Situationally Sensitive Path Planning
Abstract
1. Introduction
2. Related Work
2.1. Path Planning Heuristics
2.2. Adaptive Roadmaps
2.3. Continuum Mechanics Models
2.3.1. Macroscopic Mechanics of Aggregate Crowd Flow
2.3.2. Microscopic Mechanics Between Pedestrians
2.4. Urban Science Models
3. Implementation Considerations
4. Methodology
- Segment Length: Geographic (Euclidean) length of route segment, calculated online from the endpoint node;
- Path Condition: Qualitative (physical) condition of a route segment, calculated via scene detection of streetscape design objects (user-placed objects in the design phase, e.g., trash cans);
- Pedestrian Level of Service (PLOS): The occupancy (i.e., crowd density and congestion) of a route segment, calculated as a ratio of agents per segment of traversable surface area;
- Risk: The level of risk associated with the route segment; this parameter is manually configurable by the user.
4.1. Global Environment Layer
4.1.1. Dijkstra’s Algorithm for Path Planning: A Review
- Selects, among a subset of unvisited nodes, the node that has the smallest distance cost. In the first algorithm step, this would default to the source node, which has a distance of 0.
- For the selected node, considers all its unvisited neighbors and updates their distance values through the selected node. This is a form of knowledge updating whereby if a previous time step has already set a distance cost to an unvisited node but the new distance cost through the selected node is smaller, the smaller distance cost (through the selected node) overwrites the larger distance cost.
- Marks the selected node as “visited”, and loops back to Step 1, then continues looping until no more vertices remain in the unvisited set.
4.1.2. Global Environment Graph Definition
Algorithm 1 Dijkstra’s Algorithm for Shortest Path |
procedure Dijkstra(Graph G, node source, node, target) |
4.1.3. Site and Situation Factors
- base cost set by the system designer (
- Its Euclidean length between its end waypoints (
- Its spatial area with respect to the scale of the virtual environment (
- The number of active agents moving along it (
- Any contextual virtual artifacts that thematically impact a segment’s quality, such as trash items, animals, etc. (sdirt, sSafe).
4.1.4. Situational Preference-Based Path Planning: Cost and Shortest Path Calculations
Algorithm 2 Calculating the Modified Graph |
procedure |
Algorithm 3 Situational Preference-Based Shortest Path |
procedure |
4.2. Local Agent Layer
4.2.1. Synthetic Visual Fields
4.2.2. RVO-Based Local Collision Avoidance
Algorithm 4 Local Agent Layer: Penalty-Minimizing RVO |
procedure |
Algorithm 5 Local Agent Layer: Calculation |
procedure
|
Algorithm 6 Local Agent Layer: Time to Collision |
procedure
|
5. Experiments
6. Results
6.1. Preference for Detours
6.2. Dynamic Situations and Path Variation
7. Discussion
7.1. Hardware Stress Testing
7.2. Limitations
8. Future Work
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Bonnin, G.; Goudey, A. The kinetic quality of store design: An exploration of its influence on shopping experience. J. Retail. Consum. Serv. 2012, 19, 637–643. [Google Scholar] [CrossRef]
- Escobar, R.; de la Rossa, A. Architectural design for the survival optimization of panicking fleeing victims. In Proceedings of the 7th European Conference on Artificial Life (ECAL 2003), Dortmund, Germany, 14–17 September 2003. [Google Scholar]
- Hong, S.W.; Schaumann, D.; Kalay, Y.E. Human behavior simulation in architectural design projects: An observational study in an academic course. Comput. Environ. Urban Syst. 2016, 60, 1–11. [Google Scholar] [CrossRef]
- Pauls, J. The movement of people in buildings and design solutions for means of egress. Fire Technol. 1984, 20, 27–47. [Google Scholar] [CrossRef]
- Rodriguez, S.; Zhang, Y.; Gans, N.; Amato, N.M. Optimizing aspects of pedestrian traffic in building designs. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013; Sugano, S., Kaneko, M., Eds.; IEEE: New York, NY, USA, 2013; pp. 1327–1334. [Google Scholar]
- Tubbs, J.; Meacham, B. Egress Design Solutions: A Guide to Evacuation and Crowd Management Planning; John Wiley & Sons: Chichester, UK, 2007. [Google Scholar]
- Zareian, F.; Krawinkler, H. Assessment of probability of collapse and design for collapse safety. Earthq. Eng. Struct. Dyn. 2007, 36, 1901–1914. [Google Scholar] [CrossRef]
- Turner, A.; Doxa, M.; O’Sullivan, D.; Penn, A. From isovists to visibility graphs: A methodology for the analysis of architectural space. Environ. Plan. B 2001, 28, 103–121. [Google Scholar] [CrossRef]
- Finlay, K.; Marmurek, H.H.; Kanetkar, V.; Londerville, J. Trait and state emotion congruence in simulated casinos: Effects on at-risk gambling intention and restoration. J. Environ. Psychol. 2007, 27, 166–175. [Google Scholar] [CrossRef]
- Alvarado, J.A.; Pulido, L.M. Simulation and experimental design applied to sizing supermarket cashiers in Colombia. In Proceedings of the 2008 Winter Simulation Conference, Miami, FL, USA, 7–10 December 2008; Mason, S.J., Hill, R.R., Mönch, L., Rose, O., Jefferson, T., Fowler, J.W., Eds.; IEEE: Los Alamitos, CA, USA, 2008; pp. 1356–1361. [Google Scholar]
- El Mawass, N.; Kanjo, E. A supermarket stress map. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing (Ubicomp ‘13) (Adjunct Publication), Zurich, Switzerland, 8–12 September 2013; Canny, J.F., Langheinrich, M., Rekimoto, J., Eds.; Association for Computing Machinery: New York, NY, USA, 2013; pp. 1043–1046. [Google Scholar]
- Ladeira, W.J.; Dalmoro, M.; de Oliveira Santini, F.; Ruffatto, J.; Zanoni, R. More bodily motor action, less visual attention: How supermarket stimuli and consumer-related factors influence gaze behavior. J. Retail. Consum. Serv. 2021, 59, 102403. [Google Scholar] [CrossRef]
- Larson, J.S.; Bradlow, E.T.; Fader, P.S. An exploratory look at supermarket shopping paths. Int. J. Res. Mark. 2005, 22, 395–414. [Google Scholar] [CrossRef]
- Tan, P.J.; Corsi, A.; Cohen, J.; Sharp, A.; Lockshin, L.; Caruso, W.; Bogomolova, S. Assessing the sales effectiveness of differently located endcaps in a supermarket. J. Retail. Consum. Serv. 2018, 43, 200–208. [Google Scholar] [CrossRef]
- Latombe, J.-C. Robot Motion Planning; Kluwer Academic Publishers: Norwell, MA, USA, 1991. [Google Scholar]
- Golledge, R.A. Place recognition and wayfinding: Making sense of space. Geoforum 1992, 23, 199–214. [Google Scholar] [CrossRef]
- Latombe, J.-C. Motion planning: A journey of robots, molecules, digital actors, and other artifacts. Int. J. Robot. Res. 1999, 18, 1119–1128. [Google Scholar] [CrossRef]
- Patla, A.E.; Vickers, J.N. How far ahead do we look when required to step on specific locations in the travel path during locomotion? Exp. Brain Res. 2003, 148, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Torrens, P.M. Moving agent pedestrians through space and time. Ann. Assoc. Am. Geogr. 2012, 102, 35–66. [Google Scholar] [CrossRef]
- Hägerstrand, T. Space-time and human conditions. In Dynamic Allocation of Urban Space; Karlqvist, A., Lundqvist, L., Snickars, F., Eds.; Saxon House: Farnborough, UK, 1975; pp. 3–12. [Google Scholar]
- Hägerstrand, T. Diorama, path and project. Tijdschr. Voor Econ. Soc. Geogr. 1982, 73, 323–339. [Google Scholar] [CrossRef]
- Clark, A. Supersizing the Mind: Embodiment, Action, and Cognitive Extension; Oxford University Press (USA): New York, NY, USA, 2008. [Google Scholar]
- Torrens, P.M.; Kim, R. Evoking embodiment in immersive geosimulation environments. Ann. GIS 2024, 30, 35–66. [Google Scholar] [CrossRef]
- Meier, B.P.; Schnall, S.; Schwarz, N.; Bargh, J.A. Embodiment in social psychology. Top. Cogn. Sci. 2012, 4, 705–716. [Google Scholar] [CrossRef]
- Lenntorp, B. Paths in Space-Time Environments: A Time Geographic Study of Movement Possibilities of Individuals; Gleerup: Lund, Sweden, 1976. [Google Scholar]
- Dijkstra, E.W. A note on two problems in connection with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- Schoner, G. Recent developments and problems in human movement science and their conceptual implications. Ecol. Psychol. 1995, 7, 291–314. [Google Scholar] [CrossRef]
- Goffmann, E. Behavior in Public Places; Free Press: New York, NY, USA, 1963. [Google Scholar]
- Newman, O. Defensible Space; The Macmillan Company: New York, NY, USA, 1972. [Google Scholar]
- Whyte, W.H. The Social Life of Small Urban Spaces; The Conservation Foundation: Washington, DC, USA, 1980. [Google Scholar]
- Hess, P.; Moudon, A.; Snyder, M.; Stanilov, K. Site design and pedestrian travel. Transp. Res. Rec. J. Transp. Res. Board 1999, 1674, 9–19. [Google Scholar] [CrossRef]
- Moudon, A.V.; Hess, P.M.; Snyder, M.C.; Stanilov, K. Effects of site design on pedestrian travel in mixed-use, medium-density environments. Transp. Res. Rec. 1997, 1578, 48–55. [Google Scholar] [CrossRef]
- De Berg, M.; Van Kreveld, M.; Overmars, M.; Schwarzkopf, O.C. Computational Geometry: Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Sud, A.; Gayle, R.; Anderson, E.; Guy, S.; Lin, M.; Manocha, D. Real-time navigation of independent agents using adaptive roadmaps. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST ‘07), Irivine, CA, USA, 5–7 November 2007; Majumder, A., Hodges, L., Cohen-Or, D., Eds.; Association for Computing Machinery: New York, NY, USA, 2007; pp. 99–106. [Google Scholar]
- Gayle, R.; Sud, A.; Andersen, E.; Guy, S.J.; Lin, M.C.; Manocha, D. Interactive navigation of heterogeneous agents using adaptive roadmaps. IEEE Trans. Vis. Comput. Graph. 2009, 15, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Pettré, J.; Laumond, J.-P.; Thalmann, D. A navigation graph for real-time crowd animation on multilayered and uneven terrain. In Proceedings of the First International Workshop on Crowd Simulation, Lausanne, Switzerland, 1 November 2005; Thalmann, D., Ed.; V-CROWDS: Lausanne, Switzerland, 2005; pp. 81–90. [Google Scholar]
- Paris, S.; Pettré, J.; Donikian, S. Pedestrian reactive navigation for crowd simulation: A predictive approach. Comput. Graph. Forum 2007, 26, 665–674. [Google Scholar] [CrossRef]
- Ondřej, J.; Pettré, J.; Olivier, A.-H.; Donikian, S. A synthetic-vision based steering approach for crowd simulation. ACM Trans. Graph. 2010, 29, 1–9. [Google Scholar] [CrossRef]
- Olivier, A.-H.; Marin, A.; Crétual, A.; Pettré, J. Minimal predicted distance: A common metric for collision avoidance during pairwise interactions between walkers. Gait Posture 2012, 36, 399–404. [Google Scholar] [CrossRef]
- Zhang, H.M. Analyses of the stability and wave properties of a new continuum traffic theory. Transp. Res. Part B Methodol. 1999, 33, 399–415. [Google Scholar] [CrossRef]
- Hughes, R.L. A continuum theory for the flow of pedestrians. Transp. Res. Part B Methodol. 2002, 36, 507–535. [Google Scholar] [CrossRef]
- Treuille, A.; Cooper, S.; Popović, Z. Continuum Crowds. ACM Trans. Graph. 2006, 25, 1160–1168. [Google Scholar] [CrossRef]
- Helbing, D. A fluid-dynamic model for the movement of pedestrians. Complex Syst. 1992, 6, 391–415. [Google Scholar]
- Helbing, D.; Molnár, P.; Farkas, I.J.; Bolay, K. Self-Organizing Pedestrian Movement. Environ. Plan. B Plan. Des. 2001, 28, 361–383. [Google Scholar] [CrossRef]
- Helbing, D.; Johansson, A.; Al-Abideen, H.Z. Dynamics of crowd disasters: An empirical study. Phys. Rev. E 2007, 75, 046109. [Google Scholar] [CrossRef] [PubMed]
- Moussaïd, M.; Helbing, D.; Garnier, S.; Johansson, A.; Combe, M.; Theraulaz, G. Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc. R. Soc. B Biol. Sci. 2009, 276, 2755–2762. [Google Scholar] [CrossRef] [PubMed]
- Seer, S.; Rudloff, C.; Matyus, T.; Brändle, N. Validating social force based models with comprehensive real world motion data. Transp. Res. Procedia 2014, 2, 724–732. [Google Scholar] [CrossRef]
- Farkas, I.; Helbing, D.; Vicsek, T. Crowd behaves as excitable media during Mexican wave. Nature 2002, 419, 131. [Google Scholar] [CrossRef]
- Hughes, R.L. The flow of human crowds. Annu. Rev. Fluid Mech. 2003, 35, 169–182. [Google Scholar] [CrossRef]
- Krausz, B.; Bauckhage, C. Loveparade 2010: Automatic video analysis of a crowd disaster. Comput. Vis. Image Underst. 2012, 116, 307–319. [Google Scholar] [CrossRef]
- Batty, M.; Desyllas, J.; Duxbury, E. Safety in numbers? Modelling crowds and designing control for the Notting Hill carnival. Urban Stud. 2003, 40, 1573–1590. [Google Scholar] [CrossRef]
- Johnson, N.R. Panic at “The Who Concert Stampede”: An empirical assessment. Soc. Probl. 1987, 34, 362–373. [Google Scholar] [CrossRef]
- Sime, J.D. Crowd psychology and engineering. Saf. Sci. 1995, 21, 1–14. [Google Scholar] [CrossRef]
- Lian, L.; Song, W.; Ma, J.; Telesca, L. Correlation dimension of collective versus individual pedestrian movement patterns in crowd-quakes: A case-study. Phys. A Stat. Mech. Its Appl. 2016, 452, 113–119. [Google Scholar] [CrossRef]
- Harding, P.J.; Amos, M.; Gwynne, S. Prediction and mitigation of crush conditions in emergency evacuations. In Pedestrian and Evacuation Dynamics 2008; Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 233–246. [Google Scholar]
- Stokes, G.G. On the friction of fluids in motion, and the equilibrium and motion of elastic solids. Trans. Camb. Philos. Soc. 1845, 8, 287–305. [Google Scholar]
- Maxwell, J.C., II. Illustrations of the dynamical theory of gases. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1860, 20, 21–37. [Google Scholar] [CrossRef]
- Henderson, L.F. The statistics of crowd fluids. Nature 1971, 229, 381–383. [Google Scholar] [CrossRef] [PubMed]
- Henderson, L.F. On the fluid mechanics of human crowd motion. Transp. Res. 1974, 8, 509–515. [Google Scholar] [CrossRef]
- Hoogendoorn, S.P.; Bovy, P.H.L. Gas-kinetic modeling and simulation of pedestrian flows. Transp. Res. Rec. 2000, 1710, 28–36. [Google Scholar] [CrossRef]
- Hoogendoorn, S.P.; Bovy, P.H.L. Normative pedestrian behaviour theory and modelling. In Transportation and Traffic Theory in the 21st Century; Taylor, M.A.P., Ed.; Pergamon: Oxford, UK, 2002; pp. 219–245. [Google Scholar]
- Daamen, W.; Hoogendoorn, S.P. Experimental research of pedestrian walking behavior. Transp. Res. Rec. 2003, 1828, 20–30. [Google Scholar] [CrossRef]
- Hoogendoorn, S.P.; Daamen, W. Pedestrian behavior at bottlenecks. Transp. Sci. 2005, 39, 147–159. [Google Scholar] [CrossRef]
- Helbing, D.; Farkas, I.J.; Vicsek, T. Freezing by heating in a driven mesoscopic system. Phys. Rev. Lett. 2000, 84, 1240–1243. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, W.; Mao, T.; Li, C.; Xia, S.; Wang, Z. Continuum crowd simulation in complex environments. Comput. Graph. 2010, 34, 537–544. [Google Scholar] [CrossRef]
- Oğuz, O.; Akaydın, A.; Yılmaz, T.; Güdükbay, U. Emergency crowd simulation for outdoor environments. Comput. Graph. 2010, 34, 136–144. [Google Scholar] [CrossRef]
- Chenney, S. Flow tiles. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Grenoble, France, 27–29 August 2004; Badler, N., Desbrun, M., Boulic, R., Pai, D., Eds.; Eurographics Association: Grenoble, France, 2004; pp. 233–242. [Google Scholar]
- Patil, S.; van den Berg, J.; Curtis, S.; Lin, M.C.; Manocha, D. Directing crowd simulations using navigation fields. IEEE Trans. Vis. Comput. Graph. 2011, 17, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Goldenstein, S.; Karavelas, M.; Metaxas, D.; Guibas, L.; Aaron, E.; Goswami, A. Scalable nonlinear dynamical systems for agent steering and crowd simulation. Comput. Graph. 2001, 25, 983–998. [Google Scholar] [CrossRef]
- Turing, A.M. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 1936, S2-42, 230–265, Erratum in Proc. Lond. Math. Soc. 1938, 2, 544–546. [Google Scholar] [CrossRef]
- Blue, V.; Adler, J. Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp. Res. Part B 2001, 35, 293–312. [Google Scholar] [CrossRef]
- Helbing, D.; Mukerji, P. Crowd disasters as systemic failures: Analysis of the Love Parade disaster. EPJ Data Sci. 2012, 1, 7. [Google Scholar] [CrossRef]
- Hoogendoorn, S.P.; Daamen, W.; Bovy, P.H.L. Extracting microscopic pedestrian characteristics from video data. In Transportation Research Board Annual Meeting; National Academy Press: Washington, DC, USA, 2003; pp. 1–15. [Google Scholar]
- Daamen, W.; Hoogendoorn, S.P. Pedestrian traffic flow operations on a platform: Observations and comparison with simulation tool SimPed. In Proceedings of the Computers in Railways IX (Congress Proceedings of CompRail 2004), Dresden, Germany, 5–7 May 2004; Allen, J., Brebbia, C.A., Hill, R.J., Sciutto, G., Sone, S., Eds.; WIT Press: Southampton, UK, 2004; pp. 125–134. [Google Scholar]
- Feng, Y.; Duives, D.; Daamen, W.; Hoogendoorn, S. Data collection methods for studying pedestrian behaviour: A systematic review. Build. Environ. 2020, 187, 107329. [Google Scholar] [CrossRef]
- Altman, I. The Environment and Social Behavior: Privacy, Personal Space, Territory, and Crowding; Brooks/Cole Publishing Co.: New York, NY, USA, 1975. [Google Scholar]
- Sobel, R.S.; Lillith, N. Determinants of nonstationary personal space invasion. J. Soc. Psychol. 1975, 97, 39–45. [Google Scholar] [CrossRef]
- Aiello, J.R.; Thompson, D.E. Personal space, crowding, and spatial behavior in a cultural context. In Environment and Culture; Springer: Berlin/Heidelberg, Germany, 1980; pp. 107–178. [Google Scholar]
- Hayduk, L.A. Personal space: Where we now stand. Psychol. Bull. 1983, 94, 293–335. [Google Scholar] [CrossRef]
- Adams, P.C. A reconsideration of personal boundaries in space-time. Ann. Assoc. Am. Geogr. 1995, 85, 267–285. [Google Scholar]
- Kennedy, D.P.; Glascher, J.; Tyszka, J.M.; Adolphs, R. Personal space regulation by the human amygdala. Nat. Neurosci. 2009, 12, 1226–1227. [Google Scholar] [CrossRef] [PubMed]
- Griffin, W.A.; Schmidt, S.K.; Nara, A.; Torrens, P.M.; Sechler, C. Integrating ABM and GIS to model typologies of playgroup dynamics in preschool children. In Proceedings of the Agent 2007 (North American Association for Computational Social and Organizational Sciences), Evanstaon, IL, USA, 12–14 November 2007; North, M., Macal, C., Sallach, D., Eds.; Argonne National Labs and the University of Chicago: Evanston, IL, USA, 2007; pp. 17–24. [Google Scholar]
- Barsade, S.G. The ripple effect: Emotional contagion and its influence on group behavior. Adm. Sci. Q. 2002, 47, 644–675. [Google Scholar] [CrossRef]
- Kluge, B.; Prassler, E. Reflective navigation: Individual behaviors and group behaviors. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ‘04), New Orleans, LA, USA, 26 April–1 May 2004; Men, M., Ed.; Volume 4, pp. 4172–4177. [Google Scholar]
- Schmidt, S.K.; Griffin, W.A. The signals of play: An ABM of affective signatures in childrens playgroups. In Advancing Social Simulation: The First World Congress; Terano, T., Takahashi, S., Sallach, D., Rouchier, J., Eds.; Springer: New York, NY, USA, 2007; pp. 283–294. [Google Scholar]
- Rosenbloom, T. Crossing at a red light: Behaviour of individuals and groups. Transp. Res. Part F Traffic Psychol. Behav. 2009, 12, 389–394. [Google Scholar] [CrossRef]
- Zou, Y.; Torrens, P.M.; Ghanem, R.; Kevrekidis, I.G. Accelerating agent-based computation of complex urban systems. Int. J. Geogr. Inf. Sci. 2012, 26, 1917–1937. [Google Scholar] [CrossRef]
- Torrens, P.M.; Kevrekidis, I.; Ghanem, R.; Zou, Y. Simple urban simulation atop complicated models: Multi-scale equation-free computing of sprawl using geographic automata. Entropy 2013, 15, 2606–2634. [Google Scholar] [CrossRef]
- Hecker, C.; Roytenberg, D.; Sack, J.-R.; Wang, Z. System development for parallel cellular automata and its applications. Future Gener. Comput. Syst. 1999, 16, 235–247. [Google Scholar] [CrossRef]
- Asanovic, K.; Bodik, R.; Catanzaro, B.; Gebis, J.; Husbands, P.; Keutzer, K.; Patterson, D.; Plishker, W.; Shalf, J.; Williams, S.; et al. The Landscape of Parallel Computing Research: A View from Berkeley; UCB/EECS-2006-183; Department of Electrical Engineering and Computer Science, University of California, Berkeley: Berkeley, CA, USA, 2006. [Google Scholar]
- Reynolds, C.W. Big fast crowds on PS3. In Proceedings of the Sandbox ‘06: Proceedings of the 2006 ACM SIGGRAPH Symposium on Videogames, Boston, MA, USA, 30 July–3 August 2006; Finnegan, J., Dorsey, J., Eds.; ACM: Boston, MA, USA, 2006; pp. 113–121. [Google Scholar]
- Torrens, P.M.; Nara, A.; Li, X.; Zhu, H.; Griffin, W.A.; Brown, S.B. An extensible simulation environment and movement metrics for testing walking behavior in agent-based models. Comput. Environ. Urban Syst. 2012, 36, 1–17. [Google Scholar] [CrossRef]
- Lakoba, T.I.; Kaup, D.J.; Finkelstein, N.M. Modifications of the Helbing-Molnár-Farkas-Vicsek social force model for pedestrian evolution. Simulation 2005, 81, 339–352. [Google Scholar] [CrossRef]
- Saboia, P.; Goldenstein, S. Crowd simulation: Applying mobile grids to the social force model. Vis. Comput. 2012, 28, 1039–1048. [Google Scholar] [CrossRef]
- Reynolds, C.W. Computer Animation with Scripts and Actors. In Proceedings of the 9th Annual Conference on Computer Graphics and Interactive Techniques, Boston, MA, USA, 26–30 July 1982; Association for Computing Machinery: New York City, NY, USA, 1982; pp. 289–296. [Google Scholar] [CrossRef]
- Reynolds, C.W. Flocks, herds, and schools: A distributed behavioral model. Comput. Graph. 1987, 21, 25–34. [Google Scholar] [CrossRef]
- Reynolds, C.W. An evolved, vision-based behavioral model of coordinated group motion. In From Animals to Animats 2; Meyer, J.-A., Roitblat, H.L., Wilson, S.W., Eds.; The MIT Press: Cambridge, MA, USA, 1993; pp. 384–392. [Google Scholar]
- Gibson, J.J. The Perception of the Visual World; Houghton-Mifflin: Boston, MA, USA, 1950. [Google Scholar]
- Slater-Hammel, A. Estimation of movement as a function of the distance of movement perception and target distance. Percept. Mot. Ski. 1955, 5, 201–204. [Google Scholar] [CrossRef]
- Cutting, J.E.; Kozlowski, L.T. Recognizing friends by their walk: Gait perception without familiarity cues. Bull. Psychon. Soc. 1977, 9, 353–356. [Google Scholar] [CrossRef]
- Heft, H. Way-finding as the perception of information over time. Popul. Environ. 1983, 6, 133–150. [Google Scholar] [CrossRef]
- Lappe, M.; Bremmer, F.; Van den Berg, A. Perception of self-motion from visual flow. Trends Cogn. Sci. 1999, 3, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Rabie, T.F.; Terzopoulos, D. Active perception in virtual humans. In Proceedings of the Vision Interface (VI 2000), Montréal, QC, Canada, 14–17 May 2000; Dudek, G., Cheriet, M., Eds.; Canadian Image Processing and Pattern Recognition Society/International Association for Pattern Recognition: Montreal, QC, Canada, 2000; pp. 16–22. [Google Scholar]
- Blakemore, S.-J.; Decety, J. From the perception of action to the understanding of intention. Nat. Rev. Neurosci. 2001, 2, 561–567. [Google Scholar] [CrossRef]
- Turano, K.A.; Yu, D.; Hao, L.; Hicks, J.C. Optic-flow and egocentric-direction strategies in walking: Central vs peripheral visual field. Vis. Res. 2005, 45, 3117–3132. [Google Scholar] [CrossRef]
- Fiorini, P.; Shiller, Z. Motion planning in dynamic environments using the relative velocity paradigm. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Atlanta, GA, USA, 2–6 May 1993; Book, W., Luh, J., Eds.; IEEE: Los Alamitos, CA, USA, 1993; pp. 560–565. [Google Scholar]
- Fiorini, P.; Shiller, Z. Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 1998, 17, 760–772. [Google Scholar] [CrossRef]
- Vesentini, F.; Muradore, R.; Fiorini, P. A survey on Velocity Obstacle paradigm. Robot. Auton. Syst. 2024, 174, 104645. [Google Scholar] [CrossRef]
- Torrens, P.M.; Gu, S. Inverse augmentation: Transposing real people into pedestrian models. Comput. Environ. Urban Syst. 2023, 100, 101923. [Google Scholar] [CrossRef]
- van den Berg, J.; Lin, M.; Manocha, D. Reciprocal Velocity Obstacles for real-time multi-agent navigation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Pasadena, CA, USA, 19–23 May 2008; Triesch, J., Ed.; IEEE: Los Alamitos, CA, USA, 2008; pp. 1928–1935. [Google Scholar]
- Giese, A.; Latypov, D.; Amato, N.M. Reciprocally-rotating velocity obstacles. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–5 June 2014; Xi, N., Hamel, W.R., Eds.; IEEE: Los Alamitos, CA, USA, 2014; pp. 3234–3241. [Google Scholar]
- Snape, J.; van den Berg, J.; Guy, S.J.; Manocha, D. Smooth and collision-free navigation for multiple robots under differential-drive constraints. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; Luo, R.C., Hajime, A., Eds.; IEEE: Los Alamitos, CA, USA, 2010; pp. 4584–4589. [Google Scholar]
- Snape, J.; Van Den Berg, J.; Guy, S.J.; Manocha, D. The hybrid reciprocal velocity obstacle. IEEE Trans. Robot. 2011, 27, 696–706. [Google Scholar] [CrossRef]
- Sainte Catherine, M.; Lucet, E. A modified Hybrid Reciprocal Velocity Obstacles approach for multi-robot motion planning without communication. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; Oh, P., Ed.; IEEE: Los Alamitos, CA, USA, 2020; pp. 5708–5714. [Google Scholar]
- Sadat, S.A.; Vaughan, R.T. BRaVO: Biased Reciprocal Velocity Obstacles Break Symmetry in Dense Robot Populations. In Proceedings of the 2012 Ninth Conference on Computer and Robot Vision, Toronto, ON, Canada, 28–30 May 2012; Giguère, P., Barfoot, T., Eds.; IEEE: Los Alamitos, CA, USA, 2012; pp. 441–447. [Google Scholar]
- Dutra, T.B.; Marques, R.; Cavalcante-Neto, J.B.; Vidal, C.A.; Pettré, J. Gradient-based steering for vision-based crowd simulation algorithms. Comput. Graph. Forum 2017, 36, 337–348. [Google Scholar] [CrossRef]
- López, A.; Chaumette, F.; Marchand, E.; Pettré, J. Character navigation in dynamic environments based on optical flow. Comput. Graph. Forum 2019, 38, 181–192. [Google Scholar] [CrossRef]
- Terzopoulous, D.; Tu, X.; Grzeszczuk, R. Artificial fishes: Autonomous location, perception, behavior, and learning in a simulated physical world. Artif. Life 1994, 1, 327–351. [Google Scholar] [CrossRef]
- Franklin, S.; Graesser, A. Is it an agent, or just a program?: A taxonomy for autonomous agents. In Proceedings of the Intelligent Agents III: Proceedings of the Third International Workshop on Agent Theories, Architectures and Languages, (ATAL’96), Budapest, Hungary, 12–13 August 1996; Lecture Notes in AI. Mller, J.P., Wooldridge, M.J., Jennings, N.R., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; Volume 1193, pp. 21–35. [Google Scholar]
- Khan, S.; Deng, Z. Agent-based crowd simulation: An in-depth survey of determining factors for heterogeneous behavior. Vis. Comput. 2024, 40, 4993–5004. [Google Scholar] [CrossRef]
- Costa, P.T., Jr.; McCrae, R.R. The five-factor model of personality and its relevance to personality disorders. J. Personal. Disord. 1992, 6, 343–359. [Google Scholar] [CrossRef]
- Wiggins, J.S. The Five-Factor Model of Personality: Theoretical Perspectives; Guilford Press: New York, NY, USA, 1996; Volume 34, pp. 34–1846. [Google Scholar] [CrossRef]
- Costa, P.T.; McCrae, R.R. Primary traits of Eysenck’s P-E-N system: Three- and five-factor solutions. J. Personal. Soc. Psychol. 1995, 69, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Ortony, A.; Clore, G.L.; Collins, A. The Cognitive Structure of Emotions; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Sipper, M. Evolution of Parallel Cellular Machines: The Cellular Programming Approach; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Durupinar, F.; Pelechano, N.; Allbeck, J.; Gudukbay, U.; Badler, N.I. The impact of the OCEAN personality model on the perception of crowds. Comput. Graph. Appl. 2011, 31, 22–31. [Google Scholar] [CrossRef]
- Nara, A.; Torrens, P.M. Trajectory data mining: Classification and spatio-temporal visualization of mobile objects. In Proceedings of Geocomputation, London, UK, 20–22 July 2011; Cheng, T., Longley, P.A., Ellul, C., Chow, A., Eds.; Geocomputation: London, UK, 2011; pp. 338–345. [Google Scholar]
- Torrens, P.M.; Li, X.; Griffin, W.A. Building agent-based walking models by machine-learning on diverse databases of space-time trajectory samples. Trans. Geogr. Inf. Sci. 2011, 15, 67–94. [Google Scholar] [CrossRef]
- Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 1996, 39, 27–34. [Google Scholar] [CrossRef]
- Hjaltason, G.R.; Samet, H. Index-driven similarity search in metric spaces. ACM Trans. Database Syst. 2003, 28, 517–580. [Google Scholar] [CrossRef]
- Samet, H. The quadtree and related hierarchical data structures. ACM Comput. Surv. 1984, 16, 187–260. [Google Scholar] [CrossRef]
- Samet, H. Applications of Spatial Data Structures; Addison-Wesley: New York, NY, USA, 1989. [Google Scholar]
- Samet, H. The Design and Analysis of Spatial Data Structures; Addison-Wesley: Reading, MA, USA, 1990; Volume 85. [Google Scholar]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Krumm, J.; Horvitz, E. Predestination: Where do you want to go today? IEEE Comput. 2007, 40, 105–107. [Google Scholar] [CrossRef]
- Polus, A.; Schofer, J.L.; Ushpiz, A. Pedestrian flow and level of service. J. Transp. Eng. 1983, 109, 46–56. [Google Scholar] [CrossRef]
- New York City Department of City Planning. New York City Pedestrian Level of Service Study: Phase I; New York City Department of City Planning: New York, NY, USA, 2006. [Google Scholar]
- Torrens, P.M. Agent models of customer journeys on retail high streets. J. Econ. Interact. Coord. 2023, 18, 87–128. [Google Scholar] [CrossRef]
- Collett, P.; Marsh, P. Patterns of public behavior: Collision avoidance on a pedestrian crossing. Semiotica 1974, 12, 281–300. [Google Scholar] [CrossRef]
- Hine, J.; Russell, J. Traffic barriers and pedestrian crossing behaviour. J. Transp. Geogr. 1993, 1, 230–239. [Google Scholar] [CrossRef]
- Cervero, R. Transit Metropolis: A Global Inquiry; Island Press: Washington, DC, USA, 1998. [Google Scholar]
- Li, M.; Sheng, H.; Irvin, J.; Chung, H.; Ying, A.; Sun, T.; Ng, A.Y.; Rodriguez, D.A. Marked crosswalks in US transit-oriented station areas, 2007–2020: A computer vision approach using street view imagery. Environ. Plan. B Urban Anal. City Sci. 2023, 50, 350–369. [Google Scholar] [CrossRef]
- Chokron, S.; Imbert, M. Egocentric reference and asymmetric perception of space. Neuropsychologia 1993, 31, 267–275. [Google Scholar] [CrossRef]
- Meilinger, T.; Vosgerau, G. Putting egocentric and allocentric into perspective. In Spatial Cognition VII (Lecture Notes in Computer Science volume 6222); Hölscher, C., Shipley, T.F., Olivetti Belardinelli, M., Bateman, J.A., Newcombe, N.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 207–221. [Google Scholar]
- Willis, F.N.; Gier, J.A.; Smith, D.E. Stepping aside: Correlates of displacement in pedestrians. J. Commun. 1979, 29, 34–39. [Google Scholar] [CrossRef]
- Carol, H.; Roslyn, H. The effect of age, gender and driver status on pedestrians’ intentions to cross the road in risky situations. Accid. Anal. Prev. 2007, 39, 224–237. [Google Scholar] [CrossRef]
- de Lavalette, B.C.; Tijus, C.; Poitrenaud, S.; Leproux, C.; Bergeron, J.; Thouez, J.-P. Pedestrian crossing decision-making: A situational and behavioral approach. Saf. Sci. 2009, 47, 1248–1253. [Google Scholar] [CrossRef]
- Evans, G.W.; Skorpanich, M.A.; Gärling, T.; Bryant, K.J.; Bresolin, B. The effects of pathway configuration, landmarks and stress on environmental cognition. J. Environ. Psychol. 1984, 4, 323–335. [Google Scholar] [CrossRef]
- Kamil, A.C.; Cheng, K. Way-finding and landmarks: The multiple-bearings hypothesis. J. Exp. Biol. 2001, 204, 103–113. [Google Scholar] [CrossRef]
- Claramunt, C.; Winter, S. Structural salience of elements of the city. Environ. Plan. B Plan. Des. 2007, 34, 1030–1050. [Google Scholar] [CrossRef]
- Caduff, D.; Timpf, S. On the assessment of landmark salience for human navigation. Cogn. Process. 2008, 9, 249–267. [Google Scholar] [CrossRef]
- Fruin, J.J. Pedestrian Planning and Design; Metropolitan Association of Urban Designers and Environmental Planners, Inc.: New York, NY, USA, 1971. [Google Scholar]
- Kuipers, B.J.; Levitt, T.S. Navigation and mapping in large scale space. AI Mag. 1988, 9, 25. [Google Scholar]
- Maguire, E.A.; Burgess, N.; Donnett, J.G.; Frackowiak, R.S.; Frith, C.D.; O’Keefe, J. Knowing where and getting there: A human navigation network. Science 1998, 280, 921–924. [Google Scholar] [CrossRef]
- Costa, P.; Fernandes, H.; Vasconcelos, V.; Coelho, P.; Barroso, J.; Hadjileontiadis, L. Landmarks detection to assist the navigation of visually impaired people. In Proceedings of the Human-Computer Interaction: Towards Mobile and Intelligent Interaction Environments: 14th International Conference, HCI International 2011, Orlando, FL, USA, 9–14 July 2011; Proceedings, Part III. Jacko, J.A., Ed.; Human-Computer Interaction. Towards Mobile and Intelligent Interaction Environments. Springer: Berlin/Heidelberg, Germany, 2011; pp. 293–300. [Google Scholar]
- Chan, E.; Baumann, O.; Bellgrove, M.A.; Mattingley, J.B. From objects to landmarks: The function of visual location information in spatial navigation. Front. Psychol. 2012, 3, 304. [Google Scholar] [CrossRef]
- Do, T.-T.N.; Lin, C.-T.; Gramann, K. Human brain dynamics in active spatial navigation. Sci. Rep. 2021, 11, 13036. [Google Scholar] [CrossRef]
- Liao, H.; Zhao, W.; Zhang, C.; Dong, W.; Huang, H. Detecting individuals’ spatial familiarity with urban environments using eye movement data. Comput. Environ. Urban Syst. 2022, 93, 101758. [Google Scholar] [CrossRef]
- Hillier, B. Space Is the Machine: A Configurational Theory of Architecture; Space Syntax: London, UK, 2007. [Google Scholar]
- Turner, A.; Penn, A.; Hillier, B. An algorithmic definition of the axial map. Environ. Plan. B Plan. Des. 2005, 32, 425–444. [Google Scholar] [CrossRef]
- Paul, D.; Moridpour, S.; Venkatesan, S.; Withanagamage, N. Evaluating the pedestrian level of service for varying trip purposes using machine learning algorithms. Sci. Rep. 2024, 14, 2813. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Penn, A. Encoding natural movement as an agent-based system: An investigation into human pedestrian behaviour in the built environment. Environ. Plan. B Plan. Des. 2002, 29, 473–490. [Google Scholar] [CrossRef]
- Golledge, R.; Stimson, R.J. Spatial Behavior: A Geographic Perspective; The Guilford Press: New York, NY, USA, 1997. [Google Scholar]
- Stern, E.; Portugali, J. Environmental cognition and decision making in urban navigation. In Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes; John Hopkins University Press: Baltimore, MD, USA, 1999; pp. 99–118. [Google Scholar]
- Spiers, H.J.; Maguire, E.A. Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 2006, 31, 1826–1840. [Google Scholar] [CrossRef]
- Kerridge, J.; Keller, S.; Chamberlain, T.; Sumpter, N. Collecting pedestrian trajectory data in real-time. In Pedestrian and Evacuation Dynamics 2005; Waldau, N., Gattermann, P., Knoflacher, H., Schreckenberg, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 27–39. [Google Scholar]
- Zacharias, J. Pedestrian behavior and perception in urban walking environments. J. Plan. Lit. 2001, 16, 3–18. [Google Scholar] [CrossRef]
- Sisiopiku, V.; Akin, D. Pedestrian behaviors at and perceptions towards various pedestrian facilities: An examination based on observation and survey data. Transp. Res. Part F Traffic Psychol. Behav. 2003, 6, 249–274. [Google Scholar] [CrossRef]
- Blake, R.; Shiffrar, M. Perception of human motion. Annu. Rev. Psychol. 2007, 58, 47–73. [Google Scholar] [CrossRef]
- Ryu, K.; Jang, S.S. The effect of environmental perceptions on behavioral intentions through emotions: The case of upscale restaurants. J. Hosp. Tour. Res. 2007, 31, 56–72. [Google Scholar] [CrossRef]
- Custers, P.J.M.; De Kort, Y.A.W.; IJsselsteijn, W.A.; De Kruiff, M.E. Lighting in retail environments: Atmosphere perception in the real world. Light. Res. Technol. 2010, 42, 331–343. [Google Scholar] [CrossRef]
- Rollero, C.; De Piccoli, N. Place attachment, identification and environment perception: An empirical study. J. Environ. Psychol. 2010, 30, 198–205. [Google Scholar] [CrossRef]
- Horrocks, E.A.; Mareschal, I.; Saleem, A.B. Walking humans and running mice: Perception and neural encoding of optic flow during self-motion. Philos. Trans. R. Soc. B 2023, 378, 20210450. [Google Scholar] [CrossRef]
- Torrens, P.M. Slipstreaming human geosimulation in virtual geographic environments. Ann. GIS 2015, 21, 325–344. [Google Scholar] [CrossRef]
- Sun, S.; Sun, C.; Duives, D.C.; Hoogendoorn, S.P. Deviation of pedestrian path due to the presence of building entrances. J. Adv. Transp. 2021, 2021, 5594738. [Google Scholar] [CrossRef]
- Hall, E.T. A system for the notation of proxemic behavior. Am. Anthropol. 1963, 65, 1003–1026. [Google Scholar] [CrossRef]
- Cook, M. Experiments on orientation and proxemics. Hum. Relat. 1970, 23, 61–76. [Google Scholar] [CrossRef]
- Ciolek, T.M. The proxemics lexicon: A first approximation. J. Nonverbal Behav. 1983, 8, 55–79. [Google Scholar] [CrossRef]
- Harrigan, J.A. Proxemics, kinesics, and gaze. In The New Handbook of Methods in Nonverbal Behavior Research; Harrigan, J.A., Rosenthal, R., Scherer, K., Eds.; Series in Affective Science; Oxford University Press: New York, NY, USA, 2005; pp. 137–198. [Google Scholar]
- Hans, A.; Hans, E. Kinesics, haptics and proxemics: Aspects of non-verbal communication. IOSR J. Humanit. Soc. Sci. (IOSR-JHSS) 2015, 20, 47–52. [Google Scholar]
- Matthis, J.S.; Muller, K.S.; Bonnen, K.L.; Hayhoe, M.M. Retinal optic flow during natural locomotion. PLoS Comput. Biol. 2022, 18, e1009575. [Google Scholar] [CrossRef]
- Priisalu, M.; Paduraru, C.; Pirinen, A.; Sminchisescu, C. Semantic synthesis of pedestrian locomotion. In Computer Vision—ACCV 2020; Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 470–487. [Google Scholar]
- Lynch, S.D.; Kulpa, R.; Meerhoff, L.A.; Pettré, J.; Crétual, A.; Olivier, A.-H. Collision avoidance behavior between walkers: Global and local motion cues. IEEE Trans. Vis. Comput. Graph. 2018, 24, 2078–2088. [Google Scholar] [CrossRef]
- Knorr, A.G.; Willacker, L.; Hermsdörfer, J.; Glasauer, S.; Krüger, M. Influence of person- and situation-specific characteristics on collision avoidance behavior in human locomotion. J. Exp. Psychol. Hum. Percept. Perform. 2016, 42, 1332–1343. [Google Scholar] [CrossRef]
- Erkan, İ. Examining wayfinding behaviours in architectural spaces using brain imaging with electroencephalography (EEG). Archit. Sci. Rev. 2018, 61, 410–428. [Google Scholar] [CrossRef]
- Kato, Y.; Takeuchi, Y. Individual differences in wayfinding strategies. J. Environ. Psychol. 2003, 23, 171–188. [Google Scholar] [CrossRef]
- Couclelis, H.; Golledge, R.; Gale, N.; Tobler, W. Exploring the anchorpoint hypothesis of spatial cognition. J. Environ. Psychol. 1987, 7, 99–122. [Google Scholar] [CrossRef]
- Gorrini, A.; Bandini, S.; Sarvi, M. Group dynamics in pedestrian crowds. Transp. Res. Rec. J. Transp. Res. Board 2014, 2421, 51–56. [Google Scholar] [CrossRef]
- Moussaïd, M.; Perozo, N.; Garnier, S.; Helbing, D.; Theraulaz, G. The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 2010, 5, e10047. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Vijayalakshmi, A.; Jain, S.P. Understanding consumers in-store behavior: The dual role of episode-specific motive adjustment and motive selection. J. Retail. 2023, 99, 460–479. [Google Scholar] [CrossRef]
- Torrens, P.M.; Griffin, W.A. Exploring the micro-social geography of children’s interactions in preschool: A long-term observational study and analysis using Geographic Information Technologies. Environ. Behav. 2013, 45, 584–614. [Google Scholar] [CrossRef]
- Samson, B.P.V.; Aldanese IV, C.R.; Chan, D.M.C.; San Pascual, J.J.S.; Sido, M.V.A.P. Crowd dynamics and control in high-volume metro rail stations. Procedia Comput. Sci. 2017, 108, 195–204. [Google Scholar] [CrossRef]
- Li, Z.; Xu, C.; Bian, Z. A force-driven model for passenger evacuation in bus fires. Phys. A Stat. Mech. Its Appl. 2022, 589, 126591. [Google Scholar] [CrossRef]
- Guy, S.J.; Chhugani, J.; Curtis, S.; Dubey, P.; Lin, M.; Manocha, D. PLEdestrians: A least-effort approach to crowd simulation. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Computer Animation, Madrid, Spain, 2–4 July 2010; pp. 119–128. [Google Scholar]
- van den Berg, J.; Guy, S.J.; Lin, M.; Manocha, D. Reciprocal n-Body Collision Avoidance. In Springer Tracts in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–19. [Google Scholar]
- Li, Q.; Torrens, F.; Chen, K.; Sun, Q. BlendFusion: Procedural 3D Texturing Assistant with View-Consistent Generative Models. In I3D Companion ′25: Companion Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games; Association for Computing Machinery: New York, NY, USA, 2025; p. 3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrens, P.M.; Kim, R.; Shinozaki-Conefrey, K. Situationally Sensitive Path Planning. Algorithms 2025, 18, 388. https://doi.org/10.3390/a18070388
Torrens PM, Kim R, Shinozaki-Conefrey K. Situationally Sensitive Path Planning. Algorithms. 2025; 18(7):388. https://doi.org/10.3390/a18070388
Chicago/Turabian StyleTorrens, Paul M., Ryan Kim, and Kaishuu Shinozaki-Conefrey. 2025. "Situationally Sensitive Path Planning" Algorithms 18, no. 7: 388. https://doi.org/10.3390/a18070388
APA StyleTorrens, P. M., Kim, R., & Shinozaki-Conefrey, K. (2025). Situationally Sensitive Path Planning. Algorithms, 18(7), 388. https://doi.org/10.3390/a18070388