High-Fidelity Image Transmission in Quantum Communication with Frequency Domain Multi-Qubit Techniques
Abstract
1. Introduction
- The proposal of a novel frequency domain quantum communication framework for compressed image transmission, combining frequency domain processing with quantum superposition to enhance robustness and transmission efficiency.
- Employing multi-qubit quantum state encoding to enable high-dimensional image representations, offering improved resilience to noise compared to single-qubit encoding schemes.
- A demonstration of the superiority of the frequency domain multi-qubit system over its time domain counterpart through comprehensive performance evaluations under varying noise conditions, showing enhanced fidelity and robustness.
2. Related Works
3. Methodology
3.1. Source Coding
3.2. Channel Encoding/Decoding
- Performance in achieving capacity under successive cancellation decoding, which is optimal in the asymptotic regime.
- Lower computational complexity than turbo or LDPC codes, making them more practical for hybrid quantum–classical implementations.
- Recursive and structured construction, which is compatible with efficient quantum circuit implementations.
- Flexible block lengths and code design, allowing adaptation to varying channel conditions and system constraints.
3.3. Quantum Encoding
3.3.1. Mapping a Classical Bit to a Qubit
- If , it is mapped to the quantum state ;
- If , it is mapped to the quantum state .
3.3.2. Qubit Encoding Size Selection and Quantum State Vector Construction
3.3.3. Quantum Gate Dimension Selection and Quantum Fourier Transform
3.4. Quantum Channel
3.5. Quantum Decoding
3.5.1. Mathematical Process of Quantum Decoding in Noiseless Situation
3.5.2. Mathematical Process of Quantum Decoding in Noisy Situation
3.6. Hardware Implementation of Quantum Fourier Transform
3.7. Time Domain Multi-Qubit System
4. Results and Discussion
4.1. Frequency Domain Multi-Qubit Framework for JPEG Image Transmission
4.2. Time Domain Multi-Qubit Framework for JPEG Image Transmission
4.3. Comparing Transmission Efficiency Between Time Domain and Frequency Domain Systems for JPEG Image Transmission
4.4. Frequency Domain Multi-Qubit Framework for Heif Image Transmission
4.5. Time Domain Multi-Qubit Framework for Heif Image Transmission
4.6. Comparing Transmission Efficiency Between Time Domain and Frequency Domain Systems for Heif Image Transmission
5. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AQFT | Approximate QFT |
AR | Augmented Reality |
BER | Bit Error Rate |
CSI | Channel State Information |
HEIF | High Efficiency Image Format |
IQFT | Inverse Quantum Fourier Transform |
JPEG | Joint Photographic Experts Group |
LDPC | Low-Density Parity-Check |
MOS | Mean Opinion Score |
NISQ | Noisy Intermediate Scale Quantum |
PSNR | Peak Signal-to-Noise Ratio |
QEC | Quantum Error Correction |
QFT | Multi-Input Single-Output |
QKD | Quantum Key Distribution |
RL | Reinforcement Learning |
SI | Spatial Information |
SNR | Signal-to-Noise Ratio |
SSIM | Structural Similarity Index Measure |
UQI | Universal Quality Index |
References
- Arena, F.; Collotta, M.; Pau, G.; Termine, F. An Overview of Augmented Reality. Computers 2022, 11, 28. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Arun, G.; Mishra, V. A review on quantum computing and communication. In Proceedings of the 2014 2nd International Conference on Emerging Technology Trends in Electronics, Communication and Networking, Surat, India, 26–27 December 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Yasmineh, S. Foundations of Quantum Mechanics. Encyclopedia 2022, 2, 1082–1090. [Google Scholar] [CrossRef]
- Ralston, J. What Can We Learn from Entanglement and Quantum Tomography? Physics 2022, 4, 1371–1383. [Google Scholar] [CrossRef]
- Jayasinghe, U.; Samarathunga, P.; Ganearachchi, Y.; Fernando, T.; Fernando, A. Quantum communications for image transmission over error-prone channels. Electron. Lett. 2024, 60, e13300. [Google Scholar] [CrossRef]
- Camps, D.; Van Beeumen, R.; Yang, C. Quantum Fourier transform revisited. Numer. Linear Algebra Appl. 2021, 28, e2331. [Google Scholar] [CrossRef]
- Ballentine, L.E. Quantum Mechanics: A Modern Development, 2nd ed.; World Scientific Publishing Company: Singapore, 2014; p. 740. [Google Scholar]
- Sridhar, G.T.; Ashwini, P.; Tabassum, N. A Review on Quantum Communication and Computing. In Proceedings of the 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 4–6 May 2023; pp. 1592–1596. [Google Scholar] [CrossRef]
- Hughes, C.; Isaacson, J.; Perry, A.; Sun, R.F.; Turner, J. Introduction to Superposition. In Quantum Computing for the Quantum Curious; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Zou, N. Quantum Entanglement and Its Application in Quantum Communication. J. Physics Conf. Ser. 2021, 1827, 012120. [Google Scholar] [CrossRef]
- Tao, Y. Quantum entanglement: Principles and research progress in quantum information processing. Theor. Nat. Sci. 2024, 30, 263–274. [Google Scholar] [CrossRef]
- Sehgal, S.K.; Gupta, R. Quantum Cryptography and Quantum Key. In Proceedings of the 2021 International Conference on Industrial Electronics Research and Applications (ICIERA), New Delhi, India, 22–24 December 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Durr-E-Shahwar; Imran, M.; Altamimi, A.B.; Khan, W.; Hussain, S.; Alsaffar, M. Quantum Cryptography for Future Networks Security: A Systematic Review. IEEE Access 2024, 12, 180048–180078. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Chen, G. Efficient quantum-error correction for QoS provisioning over QKD-based satellite networks. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, 9–12 March 2015; pp. 2262–2267. [Google Scholar] [CrossRef]
- Comi, P.; Martelli, P.; Martin, V.; Brito, J.P.; Gatto, A.; Méndez, R.B.; Vicente, R.J.; Bianchi, F.; Brunero, M. Increasing network reliability by securing SDN communication with QKD. In Proceedings of the 2021 17th International Conference on the Design of Reliable Communication Networks (DRCN), Milano, Italy, 19–22 April 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Mamiya, A.; Tanaka, K.; Yokote, S.; Sasaki, M.; Fujiwara, M.; Tanaka, M.; Sato, H.; Katagiri, Y. Satellite-based QKD for Global Quantum Cryptographic Network Construction. In Proceedings of the 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Kyoto City, Japan, 28–31 March 2022; pp. 47–50. [Google Scholar] [CrossRef]
- Karthik, M.; Lalwani, J.; Jajodia, B. Quantum Image Teleportation Protocol (QITP) and Quantum Audio Teleportation Protocol (QATP) by using Quantum Teleportation and Huffman Coding. In Proceedings of the 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT), Pune, India, 13–15 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Tan, X.; Jiang, L.; Zhang, Q. Controlled Quantum Teleportation with Identity Authentication. In Proceedings of the 2013 Fourth International Conference on Emerging Intelligent Data and Web Technologies, Xi’an, China, 9–11 September 2013; pp. 350–355. [Google Scholar] [CrossRef]
- Janani, T.; Brindha, M. A secure medical image transmission scheme aided by quantum representation. J. Inf. Secur. Appl. 2021, 59, 102832. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kimura, N.; Mochida, Y.; Mizuno, K.; Takasugi, K.; Chikara, S.; Saito, T.; Shirai, D. Uncompressed 8K-video-transmission System for Remote Production Secured by Post-quantum Cryptography. In Proceedings of the 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Beijing, China, 14–16 June 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Guérin, P.A.; Feix, A.; Araújo, M.; Brukner, I.C.V. Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication. Phys. Rev. Lett. 2016, 117, 100502. [Google Scholar] [CrossRef]
- Feix, A.; Araújo, M.; Brukner, i.c.v. Quantum superposition of the order of parties as a communication resource. Phys. Rev. A 2015, 92, 052326. [Google Scholar] [CrossRef]
- Goswami, K.; Cao, Y.; Paz-Silva, G.A.; Romero, J.; White, A.G. Increasing communication capacity via superposition of order. Phys. Rev. Res. 2020, 2, 033292. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, X.M.; Hou, Z.B.; Cao, H.; Cui, J.M.; Liu, B.H.; Huang, Y.F.; Li, C.F.; Guo, G.C.; Chiribella, G. Experimental Transmission of Quantum Information Using a Superposition of Causal Orders. Phys. Rev. Lett. 2020, 124, 030502. [Google Scholar] [CrossRef]
- Jayasinghe, U.; Samarathunga, P.; Ganearachchi, Y.; Fernando, T.; Fernando, A. Adaptive Coding-Based Quantum Communication System for Image Transmission. Electron. Lett. 2025, 61, e70299. [Google Scholar] [CrossRef]
- Jayasinghe, U.; Pollwaththage, N.; Ganearachchi, Y.; Samarathunga, P.; Fernando, T.; Fernando, A. Quantum Communication based Image Transmission over Error-Prone Channels with Three-Qubit Stabilizer Code. In Proceedings of the 2025 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–14 January 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Jayasinghe, U.; Samarathunga, P.; Pollwaththage, N.; Ganearachchi, Y.; Fernando, T.; Fernando, A. Quantum Communication for Video Transmission Over Error-Prone Channels. IEEE Trans. Consum. Electron. 2025, 71, 1148–1155. [Google Scholar] [CrossRef]
- Jayasinghe, U.; Fernando, T.; Ganearachchi, Y.; Samarathunga, P.; Fernando, A. Quantum Communication Based Image Transmission With Transmit and Receive Diversity in MIMO Communication Systems. IEEE Trans. Consum. Electron. 2025, 1. [Google Scholar] [CrossRef]
- Singamaneni, K.K.; Muhammad, G.; Ali, Z. A Novel Multi-Qubit Quantum Key Distribution Ciphertext-Policy Attribute-Based Encryption Model to Improve Cloud Security for Consumers. IEEE Trans. Consum. Electron. 2024, 70, 1092–1101. [Google Scholar] [CrossRef]
- Pan, H. Multi-party semiquantum key distribution with multi-qubit GHZ states. Quantum Inf. Process. 2024, 23, 1–17. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, X.B.; Xu, G.; Guo, Y.; Li, Z. Multi-qubit hierarchical quantum state sharing with authentication. Quantum Inf. Process. 2025, 24, 69. [Google Scholar] [CrossRef]
- Espoukeh, P.; Pedram, P. Quantum teleportation through noisy channels with multi-qubit GHZ states. Quantum Inf. Process. 2014, 13, 1789–1811. [Google Scholar] [CrossRef]
- Yi, Y.H.; Li, X.L.; Nie, L.P.; Sang, M.H. Quantum Teleportation of Three and Four-Qubit State Using Multi-qubit Cluster States. Int. J. Theor. Phys. 2016, 55, 1820–1823. [Google Scholar] [CrossRef]
- Zhou, S.S.; Loke, T.; Izaac, J.A.; Wang, J.B. Quantum Fourier transform in computational basis. Quantum Inf. Process. 2017, 16, 82. [Google Scholar] [CrossRef]
- Amankwah, M.G.; Camps, D.; Bethel, E.W.; Jones, M.W.; Martinez-Rach, M.A.; Uelwer, T.; Cruz, C.D.; Blanes, I.; Artés, A.; Bernardos, A.M. Quantum pixel representations and compression for N-dimensional images. Sci. Rep. 2022, 12, 7712. [Google Scholar] [CrossRef]
- Haque, M.E.; Paul, M.; Ulhaq, A.; Debnath, T. Advanced quantum image representation and compression using a DCT-EFRQI approach. Sci. Rep. 2023, 13, 4129. [Google Scholar] [CrossRef] [PubMed]
- Devarapalli, S.H.R.; Jadhav, H.; Dontabhaktuni, J. Image compression using quantum wavelet transforms. Proc. SPIE Int. Soc. Opt. Eng. 2025, 13391, 1339117. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, N. Quantum color image compression and encryption algorithm based on Fibonacci transform. Quantum Inf. Process. 2023, 22, 39. [Google Scholar] [CrossRef]
- Wang, H.; Tan, J.; Huang, Y.; Zheng, W. Quantum image compression with autoencoders based on parameterized quantum circuits. Quantum Inf. Process. 2024, 23, 41. [Google Scholar] [CrossRef]
- Mukhamedieva, D.T.; Sobirov, R.A.; Turg’unova, N.; Samijonov, B.N. Quantum Fourier Transform in Image Processing. In Information Technologies and Intelligent Decision Making Systems; Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2024; pp. 143–151. [Google Scholar] [CrossRef]
- Yan, X.Y.; Zhou, N.R.; Gong, L.H.; Wang, Y.Q.; Wen, X.J. High-dimensional quantum key distribution based on qudits transmission with quantum Fourier transform. Quantum Inf. Process. 2019, 18, 271. [Google Scholar] [CrossRef]
- Song, D.; He, C.; Cao, Z.; Chai, G. Quantum Teleportation of Multiple Qubits Based on Quantum Fourier Transform. IEEE Commun. Lett. 2018, 22, 2427–2430. [Google Scholar] [CrossRef]
- Mastriani, M. Quantum Fourier states and gates: Teleportation via rough entanglement. Opt. Quantum Electron. 2023, 55, 1111. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, C.; He, C.; Zhang, M. Quantum Teleportation Protocol of Arbitrary Quantum States by Using Quantum Fourier Transform. Int. J. Theor. Phys. 2020, 59, 3174–3183. [Google Scholar] [CrossRef]
- Jayasinghe, U.; Samarathunga, P.; Fernando, T.; Ganearachchi, Y.; Fernando, A. Image Transmission Over Quantum Communication Systems With Three-Qubit Error Correction. Electron. Lett. 2025, 61, e70205. [Google Scholar] [CrossRef]
- Jayasinghe, U.; Samarathunga, P.; Fernando, T.; Fernando, A. Transmit and Receive Diversity in MIMO Quantum Communication for High-Fidelity Video Transmission. Algorithms 2025, 18, 436. [Google Scholar] [CrossRef]
- Johnson, S.; Rarity, J.; Padgett, M. Transmission of quantum-secured images. Sci. Rep. 2024, 14, 11579. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the Computer Vision—ECCV 2014; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2014; Volume 8693, pp. 740–755. [Google Scholar] [CrossRef]
- Wallace, G. The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 1992, 38, xviii–xxxiv. [Google Scholar] [CrossRef]
- Hannuksela, M.M.; Lainema, J.; Malamal Vadakital, V.K. The High Efficiency Image File Format Standard [Standards in a Nutshell]. IEEE Signal Process. Mag. 2015, 32, 150–156. [Google Scholar] [CrossRef]
- Pathak, P.; Bhatia, R. Performance analysis of Polar codes for next generation 5G technology. In Proceedings of the 2022 3rd International Conference for Emerging Technology (INCET), Belgaum, India, 27–29 May 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Chakraborty, M.; Mukherjee, A.; Nag, A.; Chandra, S. Hybrid Quantum Noise Model to Compute Gaussian Quantum Channel Capacity. IEEE Access 2024, 12, 14671–14689. [Google Scholar] [CrossRef]
- Wille, R.; Lye, A.; Drechsler, R. Optimal SWAP gate insertion for nearest neighbor quantum circuits. In Proceedings of the 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), Singapore, 20–23 January 2014; pp. 489–494. [Google Scholar] [CrossRef]
- Dixit, V.; Jian, S. Quantum Fourier transform to estimate drive cycles. Sci. Rep. 2022, 12, 654. [Google Scholar] [CrossRef] [PubMed]
- International Telecommunication Union (ITU). Methodologies for the Subjective Assessment of the Quality of Television Pictures; ITU-R Recommendation BT.500; International Telecommunication Union: Geneva, Switzerland, 2022. [Google Scholar]
Reference | System | Advantages | Limitations |
---|---|---|---|
[6] | Single-qubit quantum communication system for image transmission as a classical–quantum hybrid approach | Enhanced noise resilience compared to classical communication systems | High noise sensitivity under severe noise conditions |
[28] | Single-qubit quantum communication system with three, five, and seven-qubit quantum error correction codes | Enhanced Noise resilience | Complexity overhead |
[29] | Single-qubit quantum MIMO communication system for image transmission | Enhanced noise resilience compared to classical MIMO communication | Noise sensitivity under severe noise conditions |
[46] | Single-qubit quantum communication system with three-qubit quantum error correction | Enhanced noise resilience compared to classical communication | Noise sensitivity under severe noise conditions |
[47] | Single-qubit quantum MIMO communication system for video transmission | Enhanced noise resilience compared to classical MIMO communication | Noise sensitivity under severe noise conditions |
[48] | Secure image transmission | Enhanced security | Only for security purposes |
Qubit Size (n) | Domain | Gate Count | Circuit Depth | BER (%) |
---|---|---|---|---|
Q1 | Time | 1 | 1 | 34.51 |
Q2 | Time | 2 | 1 | 34.26 |
Q3 | Time | 3 | 1 | 32.37 |
Q4 | Time | 4 | 1 | 29.52 |
Q5 | Time | 5 | 1 | 31.36 |
Q6 | Time | 6 | 1 | 11.31 |
Q7 | Time | 7 | 1 | 2.21 |
Q8 | Time | 8 | 1 | 0.03 |
Q1 | Frequency | 1 | 1 | 31.56 |
Q2 | Frequency | 3 | 2 | 26.17 |
Q3 | Frequency | 6 | 3 | 23.17 |
Q4 | Frequency | 10 | 4 | 17.36 |
Q5 | Frequency | 15 | 5 | 8.83 |
Q6 | Frequency | 21 | 6 | 1.31 |
Q7 | Frequency | 28 | 7 | 0.02 |
Q8 | Frequency | 36 | 8 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayasinghe, U.; Fernando, T.; Fernando, A. High-Fidelity Image Transmission in Quantum Communication with Frequency Domain Multi-Qubit Techniques. Algorithms 2025, 18, 501. https://doi.org/10.3390/a18080501
Jayasinghe U, Fernando T, Fernando A. High-Fidelity Image Transmission in Quantum Communication with Frequency Domain Multi-Qubit Techniques. Algorithms. 2025; 18(8):501. https://doi.org/10.3390/a18080501
Chicago/Turabian StyleJayasinghe, Udara, Thanuj Fernando, and Anil Fernando. 2025. "High-Fidelity Image Transmission in Quantum Communication with Frequency Domain Multi-Qubit Techniques" Algorithms 18, no. 8: 501. https://doi.org/10.3390/a18080501
APA StyleJayasinghe, U., Fernando, T., & Fernando, A. (2025). High-Fidelity Image Transmission in Quantum Communication with Frequency Domain Multi-Qubit Techniques. Algorithms, 18(8), 501. https://doi.org/10.3390/a18080501