical Errors. Pol. J. Env. Stud. 2022, 30, 927–941. [Google Scholar] [CrossRef]
- Bao, H.; Teng, T.; Cao, X.; Wang, S.; Hu, S. The Threshold Effect of Knowledge Diversity on Urban Green Innovation Efficiency Using the Yangtze River Delta Region as an Example. Int. J. Env. Res. Public Health 2022, 19, 10600. [Google Scholar] [CrossRef]
- Liu, R.; He, F.; Ren, J. Promoting or Inhibiting? The Impact of Enterprise Environmental Performance on Economic Performance: Evidence from China’s Large Iron and Steel Enterprises. Sustainability 2021, 13, 6465. [Google Scholar] [CrossRef]
- Chen, H.; Yang, Y.; Yang, M.; Huang, H. The impact of environmental regulation on China’s industrial green development and its heterogeneity. Front. Ecol. Evol. 2022, 10, 967550. [Google Scholar] [CrossRef]
- Tran, T.H.; Mao, Y.; Nathanail, P.; Siebers, P.-O.; Robinson, D. Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis. Omega 2019, 85, 156–165. [Google Scholar] [CrossRef]
- Alves, C.G.M.D.F.; Meza, L.A. A review of network DEA models based on slacks-based measure: Evolution of literature, applications, and further research direction. Int. Trans. Oper. Res. 2023, 30, 2729–2760. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nhieu, N.-L. Integrated DEA and hybrid ordinal priority approach for multi-criteria wave energy locating: A case study of South Africa. Soft Comput. 2023, 27, 18869–18883. [Google Scholar] [CrossRef]
- Wang, C.; Nguyen, H.; Nhieu, N.; Hsu, H. A prospect theory extension of data envelopment analysis model for wave-wind energy site selection in New Zealand. Manag. Decis. Econ. 2024, 45, 539–553. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nhieu, N.-L.; Chen, C.-M. Charting sustainable logistics on the 21st-Century Maritime Silk Road: A DEA-based approach enhanced by risk considerations through prospect theory. Humanit. Soc. Sci. Commun. 2024, 11, 398. [Google Scholar] [CrossRef]
- Asiedu, M.; Nazirou, S.C.M.; Mousa, D.S.; Sabrina, S.J.; Rosemary, A.A. Analysis of Working Capital Sources on Firm Innovation, and Labor Productivity among Manufacturing Firms in DR Congo. J. Financ. Risk Manag. 2021, 10, 200–223. [Google Scholar] [CrossRef]
- Salimova, G.; Ableeva, A.; Galimova, A.; Bakirova, R.; Lubova, T.; Sharafutdinov, A.; Araslanbaev, I. Recent trends in labor productivity. Empl. Relat. Int. J. 2022, 44, 785–802. [Google Scholar] [CrossRef]
- Androniceanu, A.-M.; Georgescu, I.; Tvaronavičienė, M.; Androniceanu, A. Canonical Correlation Anal-ysis and a New Composite Index on Digitalization and Labor Force in the Context of the Industrial Revolu-tion 4.0. Sustainability 2020, 12, 6812. [Google Scholar] [CrossRef]
- Yildirim, D.Ç.; Yildirim, S.; Erdogan, S.; Kantarci, T. Innovation—Unemployment Nexus: The case of EU countries. Int. J. Financ. Econ. 2022, 27, 1208–1219. [Google Scholar] [CrossRef]
- Lydeka, Z.; Karaliute, A. Assessment of the Effect of Technological Innovations on Unemployment in the European Union Countries. Eng. Econ. 2021, 32, 130–139. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Automation and new tasks: How technology displaces and reinstates labor. J. Econ. Perspect. 2019, 33, 3–30. [Google Scholar] [CrossRef]
- Padi, A.; Musah, A. Entrepreneurship as a Potential Solution to High Unemployment: A Systematic Review of Growing Research and Lessons For Ghana. Int. J. Entrep. Bus. Innov. 2022, 5, 26–41. [Google Scholar] [CrossRef]
- Afzal, M.; Lawrey, R.; Gope, J. Understanding national innovation system (NIS) using porter’s diamond model (PDM) of competitiveness in ASEAN-05. Compet. Rev. Int. Bus. J. 2019, 29, 336–355. [Google Scholar] [CrossRef]
- Oloruntoba, A.; Oladipo, J.T. Modelling Carbon Emissions Efficiency from UK Higher Education Insti-tutions Using Data Envelopment Analysis. J. Energy Res. Rev. 2019, 3, 1–18. [Google Scholar] [CrossRef]
- Mavi, R.K.; Mavi, N.K.; Saen, R.F.; Goh, M. Eco-innovation analysis of OECD countries with common weight analysis in data envelopment analysis. Supply Chain. Manag. Int. J. 2022, 27, 162–181. [Google Scholar] [CrossRef]
- Aydin, A. Benchmarking healthcare systems of OECD countries: A DEA—Based Malmquist Productivity Index Approach. Alphanumeric J. 2022, 10, 25–40. [Google Scholar] [CrossRef]
- Tian, Y.; Ma, Z. An Efficiency Analysis Of Chinese Coal Enterprises By Using Malmquist Productivity Indexes. In Proceedings of the 2016 International Conference on Advances in Energy, Environment and Chemical Science, Changsha, China, 23–24 April 2016; Atlantis Press: Paris, France, 2016. [Google Scholar] [CrossRef]
- Wang, C.-N.; Tibo, H.; Nguyen, V.T.; Duong, D.H. Effects of the Performance-Based Research Fund and Other Factors on the Efficiency of New Zealand Universities: A Malmquist Productivity Approach. Sustainability 2020, 12, 5939. [Google Scholar] [CrossRef]
- Dakpo, K.H.; Jeanneaux, P.; Latruffe, L.; Mosnier, C.; Veysset, P. Three decades of productivity change in French beef production: A Färe-Primont index decomposition. Aust. J. Agric. Resour. Econ. 2018, 62, 352–372. [Google Scholar] [CrossRef]
- Mitropoulos, P.; Mitropoulos, I.; Karanikas, H.; Polyzos, N. The impact of economic crisis on the Greek hospitals’ productivity. Int. J. Health Plan. Manag. 2018, 33, 171–184. [Google Scholar] [CrossRef]
- Bozkurt, E.; Topçuoğlu, Ö.; Altiner, A. Relationship Between Productivity and Digitalization With Tobit model Based on Malmquist Index. Veriml. Derg. 2022, 5, 67–78. [Google Scholar] [CrossRef]
- Pham, M.; Simar, L.; Zelenyuk, V. Statistical Inference for Aggregation of Malmquist Productivity Indices. Oper. Res. 2023, 72, 1615–1629. [Google Scholar] [CrossRef]
- Sukmaningrum, P.S.; Hendratmi, A.; Rusmita, S.A.; Shukor, S.A. Productivity analysis of family takaful in Indonesia and Malaysia: Malmquist productivity index approach. J. Islam. Account. Bus. Res. 2022, 13, 649–665. [Google Scholar] [CrossRef]
- Wang, W.; Chen, T. Efficiency Evaluation and Influencing Factor Analysis of China’s Public Cultural Services Based on a Super-Efficiency Slacks-Based Measure Model. Sustainability 2020, 12, 3146. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Margaritis, D. Malmquist Productivity Indexes and DEA. In Handbook on Data Envelopment Analysis; Springer: Boston, MA, USA, 2011; pp. 127–150. [Google Scholar] [CrossRef]
- Fu, X.; Pietrobelli, C.; Soete, L. The paradox of state-led innovation. Res. Policy 2023, 52, 104–120. [Google Scholar]
Rank | Name of Countries | DMUs |
---|---|---|
1 | Switzerland | SWZ |
2 | United States of America | USA |
3 | Sweden | SWD |
4 | United Kingdom | UNK |
5 | Netherlands | NDL |
6 | South Korea | KOR |
7 | Singapore | SGP |
8 | Germany | GMN |
9 | Finland | FNL |
10 | Denmark | DMK |
11 | China | CHN |
12 | France | FRN |
13 | Japan | JPN |
14 | Hongkong | HNK |
15 | Canada | CND |
16 | Austria | AST |
17 | Estonia | EST |
18 | Israel | ISR |
19 | Luxembourg | LXM |
20 | Iceland | ICL |
Variables | Definition | |
---|---|---|
Inputs | Innovation Index (II) Capital Investment (CI) Trade Openness (TO) High Tech Exports (HTE) Gross Domestic Product (GDP) | Innovation score (0–100). Calculated new plant and equipment purchases by firms, as a percentage of GDP. Sum of exports and imports divided by GDP. Percent of exported manufactured products with high research and development intensity. Total monetary value of all final goods and services produced in billion USD. |
Outputs | Labor Force (LF) Unemployment Rate (UR) | The population 15 years and over who are either employed, unemployed, or seeking employment. Unemployed individuals in an economy among individuals currently in the labor force |
Year | Statistics | (I)-II | (I)-CI | (I)-TO | (I)-HTE | (I)-GDP | (O)-LF | (O)-UR |
---|---|---|---|---|---|---|---|---|
Year 1 | Max | 68.400 | 43.790 | 376.890 | 64.650 | 20,533.060 | 776.280 | 9.020 |
Min | 50.500 | 17.040 | 27.610 | 6.970 | 26.260 | 0.220 | 2.470 | |
Average | 57.075 | 24.677 | 124.415 | 22.672 | 2854.104 | 60.536 | 4.653 | |
SD | 4.496 | 5.401 | 102.563 | 13.899 | 5086.519 | 168.350 | 1.583 | |
Year 2 | Max | 67.200 | 43.250 | 382.350 | 65.560 | 21,380.980 | 775.320 | 8.410 |
Min | 50.000 | 18.190 | 26.450 | 6.570 | 24.680 | 0.220 | 2.350 | |
Average | 57.155 | 24.310 | 123.292 | 23.329 | 2906.832 | 60.703 | 4.474 | |
SD | 4.361 | 5.326 | 102.210 | 14.320 | 5278.262 | 168.185 | 1.483 | |
Year 3 | Max | 66.100 | 43.370 | 372.270 | 69.650 | 21,060.470 | 751.450 | 9.660 |
Min | 48.300 | 17.350 | 23.380 | 5.620 | 21.570 | 0.220 | 2.810 | |
Average | 55.480 | 24.614 | 117.805 | 23.797 | 2891.527 | 59.337 | 5.723 | |
SD | 4.473 | 5.757 | 103.607 | 14.977 | 5267.564 | 163.084 | 1.820 | |
Year 4 | Max | 65.500 | 43.140 | 402.510 | 65.500 | 23,315.080 | 780.370 | 8.720 |
Min | 49.000 | 16.780 | 25.480 | 49.000 | 25.600 | 0.220 | 2.830 | |
Average | 56.225 | 24.902 | 127.289 | 56.225 | 3273.465 | 60.878 | 5.473 | |
SD | 4.285 | 5.568 | 110.981 | 4.285 | 5998.516 | 169.227 | 1.500 | |
Year 5 | Max | 64.600 | 43.290 | 388.510 | 34.810 | 25,439.700 | 781.830 | 781.830 |
Min | 49.500 | 14.960 | 27.360 | 5.870 | 28.060 | 0.230 | 0.230 | |
Average | 55.360 | 25.238 | 135.889 | 19.668 | 3325.903 | 61.262 | 61.262 | |
SD | 4.411 | 5.921 | 105.952 | 7.256 | 6368.976 | 169.602 | 169.602 |
DMU | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Mean | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Score | Rank | Score | Rank | Score | Rank | Score | Rank | Score | Rank | Score | Rank | |
SWZ | 0.471 | 14 | 0.481 | 14 | 0.445 | 15 | 0.490 | 15 | 0.434 | 16 | 0.464 | 15 |
USA | 1.980 | 3 | 1.974 | 4 | 2.020 | 3 | 1.746 | 4 | 1.808 | 4 | 1.905 | 3 |
SWD | 0.700 | 8 | 0.818 | 8 | 0.880 | 8 | 1.025 | 9 | 1.037 | 9 | 0.892 | 9 |
UNK | 0.511 | 13 | 0.512 | 13 | 0.471 | 14 | 0.596 | 11 | 0.519 | 14 | 0.522 | 14 |
NDL | 0.384 | 18 | 0.368 | 18 | 0.367 | 20 | 0.415 | 18 | 0.401 | 18 | 0.387 | 19 |
KOR | 0.406 | 16 | 0.444 | 15 | 0.380 | 18 | 0.383 | 20 | 0.376 | 20 | 0.398 | 18 |
SGP | 0.331 | 19 | 0.314 | 20 | 0.369 | 19 | 0.407 | 19 | 0.384 | 19 | 0.361 | 20 |
GMN | 0.414 | 15 | 0.415 | 16 | 0.395 | 16 | 0.429 | 17 | 0.402 | 17 | 0.411 | 17 |
FNL | 1.577 | 4 | 1.336 | 6 | 1.288 | 6 | 1.254 | 6 | 1.372 | 6 | 1.365 | 6 |
DMK | 0.621 | 9 | 0.670 | 10 | 0.636 | 10 | 0.573 | 13 | 0.551 | 12 | 0.610 | 11 |
CHN | 4.140 | 1 | 4.138 | 1 | 3.948 | 1 | 4.004 | 1 | 4.159 | 1 | 4.078 | 1 |
FRN | 1.349 | 6 | 1.307 | 7 | 0.737 | 9 | 1.053 | 7 | 1.152 | 8 | 1.120 | 7 |
JPN | 0.401 | 17 | 0.410 | 17 | 0.389 | 17 | 0.458 | 16 | 0.468 | 15 | 0.425 | 16 |
HNK | 0.286 | 20 | 0.336 | 19 | 0.543 | 12 | 0.524 | 14 | 1.318 | 7 | 0.601 | 12 |
CND | 0.707 | 7 | 0.751 | 9 | 1.215 | 7 | 1.037 | 8 | 0.770 | 10 | 0.896 | 8 |
AST | 0.594 | 10 | 0.607 | 11 | 0.597 | 11 | 0.751 | 10 | 0.611 | 11 | 0.632 | 10 |
EST | 1.569 | 5 | 1.475 | 5 | 1.371 | 5 | 1.377 | 5 | 1.495 | 5 | 1.457 | 5 |
ISR | 0.513 | 12 | 0.532 | 12 | 0.510 | 13 | 0.584 | 12 | 0.526 | 13 | 0.533 | 13 |
LXM | 2.987 | 2 | 3.047 | 2 | 3.884 | 2 | 3.437 | 2 | 2.690 | 2 | 3.209 | 2 |
ICL | 0.587 | 11 | 2.549 | 3 | 1.810 | 4 | 2.088 | 3 | 2.289 | 3 | 1.865 | 4 |
Mean | 1.026 | 1.124 | 1.113 | 1.132 | 1.138 | 1.107 |
Catch-Up | Year 1–Year 2 | Year 2–Year 3 | Year 3–Year 4 | Year 4–Year 5 | Average |
---|---|---|---|---|---|
SWZ | 1.022 | 0.923 | 1.101 | 0.887 | 0.983 |
USA | 1.002 | 1.262 | 0.896 | 0.910 | 1.017 |
SWD | 1.164 | 1.080 | 1.162 | 0.980 | 1.096 |
UNK | 1.000 | 0.921 | 1.267 | 0.871 | 1.015 |
NDL | 0.957 | 0.997 | 1.131 | 0.967 | 1.013 |
KOR | 1.081 | 0.864 | 1.009 | 0.982 | 0.984 |
SGP | 0.951 | 1.172 | 1.102 | 0.943 | 1.042 |
GMN | 0.998 | 0.957 | 1.086 | 0.936 | 0.994 |
FNL | 0.851 | 0.957 | 0.944 | 1.121 | 0.968 |
DMK | 1.076 | 0.951 | 0.901 | 0.961 | 0.972 |
CHN | 0.995 | 0.958 | 1.014 | 1.039 | 1.002 |
FRN | 1.008 | 0.591 | 1.375 | 1.102 | 1.019 |
JPN | 1.022 | 0.949 | 1.176 | 1.023 | 1.042 |
HNK | 1.176 | 1.611 | 0.965 | 1.950 | 1.426 |
CND | 1.063 | 1.617 | 0.851 | 0.745 | 1.069 |
AST | 1.021 | 0.985 | 1.258 | 0.814 | 1.019 |
EST | 0.867 | 0.910 | 0.948 | 1.305 | 1.008 |
ISR | 1.053 | 0.944 | 1.147 | 0.901 | 1.011 |
LXM | 1.084 | 1.054 | 0.821 | 0.968 | 0.982 |
ICL | 1.823 | 1.119 | 1.124 | 0.778 | 1.211 |
Average | 1.061 | 1.041 | 1.064 | 1.009 | 1.044 |
Frontier | Year 1–Year 2 | Year 2–Year 3 | Year 3–Year 4 | Year 4–Year 5 | Average |
---|---|---|---|---|---|
SWZ | 0.919 | 1.157 | 0.945 | 0.882 | 0.976 |
USA | 0.932 | 1.468 | 0.741 | 0.777 | 0.980 |
SWD | 0.917 | 1.206 | 0.883 | 0.806 | 0.953 |
UNK | 0.933 | 1.328 | 0.812 | 0.719 | 0.948 |
NDL | 0.929 | 1.145 | 0.946 | 0.889 | 0.977 |
KOR | 0.931 | 1.229 | 0.865 | 0.899 | 0.981 |
SGP | 0.929 | 1.151 | 0.948 | 0.889 | 0.979 |
GMN | 0.939 | 1.272 | 0.839 | 0.911 | 0.990 |
FNL | 0.989 | 1.198 | 0.966 | 0.890 | 1.011 |
DMK | 0.918 | 1.163 | 0.943 | 0.890 | 0.979 |
CHN | 1.016 | 1.025 | 0.966 | 1.023 | 1.008 |
FRN | 0.923 | 1.558 | 0.695 | 0.797 | 0.993 |
JPN | 0.957 | 1.230 | 0.816 | 0.909 | 0.978 |
HNK | 0.933 | 1.451 | 0.952 | 0.496 | 0.958 |
CND | 0.911 | 1.199 | 0.843 | 0.860 | 0.953 |
AST | 0.918 | 1.159 | 0.942 | 0.814 | 0.958 |
EST | 0.928 | 1.466 | 0.888 | 0.831 | 1.029 |
ISR | 0.919 | 1.181 | 0.932 | 0.700 | 0.933 |
LXM | 0.954 | 1.243 | 0.804 | 0.913 | 0.978 |
ICL | 0.903 | 1.589 | 0.932 | 0.725 | 1.037 |
Average | 0.935 | 1.271 | 0.883 | 0.831 | 0.980 |
Malmquist | Year 1–Year 2 | Year 2–Year 3 | Year 3–Year 4 | Year 4–Year 5 | Average |
---|---|---|---|---|---|
SWZ | 0.939 | 1.068 | 1.041 | 0.782 | 0.957 |
USA | 0.934 | 1.854 | 0.664 | 0.707 | 1.039 |
SWD | 1.067 | 1.302 | 1.027 | 0.790 | 1.046 |
UNK | 0.933 | 1.224 | 1.029 | 0.626 | 0.953 |
NDL | 0.889 | 1.141 | 1.070 | 0.859 | 0.990 |
KOR | 1.007 | 1.063 | 0.873 | 0.884 | 0.956 |
SGP | 0.883 | 1.348 | 1.044 | 0.838 | 1.028 |
GMN | 0.937 | 1.218 | 0.911 | 0.852 | 0.980 |
FNL | 0.841 | 1.147 | 0.912 | 0.998 | 0.974 |
DMK | 0.988 | 1.106 | 0.850 | 0.856 | 0.950 |
CHN | 1.011 | 0.982 | 0.980 | 1.063 | 1.009 |
FRN | 0.930 | 0.921 | 0.955 | 0.879 | 0.921 |
JPN | 0.978 | 1.167 | 0.959 | 0.929 | 1.008 |
HNK | 1.098 | 2.337 | 0.919 | 0.966 | 1.330 |
CND | 0.969 | 1.938 | 0.717 | 0.641 | 1.066 |
AST | 0.938 | 1.141 | 1.185 | 0.662 | 0.982 |
EST | 0.804 | 1.335 | 0.842 | 1.085 | 1.017 |
ISR | 0.967 | 1.114 | 1.069 | 0.630 | 0.945 |
LXM | 1.034 | 1.310 | 0.660 | 0.883 | 0.972 |
ICL | 1.647 | 1.779 | 1.047 | 0.564 | 1.259 |
Average | 0.990 | 1.325 | 0.938 | 0.825 | 1.019 |
Year | Efficiency Change | Technological Change | TFP Change |
---|---|---|---|
Year 1–Year 2 | 1.061 | 0.935 | 0.99 |
Year 2–Year 3 | 1.041 | 1.271 | 1.325 |
Year 3–Year 4 | 1.064 | 0.883 | 0.938 |
Year 4–Year 5 | 1.009 | 0.831 | 0.825 |
Average | 1.044 | 0.98 | 1.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-N.; Cahilig, G. Algorithmic Efficiency Analysis in Innovation-Driven Labor Markets: A Super-SBM and Malmquist Productivity Index Approach. Algorithms 2025, 18, 518. https://doi.org/10.3390/a18080518
Wang C-N, Cahilig G. Algorithmic Efficiency Analysis in Innovation-Driven Labor Markets: A Super-SBM and Malmquist Productivity Index Approach. Algorithms. 2025; 18(8):518. https://doi.org/10.3390/a18080518
Chicago/Turabian StyleWang, Chia-Nan, and Giovanni Cahilig. 2025. "Algorithmic Efficiency Analysis in Innovation-Driven Labor Markets: A Super-SBM and Malmquist Productivity Index Approach" Algorithms 18, no. 8: 518. https://doi.org/10.3390/a18080518
APA StyleWang, C.-N., & Cahilig, G. (2025). Algorithmic Efficiency Analysis in Innovation-Driven Labor Markets: A Super-SBM and Malmquist Productivity Index Approach. Algorithms, 18(8), 518. https://doi.org/10.3390/a18080518