Plane Frame Structures: Optimization and Design Solutions Clustering
Abstract
1. Introduction
2. Materials and Methods
2.1. Finite Element Analyses
2.2. Red Fox Optimization
Algorithm 1. Red fox algorithm. Schematic representation |
Input: Number individuals, Max iterations Output: best solution, associated design variables Initialize, randomly the population For each iteration do For each individual do Compute objective function via FEM maximum value of objective function # Global search phase # Local search phase Initialize, random parameters: If , then End If # Dynamic control of population Initialize random parameter: If , then Initialize new individuals Else End If End For End For |
2.3. Optimal Configurations Analysis Using Clustering
Algorithm 2. Silhouette method. Schematic representation |
Input: Optimal solutions dataset Output: Silhouette scores Center and Scale Design Variables to and For each number of clusters For each point in cluster # Compute Intra-cluster distance # Compute Inter-cluster distance # Compute point Silhouette score Compute average Silhouette score within cluster () Compute global average Silhouette score End For End For |
Algorithm 3. K-means method. Schematic representation |
Input: Optimal solutions dataset Output Clusters, Centroids Center and Scale Design Variables to and Select Clusters and Initialize their Centroids While do For each point do Compute Euclidean Distance from Point to Clusters’ Centroids Assign Point i to Cluster with Nearest Centroid End do For each cluster do # Update Centroids # Compute the Euclidean Norm of the Centroids Shifts End For # Check Convergence Based on Centroids Shifts End While |
3. Results
3.1. Verification Studies
3.1.1. Static Analysis of an Isotropic Beam
3.1.2. Free Vibration Analysis of an Isotropic Beam
3.1.3. Benchmark Function
3.2. Study of a Frame-Type Structure
3.2.1. Case Study 1—Optimization of a Frame-Type Structure with Constant Square Cross-Section
3.2.2. Case Study 2—Frame-Type Structure with Constant Square Cross-Section and Mass Restriction
3.2.3. Case Study 3—Frame-Type Structure with Different Square Cross-Sections
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martins, J.R.R.A.; Ning, A. Engineering Optimization Design; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Szeptyński, P.; Mikulski, L. Preliminary optimization technique in the design of steel girders according to Eurocode 3. Arch. Civ. Eng. 2023, 69, 71–89. [Google Scholar] [CrossRef]
- Cicconi, P.; Germani, M.; Bondi, S.; Zuliani, A.; Cagnacci, E. A Design Methodology to Support the Optimization of Steel Structures. Procedia CIRP 2016, 50, 58–64. [Google Scholar] [CrossRef]
- Dillen, W.; Lombaert, G.; Mertens, R.; Van Beurden, H.; Jaspaert, D.; Schevenels, M. Optimization in a realistic structural engineering context: Redesign of the Market Hall in Ghent. Eng. Struct. 2021, 228, 111473. [Google Scholar] [CrossRef]
- Dillen, W.; Lombaert, G.; Schevenels, M. A hybrid gradient-based/metaheuristic method for Eurocode-compliant size, shape and topology optimization of steel structures. Eng. Struct. 2021, 239, 112137. [Google Scholar] [CrossRef]
- Hao, Z.; Tielin, L.; Hong, L.; Zheng, W. Optimization Design for Beam and Column of Steel Structure Residence. In Proceedings of the 8th International Conference on Intelligent Computation Technology and Automation, ICICTA 2015, Nanchang, China, 14–15 June 2015; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 609–612. [Google Scholar] [CrossRef]
- Gaspar, J.S.D.; Loja, M.A.R.; Barbosa, J.I. Static and Free Vibration Analyses of Functionally Graded Plane Structures. J. Compos. Sci. 2023, 7, 377. [Google Scholar] [CrossRef]
- Połap, D.; Woźniak, M. Red fox optimization algorithm. Expert. Syst. Appl. 2021, 166, 114107. [Google Scholar] [CrossRef]
- Dulal, A.; Singh, M.; Sharma, G. Static and Dynamic Data Analysis for Android Malware Detection using Red Fox Optimization. Int. J. Res. Publ. 2024, 146, 251–259. [Google Scholar] [CrossRef]
- Gopi, P.S.S.; Karthikeyan, M. Red fox optimization with ensemble recurrent neural network for crop recommendation and yield prediction model. Multimed. Tools Appl. 2023, 83, 13159–13179. [Google Scholar] [CrossRef]
- Gaspar, J.S.D.; Loja, M.A.R.; Barbosa, J.I. Metaheuristic Optimization of Functionally Graded 2D and 3D Discrete Structures Using the Red Fox Algorithm. J. Compos. Sci. 2024, 8, 205. [Google Scholar] [CrossRef]
- Bamikole, J.O.; Narasigadu, C. Application of Pathfinder, Honey Badger, Red Fox and Horse Herd algorithms to phase equilibria and stability problems. Fluid. Phase Equilib. 2023, 566, 113682. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, Z.; Lu, X.; Liu, Y.; Xiao, Q.; Taheri, B. An optimal model identification for solid oxide fuel cell based on extreme learning machines optimized by improved Red Fox Optimization algorithm. Int. J. Hydrogen Energy 2021, 46, 28270–28281. [Google Scholar] [CrossRef]
- Vaiyapuri, T.; Liyakathunisa; Alaskar, H.; Aljohani, E.; Shridevi, S.; Hussain, A. Red fox optimizer with data-science-enabled microarray gene expression classification model. Appl. Sci. 2022, 12, 4172. [Google Scholar] [CrossRef]
- Dixit, S.; Qureshi, S. Security-aware, red fox optimization-based cluster-based routing in wireless sensor network. Peer-to-Peer Netw. Appl. 2025, 18, 128. [Google Scholar] [CrossRef]
- Devamalar, P.M.B.; Kalaiselvi, K.; Sathikbasha, M.J.; Gopi, A. An optimal solid waste management using red fox optimization and hybrid DenseNet-BiLSTM model. Environ. Monit. Assess. 2023, 195, 1249. [Google Scholar] [CrossRef]
- Olivo, J.; Cucuzza, R.; Bertagnoli, G.; Domaneschi, M. Optimal design of steel exoskeleton for the retrofitting of RC buildings via genetic algorithm. Comput. Struct. 2024, 299, 107396. [Google Scholar] [CrossRef]
- Goodarzimehr, V.; Talatahari, S.; Shojaee, S.; Gandomi, A.H. Computer-aided dynamic structural optimization using an advanced swarm algorithm. Eng. Struct. 2024, 300, 117174. [Google Scholar] [CrossRef]
- Cucuzza, R.; Rad, M.M.; Domaneschi, M.; Marano, G.C. Sustainable and cost-effective optimal design of steel structures by minimizing cutting trim losses. Autom. Constr. 2024, 167, 105724. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, X.; Tao, R.; Chen, H. Improved Sine-cosine Algorithm for the Optimization Design of Truss Structures. KSCE J. Civ. Eng. 2024, 28, 687–698. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Le, T.X.; Nguyen, D.L.M.; Bui, T.T.; Nguyen, N.C.; Tran, H.N. A Prospective Technique for Damage Detection in Truss Structures Using the Fusion of DNN with AVOA. KSCE J. Civ. Eng. 2024, 28, 2920–2933. [Google Scholar] [CrossRef]
- Babaei, M.; Mollayi, M. An improved constrained differential evolution for optimal design of steel frames with discrete variables. Mech. Based Des. Struct. Mach. 2020, 48, 697–723. [Google Scholar] [CrossRef]
- Vu, Q.-A.; Cao, T.-S.; Nguyen, T.-T.-T.; Nguyen, H.-H.; Truong, V.-H.; Ha, M.-H. An efficient differential evolution-based method for optimization of steel frame structures using direct analysis. Structures 2023, 51, 67–78. [Google Scholar] [CrossRef]
- Moosavian, H.; Mesbahi, P.; Moosavian, N.; Daliri, H. Optimal design of truss structures with frequency constraints: A comparative study of DE, IDE, LSHADE, and CMAES algorithms. Eng. Comput. 2023, 39, 1499–1517. [Google Scholar] [CrossRef]
- Tejani, G.G.; Sharma, S.K.; Mashru, N.; Patel, P.; Jangir, P. Optimization of truss structures with two archive-boosted MOHO algorithm. Alex. Eng. J. 2025, 120, 296–317. [Google Scholar] [CrossRef]
- Okasha, N.M.; Alzo’ubi, A.K.; Mughieda, O.; Kewalramani, M.; Almasri, A.H. A near-optimum multi-objective optimization approach for structural design. Ain Shams Eng. J. 2024, 15, 102388. [Google Scholar] [CrossRef]
- Barraza, M.; Bojórquez, E.; Fernández-González, E.; Reyes-Salazar, A. Multi-objective optimization of structural steel buildings under earthquake loads using NSGA-II and PSO. KSCE J. Civ. Eng. 2017, 21, 488–500. [Google Scholar] [CrossRef]
- Cruz, A.S.; Caldas, L.R.; Mendes, V.M.; Mendes, J.C.; Bastos, L.E.G. Multi-objective optimization based on surrogate models for sustainable building design: A systematic literature review. Build. Environ. 2024, 266, 112147. [Google Scholar] [CrossRef]
- Omran, M.G.H.; Engelbrecht, A.P.; Salman, A. An overview of clustering methods. Intell. Data Anal. 2007, 11, 583–605. [Google Scholar] [CrossRef]
- Cheng, G.; Li, X.; Nie, Y.; Li, H. FEM-Cluster based reduction method for efficient numerical prediction of effective properties of heterogeneous material in nonlinear range. Comput. Methods Appl. Mech. Eng. 2019, 348, 157–184. [Google Scholar] [CrossRef]
- Benaimeche, M.A.; Yvonnet, J.; Bary, B.; He, Q. A k-means clustering machine learning-based multiscale method for anelastic heterogeneous structures with internal variables. Int. J. Numer. Methods Eng. 2022, 123, 2012–2041. [Google Scholar] [CrossRef]
- Carvalho, A.; Silva, T.; Loja, M.A.R.; Damásio, F.R. Assessing the Influence of Material and Geometrical Uncertainty on the Mechanical Behavior of Functionally Graded Materials Plates. Mech. Adv. Mat. Struct. 2017, 24, 417–426. [Google Scholar] [CrossRef]
- Loja, M.A.R.; Soares, C.M.M.; Soares, C.A.M. Modelling and design of adaptive structures using B-spline strip models. Compos. Struct. 2002, 57, 245–251. [Google Scholar] [CrossRef]
- Soares, C.M.M.; Soares, C.A.M.; Correia, V.M.F.; Loja, M.A.R. Higher-order B-spline strip models for laminated composite structures with integrated sensors and actuators. Compos. Struct. 2001, 54, 267–274. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, O.C.; Fox, D. The Finite Element Method for Solid and Structural Mechanics; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Ramachandran, K.M.; Tsokos, C.P. Mathematical Statistics with Applications; Elsevier Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley& Sons, Inc.: NewYork, NY, USA, 1997. [Google Scholar]
- Gan, G.; Ma, C.; Wu, J. Data Clustering: Theory, Algorithms, and Applications; ASA-SIAM Series on Statistics and Applied Probability; SIAM, ASA, Alexandria, VA: Philadelphia, PA, USA, 2007. [Google Scholar]
- Flach, P. Machine Learning: The Art and Science of Algorithms That Make Sense of Data; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Reddy, J.N. An Introduction to the Finite Element Method, 2nd ed.; A.A. Balkema Publishers: Lisse, The Netherlands, 1993. [Google Scholar]
- Demšar, J.; Curk, T.; Erjavec, A.; Gorup, Č.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A.; et al. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
Exact [40] | Discretization | FEM [40] | My [N.m] | Deviation (%) |
---|---|---|---|---|
288,260 | 2 elements | 283,620 | 283,684.1332 | 1.587 |
8 elements | - | 286,799.6315 | 0.5066 | |
16 elements | - | 287,931.2144 | 0.1140 | |
32 elements | - | 288,087.0711 | 0.0599 |
x [m] | Transverse Displacement [m] | Rotation [rad] | ||||
---|---|---|---|---|---|---|
FEM | Exact | Present | FEM | Exact | Present | |
0 | 0.0000 | 0.0000 | 0.0000 | 0.00000 | 0.00000 | 0.00000 |
0.1875 | 0.0008 | 0.0008 | 0.0009 | 0.00880 | 0.00891 | 0.00891 |
0.375 | 0.0033 | 0.0033 | 0.0033 | 0.01690 | 0.01706 | 0.01706 |
0.5625 | 0.0071 | 0.0072 | 0.0073 | 0.02440 | 0.02445 | 0.02445 |
0.75 | 0.0124 | 0.01242 | 0.0125 | 0.03110 | 0.03113 | 0.03113 |
0.9375 | 0.0188 | 0.0188 | 0.0189 | 0.03720 | 0.03712 | 0.03712 |
1.125 | 0.0263 | 0.0263 | 0.0264 | 0.04260 | 0.04244 | 0.04244 |
1.3125 | 0.0347 | 0.0347 | 0.0348 | 0.04720 | 0.04713 | 0.04713 |
1.5 | 0.0439 | 0.0439 | 0.0441 | 0.05120 | 0.05121 | 0.05121 |
1.6875 | 0.0539 | 0.05387 | 0.0540 | 0.05460 | 0.05470 | 0.05470 |
1.875 | 0.0644 | 0.0644 | 0.0646 | 0.05750 | 0.05764 | 0.05764 |
2.0625 | 0.0754 | 0.0755 | 0.0756 | 0.06000 | 0.06006 | 0.06006 |
2.25 | 0.0868 | 0.0869 | 0.0871 | 0.06200 | 0.06197 | 0.06197 |
2.4375 | 0.0986 | 0.0987 | 0.0989 | 0.06350 | 0.06341 | 0.06341 |
2.625 | 0.1106 | 0.1107 | 0.1109 | 0.06450 | 0.06441 | 0.06441 |
2.8025 | 0.1228 | 0.1228 | 0.1230 | 0.06510 | 0.06497 | 0.06499 |
3 | 0.135 | 0.135 | 0.1352 | 0.06520 | 0.06517 | 0.06517 |
TBT | EBT | EBT* | |
---|---|---|---|
[40] | 3.5158 | 3.5158 | 3.5160 |
[40] | 22.0226 | 22.0315 | 22.0345 |
[40] | 61.6179 | 61.6774 | 61.6972 |
[40] | 120.6152 | 120.8300 | 120.9019 |
TBT | EBT | EBT* | |
---|---|---|---|
[40] | 3.4892 | 3.5092 | 3.5160 |
[40] | 20.9374 | 21.7425 | 22.0345 |
[40] | 55.1530 | 59.8013 | 61.6972 |
[40] | 100.2116 | 114.2898 | 120.9019 |
2 Elements | 4 Elements | 8 Elements | |
---|---|---|---|
3.5214 | 3.5161 | 3.5158 | |
1 [40] | 3.5214 | 3.5161 | 3.5130 |
1 | 23.3226 | 22.1054 | 22.0280 |
2 [40] | 23.3226 | 22.1054 | 22.0275 |
78.3115 | 63.3271 | 61.7325 | |
3 [40] | 78.3115 | 63.3271 | 61.7323 |
328.3250 | 133.9828 | 121.4458 | |
4 [40] | 328.3251 | 133.9828 | 121.4456 |
2 Elements | 4 Elements | 8 Elements | |
---|---|---|---|
[40] | 3.4947 | 3.4895 | 3.4892 |
3.4947 | 3.4895 | 3.4891 | |
2 [40] | 22.0762 | 21.0103 | 20.4421 |
22.0762 | 21.0103 | 20.9421 | |
3 [40] | 67.0884 | 56.4572 | 55.2405 |
54.4279 | 54.4149 | 54.4140 | |
[40] | 67.0884 | 56.4572 | 55.2406 |
4 | 181.0682 | 108.6060 | 100.7496 |
67.0884 | 56.4581 | 100.7496 | |
165.9379 | 108.6060 | - | |
181.0683 | - | - |
Minimum [1] | |||
---|---|---|---|
Global | −13.5320 | 2.6732 | −0.6759 |
Local | −9.7770 | −0.4495 | 2.2928 |
−9.0312 | 2.4939 | 1.9219 |
Number of Foxes | Number of Iterations | ||||||
---|---|---|---|---|---|---|---|
50 | 100 | 150 | 200 | 500 | 1000 | ||
Mean | 10 | −12.7866 | −13.5320 | −13.5320 | −13.0820 | −13.5320 | −13.5320 |
SD | 1.4910 | 1.0257 × 10−10 | 2.4418 × 10−10 | 1.3502 × 10−11 | 2.3262 × 10−13 | 9.3925 × 10−14 | |
Mean | 20 | −12.7737 | −13.5320 | −13.5320 | −13.5320 | −13.5320 | −13.5320 |
SD | 1.5796 | 1.0581 × 10−11 | 3.4485 × 10−12 | 1.3143 × 10−11 | 1.7249 × 10−13 | 1.7764 × 10−15 | |
Mean | 30 | −13.5319 | −13.5320 | −13.5320 | −13.5320 | −13.5320 | −13.5320 |
SD | 0.0003 | 2.8218 × 10−11 | 1.4790 × 10−12 | 1.9876 × 10−14 | 6.4782 × 10−15 | 3.2269 × 10−15 | |
Mean | 40 | −13.5320 | −13.5320 | −13.5320 | −13.5320 | −13.5320 | −13.5320 |
SD | 5.7240 × 10−7 | 1.7452 × 10−11 | 6.8349 × 10−12 | 4.3701 × 10−12 | 9.3638 × 10−14 | 1.6852 × 10−15 | |
Mean | 50 | −13.1565 | −13.5320 | −13.5320 | −13.5320 | −13.5320 | −13.5320 |
SD | 1.1265 | 2.9396 × 10−11 | 2.9753 × 10−13 | 3.1482 × 10−14 | 6.3553 × 10−15 | 1.7764 × 10−15 |
Run | Best Solution (b) [mm] | Displacement [mm] | Fundamental Frequency [Hz] | Mass [kg] |
---|---|---|---|---|
1 | 74.7529 | 15.0000 | 57.2724 | 1202.1071 |
2 | 74.7529 | 15.0000 | 57.2723 | 1202.1056 |
3 | 74.7528 | 15.0001 | 57.2722 | 1202.1029 |
4 | 74.7529 | 15.0001 | 57.2723 | 1202.1060 |
5 | 74.7528 | 15.0001 | 57.2722 | 1202.1024 |
6 | 74.7529 | 15.0000 | 57.2723 | 1202.1061 |
7 | 74.7496 | 15.0027 | 57.2697 | 1201.9992 |
8 | 74.7529 | 15.0001 | 57.2723 | 1202.1042 |
9 | 74.7463 | 15.0054 | 57.2672 | 1201.8921 |
10 | 74.7521 | 15.0007 | 57.2716 | 1202.0795 |
Run | Best Solution [mm] | Displacement [mm] | Fundamental Frequency [Hz] | Mass [kg] |
---|---|---|---|---|
1 | 68.1797 | 21.6346 | 52.2594 | 999.9921 |
2 | 68.1798 | 21.6344 | 52.2595 | 999.9959 |
3 | 68.1784 | 21.6361 | 52.2583 | 999.9555 |
4 | 68.1794 | 21.6350 | 52.2590 | 999.9850 |
5 | 68.1799 | 21.6349 | 52.2594 | 999.9975 |
6 | 68.1783 | 21.6364 | 52.2583 | 999.9504 |
7 | 68.1799 | 21.6343 | 52.2594 | 999.9977 |
8 | 68.1799 | 21.6343 | 52.2594 | 999.9979 |
9 | 68.1790 | 21.6356 | 52.2586 | 999.9721 |
10 | 68.1799 | 21.6345 | 52.2595 | 999.9991 |
Run | Best Solution (b1) [mm] | Best Solution (b2) [mm] | Best Solution (b3) [mm] | Displacement [mm] | Fundamental Frequency [Hz] | Mass [kg] |
---|---|---|---|---|---|---|
1 | 72.3722 | 104.5734 | 89.4797 | 15.0004 | 64.3588 | 1530.3103 |
2 | 73.4485 | 163.9175 | 21.4854 | 15.0070 | 18.7650 | 1187.2763 |
3 | 71.4657 | 167.4615 | 149.2217 | 15.0019 | 65.7274 | 3307.8591 |
4 | 99.0440 | 19.7390 | 82.8014 | 15.0013 | 49.7960 | 1601.0065 |
5 | 72.0807 | 113.8000 | 96.5733 | 15.0010 | 64.8184 | 1702.1619 |
6 | 72.4883 | 98.6433 | 135.6577 | 15.0008 | 64.4031 | 2514.2470 |
7 | 81.8877 | 193.2437 | 10.8062 | 15.0009 | 9.4457 | 1524.3766 |
8 | 72.0906 | 108.8678 | 168.9929 | 15.0004 | 64.9802 | 3546.2081 |
9 | 73.1327 | 86.2316 | 178.9409 | 15.0031 | 63.8004 | 3792.8592 |
10 | 72.3458 | 186.3778 | 30.4415 | 15.0065 | 26.5590 | 1402.8488 |
Clusters | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
Silhouette score | 0.500 | 0.516 | 0.385 | 0.440 | 0.405 | 0.318 | 0.262 |
Cluster | Runs | b1 [mm] | b2 [mm] | b3 [mm] |
---|---|---|---|---|
1 | 1, 3, 5, 6, 8, 9 | 72.2717 (71.47–72.49) | 113.2629 (86.23–167.46) | 136.4777 (89.48–178.94) |
2 | 2, 7, 10 | 75.8940 (73.45–81.89) | 181.1797 (163.92–193.24) | 20.9110 (10.81–30.44) |
3 | 4 | 99.0440 | 19.7390 | 82.8014 |
Run | Best Solution (b1) [mm] | Best Solution (b2) [mm] | Best Solution (b3) [mm] | Displacement [mm] | Fundamental Frequency [Hz] | Mass [kg] |
---|---|---|---|---|---|---|
1 | 72.0103 | 113.4950 | 138.2667 | 15.0026 | 65.0105 | 2651.5073 |
2 | 71.4793 | 158.1470 | 199.1264 | 15.0045 | 65.7291 | 4926.6675 |
3 | 175.6964 | 19.9670 | 13.8323 | 15.0049 | 11.7764 | 2939.5891 |
4 | 72.0715 | 111.4927 | 129.9525 | 15.0018 | 64.9146 | 2424.9065 |
5 | 72.9301 | 90.3299 | 133.6916 | 15.0015 | 63.8515 | 2431.7774 |
6 | 76.0955 | 101.4636 | 16.8798 | 15.0039 | 14.7473 | 816.6170 |
7 | 76.2100 | 87.4959 | 18.8374 | 15.0011 | 16.4516 | 762.8236 |
8 | 71.5161 | 188.7119 | 77.3680 | 15.0012 | 65.2092 | 1904.0974 |
9 | 71.6778 | 152.5432 | 69.0547 | 15.0092 | 59.3841 | 1496.8936 |
10 | 71.5032 | 156.2309 | 172.1362 | 15.0008 | 65.6971 | 3938.5718 |
Clusters | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
Silhouette score | 0.559 | 0.366 | 0.488 | 0.628 | 0.520 | 0.436 | 0.303 |
Cluster | Runs | b1 [mm] | b2 [mm] | b3 [mm] |
---|---|---|---|---|
1 | 6, 7 | 76.1528 (76.10–76.21) | 94.4798 (87.50–101.46) | 17.8596 (16.88–18.84) |
2 | 1, 4, 5 | 72.3373 (72.01–72.93) | 105.1059 (90.33–113.50) | 133.9703 (129.95–138.27) |
3 | 3 | 175.6964 | 19.9670 | 13.8323 |
4 | 8, 9 | 71.5970 (71.52–71.68) | 170.6276 (152.54–188.71) | 73.2114 (69.05–77.37) |
5 | 2, 10 | 71.4913 (71.48–71.50) | 157.1890 (156.23–158.15) | 185.6313 (172.14–199.13) |
Run | Best Solution (b1) [mm] | Best Solution (b2) [mm] | Best Solution (b3) [mm] | Displacement [mm] | Fundamental Frequency [Hz] | Mass [kg] |
---|---|---|---|---|---|---|
1 | 85.6639 | 86.6051 | 27.9362 | 9.5307 | 24.3466 | 944.8848 |
2 | 99.3422 | 26.6380 | 20.1129 | 8.9263 | 16.9451 | 986.8938 |
3 | 97.2821 | 51.8613 | 21.2072 | 8.7075 | 18.4558 | 999.7722 |
4 | 91.1751 | 72.4751 | 24.3450 | 8.8589 | 21.2195 | 965.5522 |
5 | 89.2036 | 73.1721 | 26.5999 | 9.2525 | 23.1640 | 945.5724 |
6 | 89.4786 | 80.1648 | 26.1629 | 8.7600 | 22.8042 | 973.2495 |
7 | 87.1829 | 92.5082 | 27.4418 | 8.7934 | 23.9280 | 991.9190 |
8 | 92.4133 | 69.5464 | 24.7362 | 8.6579 | 21.5500 | 979.0511 |
9 | 93.1660 | 75.8590 | 19.3753 | 8.7174 | 16.9155 | 990.8795 |
10 | 87.4491 | 83.7596 | 32.9157 | 8.8326 | 28.6142 | 992.0630 |
Cluster | Runs | b1 [mm] | b2 [mm] | b3 [mm] |
---|---|---|---|---|
1 | 1, 4, 5, 6, 7, 8, 10 | 88.9381 (85.66–93.17) | 79.7473 (69.55–92.51) | 27.1625 (19.38–32.92) |
2 | 2, 3, 9 | 96.5968 (93.17–99.34) | 51.4528 (26.64–75.86) | 20.2318 (19.38–21.21) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspar, J.S.D.; Loja, M.A.R.; Barbosa, J.I. Plane Frame Structures: Optimization and Design Solutions Clustering. Algorithms 2025, 18, 375. https://doi.org/10.3390/a18070375
Gaspar JSD, Loja MAR, Barbosa JI. Plane Frame Structures: Optimization and Design Solutions Clustering. Algorithms. 2025; 18(7):375. https://doi.org/10.3390/a18070375
Chicago/Turabian StyleGaspar, Joana S. D., Maria A. R. Loja, and Joaquim I. Barbosa. 2025. "Plane Frame Structures: Optimization and Design Solutions Clustering" Algorithms 18, no. 7: 375. https://doi.org/10.3390/a18070375
APA StyleGaspar, J. S. D., Loja, M. A. R., & Barbosa, J. I. (2025). Plane Frame Structures: Optimization and Design Solutions Clustering. Algorithms, 18(7), 375. https://doi.org/10.3390/a18070375