An Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Controller for Supercritical Power Plants
Abstract
1. Introduction
2. Methodology
2.1. Supercritical Power Generation System
2.2. System Modeling and Identification
2.3. Design of the Enhanced Error-Adaptive ESKF-MPC
2.4. Evaluation Index
3. Results and Discussion
3.1. Identification Model Validation
3.2. Load Variation Test
3.3. Instruction Disturbance Test
3.4. Real Condition Tracking
4. Conclusions
- The neural network-based identification method outperforms the traditional transfer function approach, achieving a higher accuracy with RMSE reductions of 30.6% for pressure and 27.4% for temperature. This highlights its potential for precise parameter identification in complex power systems.
- The EEA-ESKF-MPC demonstrates fast response, minimal overshoot, and high robustness in handling wide load variations and command disturbances. Compared to ESKF-MPC, it reduces the load and temperature IAE by 3.05% and 2.46%, and the ME by 1.14% and 2.31%, respectively, with a slight 0.43% increase in the pressure IAE. In disturbance scenarios, it demonstrated the ability to balance out the errors of each control, enhancing the tracking accuracy and system smoothness.
- Real condition tracking experiments using data from a 350 MW supercritical unit demonstrate substantial improvements over the plant’s PID controller, with reductions in the IAE by 77.25% (pressure), 27.05% (load), and 65.25% (temperature), and in the ME by 40.83%, 5.30%, and 75.08%, respectively. These results affirm the EEA-ESKF-MPC’s capability to enhance control quality under realistic operating conditions, offering practical benefits like enhanced efficiency and potential reductions in coal use.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, L.; Li, D.; Lee, K.Y.; Xue, Y. Control-oriented modeling and analysis of direct energy balance in coal-fired boiler-turbine unit. Control Eng. Pract. 2016, 55, 38–55. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, G.; Guo, M.; Chen, T.; Luo, L.; Sun, L. Model Predictive Hybrid PID Control and Energy-Saving Performance Analysis of Supercritical Unit. Energies 2024, 17, 6356. [Google Scholar] [CrossRef]
- Çetin, G.; Özkaraca, O.; Keçebaş, A. Development of PID based control strategy in maximum exergy efficiency of a geothermal power plant. Renew. Sustain. Energy Rev. 2021, 137, 110623. [Google Scholar] [CrossRef]
- Prasanth, S.; Narayanan, S.; Sivakumaran, N.; Pratheesh, H. The control of superheater steam temperature in power plants using model predictive controller. Comput. Electr. Eng. 2024, 115, 109109. [Google Scholar] [CrossRef]
- Hui, J.; Yuan, J. Adaptive second-order nonsingular terminal sliding mode power-level control for nuclear power plants. Nucl. Eng. Technol. 2022, 54, 1644–1651. [Google Scholar] [CrossRef]
- López-Bautista, A.O.; Flores-Tlacuahuac, A.; Gutiérrez-Limón, M.A. Robust model predictive control for a nanofluid based solar thermal power plant. J. Process Control 2020, 94, 97–109. [Google Scholar] [CrossRef]
- Yang, C.; Guo, W.; Shao, Y.; Lin, Y.; Pu, X.; Wang, Y.; Zheng, C.; Ding, Y.; Fan, H.; Zhu, Y.; et al. Two-timescale nonlinear model predictive control for flexible operation of coal-fired power plant with post combustion CO2 capture system. Appl. Therm. Eng. 2024, 256, 124139. [Google Scholar] [CrossRef]
- DFrejo, J.R.; Camacho, E.F. Centralized and distributed Model Predictive Control for the maximization of the thermal power of solar parabolic-trough plants. Sol. Energy 2020, 204, 190–199. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, W.; Liao, Y.; Zhao, Z.; Ma, W.; Yang, J.; Yang, J. Improved transfer function method for flexible simulation of hydraulic-mechanical-electrical transient processes of hydro-power plants. Renew. Energy 2022, 196, 390–404. [Google Scholar] [CrossRef]
- Sánchez, A.J.; Gallego, A.J.; Escaño, J.M.; Camacho, E.F. Adaptive incremental state space MPC for collector defocusing of a parabolic trough plant. Sol. Energy 2019, 184, 105–114. [Google Scholar] [CrossRef]
- Americano Da Costa, M.V.; Narasimhan, A.; Guillen, D.; Joseph, B.; Goswami, D.Y. Generalized distributed state space model of a CSP plant for simulation and control applications: Single-phase flow validation. Renew. Energy 2020, 153, 36–48. [Google Scholar] [CrossRef]
- Matsuda, Y.; Suyama, D.; Sugi, T.; Goto, S.; Yasunaga, T.; Ikegami, Y. Construction of a State Space Model for an OTEC Plant Using Rankine Cycle with Heat Flow Rate Dynamics. IFAC-PapersOnLine 2020, 53, 13042–13047. [Google Scholar] [CrossRef]
- Lu, X.; Liang, Z. Application of Model Predictive Control Based on Kalman Filter in Solar Collector Field of Solar Thermal Power Generation. Energy Eng. 2021, 118, 1171–1183. [Google Scholar] [CrossRef]
- Li, H.; Liu, P.; Guo, S.; Cheng, L.; Huang, K.; Feng, M.; He, S.; Ming, B. Deriving adaptive long-term complementary operating rules for a large-scale hydro-photovoltaic hybrid power plant using ensemble Kalman filter. Appl. Energy 2021, 301, 117482. [Google Scholar] [CrossRef]
- Schaum, A. Autoencoder-Based Reduced Order Observer Design for a Class of Diffusion-Convection-Reaction Systems. Algorithms 2021, 14, 330. [Google Scholar] [CrossRef]
- Saini, V.; Bhattacharyya, D.; Purdy, D.; Parker, J.; Boohaker, C. Nonlinear state estimation of a power plant superheater by using the extended Kalman filter for differential algebraic equation systems. Appl. Therm. Eng. 2024, 251, 123471. [Google Scholar] [CrossRef]
- Guo, M.; Hao, Y.; Lee, K.Y.; Sun, L. Extended-state Kalman filter-based model predictive control and energy-saving performance analysis of a coal-fired power plant. Energy 2025, 314, 134169. [Google Scholar] [CrossRef]
- Kim, G.; Kim, H.; Zio, E.; Heo, G. Application of particle filtering for prognostics with measurement uncertainty in nuclear power plants. Nucl. Eng. Technol. 2018, 50, 1314–1323. [Google Scholar] [CrossRef]
- Chan, K.H.; Dozal-Mejorada, E.J.; Cheng, X.; Kephart, R.; Ydstie, B.E. Predictive control with adaptive model maintenance: Application to power plants. Comput. Chem. Eng. 2014, 70, 91–103. [Google Scholar] [CrossRef]
- Hou, G.; Fan, Y.; Wang, J. Intelligent fuzzy neural network modeling for flexible operation of combined heat and power plant with heat-power decoupling technology. Energy 2024, 309, 133099. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Tian, Y.; Wu, Z. Explicit machine learning-based model predictive control of nonlinear processes via multi-parametric programming. Comput. Chem. Eng. 2024, 186, 108689. [Google Scholar] [CrossRef]
- Yang, S.; Wan, M.P.; Chen, W.; Ng, B.F.; Dubey, S. Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization. Appl. Energy 2020, 271, 115147. [Google Scholar] [CrossRef]
- Zhao, A.; Toudeshki, A.; Ehsani, R.; Viers, J.H.; Sun, J.-Q. Evaluation of Neural Network Effectiveness on Sliding Mode Control of Delta Robot for Trajectory Tracking. Algorithms 2024, 17, 113. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Yuan, S.; Zhu, H.; Li, B.; Liu, Y.; Sun, L. Energy Scheduling of Hydrogen Hybrid UAV Based on Model Predictive Control and Deep Deterministic Policy Gradient Algorithm. Algorithms 2025, 18, 80. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, Z.; Dong, Y.; Huang, X. Multi-layer perception based model predictive control for the thermal power of nuclear superheated-steam supply systems. Energy 2018, 151, 116–125. [Google Scholar] [CrossRef]
- Guo, M.; Hao, Y.; Lu, Y.; Sun, L. Long-short term memory modeling and performance analysis of extended-state Kalman filter-based energy-saving model predictive control for supercritical unit. Appl. Therm. Eng. 2025, 272, 126202. [Google Scholar] [CrossRef]
- Baldassarre, A.; Dion, J.-L.; Peyret, N.; Renaud, F. Digital twin with augmented state extended Kalman filters for forecasting electric power consumption of industrial production systems. Heliyon 2024, 10, e27343. [Google Scholar] [CrossRef] [PubMed]
- Plankenbühler, T.; Müller, D.; Karl, J. An adaptive and flexible biomass power plant control system based on on-line fuel image analysis. Therm. Sci. Eng. Prog. 2023, 40, 101765. [Google Scholar] [CrossRef]
- Li, Q.; Zhan, Q.; Yu, S.; Sun, J.; Cai, W. Study on thermal-hydraulic performance of printed circuit heat exchangers with supercritical methane based on machine learning methods. Energy 2023, 282, 128711. [Google Scholar] [CrossRef]
RMSE of ANN | R2 of ANN | Fit Value of ANN | RMSE of Transfer Function | R2 of Transfer Function | Fit Value of Transfer Function | |
---|---|---|---|---|---|---|
Pressure | 0.36074 | 0.9956 | 93.3702 | 0.51991 | 0.99087 | 90.4448 |
Load | 5.4164 | 0.99597 | 93.6487 | 5.3223 | 0.99611 | 93.7590 |
Temperature | 4.9604 | 0.97827 | 85.2601 | 6.8291 | 0.95882 | 79.7074 |
Controller | IAE1 | IAE2 | IAE3 | ME1 (MPa) | ME2 (MW) | ME3 (°C) |
---|---|---|---|---|---|---|
ESKF-MPC | 118.045 | 1703.785 | 3810.075 | 0.283 | 4.809 | 6.242 |
EEA-ESKF-MPC | 118.548 | 1651.894 | 3716.664 | 0.285 | 4.754 | 6.099 |
EA-ESKF-MPC | 151.675 | 3004.522 | 3583.273 | 0.322 | 6.555 | 5.769 |
MPC | 125.830 | 1752.969 | 3859.232 | 0.336 | 5.808 | 6.327 |
Case | Controller | IAE1 | IAE2 | IAE3 | ME1 (MPa) | ME2 (MW) | ME3 (°C) |
---|---|---|---|---|---|---|---|
Case 1: Throttle valve opening degree disturbance (3000 s) | ESKF-MPC | 7.837 | 47.952 | 64.004 | 1.423 | 7.943 | 4.969 |
EEA-ESKF-MPC | 7.473 | 47.529 | 37.314 | 1.427 | 7.952 | 4.907 | |
EA-ESKF-MPC | 8.437 | 80.076 | 39.514 | 1.428 | 7.973 | 5.036 | |
MPC | 8.423 | 59.909 | 63.781 | 1.424 | 7.940 | 5.008 | |
Case 2: Coal feed rate disturbance (6000 s) | ESKF-MPC | 2.973 | 38.490 | 49.850 | 0.405 | 4.413 | 3.186 |
EEA-ESKF-MPC | 3.058 | 37.170 | 44.765 | 0.405 | 5.222 | 3.182 | |
EA-ESKF-MPC | 2.630 | 95.535 | 51.256 | 0.394 | 4.3879 | 3.185 | |
MPC | 3.441 | 52.203 | 47.786 | 0.403 | 3.532 | 3.200 | |
Case 3: Water feed rate disturbance (9000 s) | ESKF-MPC | 9.711 | 116.421 | 76.232 | 1.242 | 14.831 | 5.064 |
EEA-ESKF-MPC | 9.540 | 116.083 | 73.964 | 1.240 | 14.850 | 5.043 | |
EA-ESKF-MPC | 9.571 | 155.878 | 60.759 | 1.241 | 14.669 | 5.041 | |
MPC | 10.987 | 127.995 | 66.853 | 1.242 | 14.664 | 5.049 |
IAE1 | IAE2 | IAE3 | ME1 (MPa) | ME2 (MW) | ME3 (°C) | |
---|---|---|---|---|---|---|
Power plant controller | 2667.670 | 6010.110 | 23,025.860 | 1.560 | 6.860 | 41.780 |
EEA-ESKF-MPC | 605.807 | 4384.299 | 8000.564 | 0.923 | 6.498 | 10.411 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Hua, S.; Fan, C.; Wang, C.; Wang, S.; Sun, L. An Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Controller for Supercritical Power Plants. Algorithms 2025, 18, 387. https://doi.org/10.3390/a18070387
Chen G, Hua S, Fan C, Wang C, Wang S, Sun L. An Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Controller for Supercritical Power Plants. Algorithms. 2025; 18(7):387. https://doi.org/10.3390/a18070387
Chicago/Turabian StyleChen, Gang, Shan Hua, Changhao Fan, Chun Wang, Shuchong Wang, and Li Sun. 2025. "An Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Controller for Supercritical Power Plants" Algorithms 18, no. 7: 387. https://doi.org/10.3390/a18070387
APA StyleChen, G., Hua, S., Fan, C., Wang, C., Wang, S., & Sun, L. (2025). An Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Controller for Supercritical Power Plants. Algorithms, 18(7), 387. https://doi.org/10.3390/a18070387