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Abstract

This work aims to constitute a framework dataflow based on the prediction, optimization,
and characterization of optimal solutions. To this purpose, a metaheuristic optimization
method is used to obtain the optimal design solutions for discrete plane frame structures
considering as objective function the minimization of their maximum resultant displace-
ment, subjected to side and behavioral constraints. The design variables that lead to the
optimal solutions are constituted into datasets which are subsequently submitted to a
clustering analysis. The results obtained provide pertinent insights about the optimal
solutions clusters’ ranges, giving effective support to a specific solution selection.

Keywords: red fox optimization; finite element method; K-means method; clustering; steel
structures; frame-type structures

1. Introduction
Optimization methodologies have revolutionized engineering design by replacing

manual iterative processes with more efficient algorithmic procedures, which enable ac-
celerating the conceptual improvement process through the automated search for optimal
design solutions. To achieve this, requirements and restrictions should first be translated
into mathematical terms, in a methodological approach, as precisely as possible, so that the
optimization method converges on the best solution [1].

The application of metaheuristics can offer significant advantages in structural opti-
mization and has been extensively considered by a number of researchers using different
techniques [2]. For example, in the optimization of steel structures, the main objectives have
involved the reduction in weight and costs of large steel frame or building structures [3,4],
optimizing the size, shape, and type of steel structures, under Eurocode 3 [5], and on
reducing the steel consumption in household structures [6] in which cross-section and
length characteristics of H-section steel beams and square tubular columns were optimized.
In composite materials, their optimization importance was clearly highlighted in [7], in
which the influence of the parameters that characterize the material distribution on their
static behavior and natural frequency was demonstrated. This brief overview underscores
the value of optimization techniques in project development. While optimization processes
require an appropriate procedure dataflow, the benefits that arise with superior solutions
usually compensate the required development and/or implementation effort.

Metaheuristic algorithms, such as the Red Fox Optimization (RFO), have been recog-
nized for their ability to address complex, nonlinear problems in structural optimization.
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Introduced in 2021 [8], the RFO algorithm has been successfully applied across various
fields, including computer science, materials science, and engineering. In this latter case,
it has been found in application fields such as chemical systems, fuel cells, and function-
ally graded structures. In the computer science area, a method for detecting malware on
Android smartphones based on an algorithm adapted from the RFO was presented by [9],
while in [10], RFO was used to optimize hyperparameters in deep learning models. In
structural engineering, as far as results from the literature survey, this method was used
to optimize the parameters of structures made of functionally graded material [11]. Other
engineering areas were covered in [12] where the technique was used to optimize the
equilibrium phase and stability of chemical systems, and in [13] to obtain the optimum
parameters for solid oxide fuel cells.

In addition, various models have been proposed that combine the RFO algorithm,
especially due to its global optimization capabilities, with other metaheuristics that can
complement it, depending on the authors’ objectives. For example, Vaiyapuri et al. [14]
proposed a model that combines the RFO algorithm with deep-learning-enabled microarray
gene expression classification model, which allowed to identify various classes for high-
dimensional and small-scale microarray data. In Dixit and Qureshi [15], the Red Fox
Optimization and Cluster-based Routing algorithm were combined to facilitate secure and
energy-efficient data transmission among sensor nodes. The authors concluded that the
proposed protocol performed better than the current routing techniques concerning security
robustness, energy efficiency, and network lifetime. In another context, an intelligent waste
management system through which waste can be sorted was proposed in [16] through an
automated model that combines RFO with a dense network model.

Metaheuristics have also been increasingly used in the broad structural engineering
area, with applications that involve, for instance, reducing the weight and cost of steel
structures and/or optimizing cross-sectional dimensions and material properties. In a
recent overview [17] that illustrates this trend, a Genetic Algorithm-based optimization
process was proposed to enhance the design of steel exoskeletons for seismic retrofitting.
To achieve this, the study focused on optimizing the spatial arrangement and components’
sizing to minimize the global weight and cost while ensuring structural integrity. The
authors achieved significant improvements in retrofit efficiency across various case stud-
ies. Goodarzimehr et al. [18] introduced the Improved Marine Predators Algorithm for
optimizing the size and shape of truss structures under natural frequency constraints,
aiming to minimize weight while preventing resonance and reducing vibrations. The
algorithm demonstrated good performance in comparison to a set of other metaheuristics
across various truss structures. Cucuzza et al. [19] used a real-coded Genetic Algorithm
integrated with the Bin Packing Problem to reduce waste by up to 40% across various 2D
and 3D steel structures. A paradigm shift, from minimum weight targeting towards mini-
mizing material waste and promoting standardization in steel structures, was proposed.
Zhou et al. [20] introduced the so-called Improved Sine Cosine Algorithm for optimizing the
size, shape, and topology of truss structures by incorporating a nonlinear conversion param-
eter, Lévy flight for global search, an elite guidance strategy for local search, and a greedy
selection mechanism. The authors concluded that the technique performed well for truss
structure optimization. In a work joining metaheuristics and deep neural networks, [21]
considered the African Vulture Optimization Algorithm with Deep Neural Networks to
enhance damage detection in large-scale bridges, leveraging the first algorithm’s ability
to autonomously adjust parameters and optimize the neural network weights and biases.
The approach, validated using Finite Element Model data and real-world measurements,
showed improved accuracy and computational efficiency in identifying structural damage.
Other researchers considered the use of Differential Evolution (DE) to obtain improved steel



Algorithms 2025, 18, 375 3 of 20

frames, as for example, Babaei and Mollayi [22] and Vu et al. [23]. Babaei and Mollayi [22]
proposed a constrained differential evolution (iCDE) algorithm for the optimization of steel
frames with discrete design variables, whereas Vu et al. [23] proposed a framework for
sizing optimization of steel structures using a combination of an improved Differential
Evolution approach (2EpDE), Multi-Comparison Technique (MCT), and Promising Indi-
vidual Method (PIM). Although not for frame structures, Moosavian et al. [24] conducted
a comparison study among some metaheuristic algorithms, for example, the DE and the
covariance matrix adaptation evolution strategy (CMA-ES) for size optimization of truss
structures under natural frequency constraints. These authors concluded that the latter
presented the best performance and the best optimal solutions for the design of the truss
structures studied.

Optimization studies considering more than one objective function have also been con-
sidered. For example, the minimization of mass and nodal displacement of truss structures
was addressed by [25] through the Two Archive-boosted Multi-Objective Hippopotamus
Optimization Algorithm. The solutions were compared with results obtained via other
multi-objective algorithms showing good performance. Near-optimal solutions alongside
Pareto-optimal solutions in the standardization process of a multi-objective structural
design were obtained by [26] highlighting how standard section selection may influence
objective function values. The authors combined a modified Particle Swarm Optimization
method and a computationally efficient standardization algorithm, showing that con-
sidering near-optimal solutions can reveal superior final designs. Other multiobjective
optimization published works in this context are due to Barraza et al. [27], who presented a
comparative study focused on structural steel buildings using the Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) and Particle Swarm Optimization (PSO). The authors
concluded that although both approaches allowed obtaining an improved structural perfor-
mance for the buildings, the PSO provided better solutions in general. Notably, the review
on multi-objective optimization based on surrogate models for sustainable building design
was recently presented by Cruz et al. [28], who besides achieving the state of the art in this
domain, pointed out possible development pathways.

From the literature survey performed, it was possible to conclude that the number of
published works considering clustering analysis in the structural analysis and optimization
domains is scarce. This is evidenced by the survey presented by [29]. Only a very few
works were found, for example, the one due to [30] which proposed a cluster-based analysis
method for the prediction of nonlinear properties of heterogeneous material. In another
context, [31] have used the K-means method to solve general nonlinear multiscale problems
without using surrogate models. In both works, the dimensionality reduction of the
problem was a major objective.

The present work proposes an integrated framework that enables us to characterize
sets of optimal solutions of steel-plane frame structures, using for that purpose the finite
element method, the Red Fox Optimization technique, and the K-means method. This
specific optimization technique is justified by the good performance it showed as demon-
strated by Polap and Wozniak [8] who proposed and tested it with different benchmark
and engineering applications, but also because this technique showed a good performance
in frame-type structures made of functionally graded materials [11].

Bringing together these techniques with complementary objectives constitutes the
major innovative character of the present work, and it is overall important to highlight
that besides the achievement of optimized design configurations, their grouping by criteria
affinity will enable a more refined and informed selection of a specific optimal configuration.

Following this introductory section, the remainder part of this work is organized
as follows: Section 2 describes the methodology considered in the present study, which
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includes a brief reference to the finite element method, the optimization and the clustering
techniques’ descriptions; Section 3 presents and discusses the verification studies and the
optimization case studies. In these latter cases, the optimal design variables’ configurations
are subsequently the object of an exploratory analysis to determine how many clusters
can be identified in the optimal solutions dataset and how those solutions per cluster
share specific characteristics. This selection and assignment are performed through the
K-means method. Finally, in the last section, some final conclusions are drawn based on the
results achieved.

2. Materials and Methods
This study is structured into three main phases. The first part is related to the finite

element method (FEM), which will predict the mechanical responses of structures [7,32].
In an intermediate phase, the Red Fox Optimization method (RFO) and the integration
of the FEM into it are coded, and the optimal solutions are obtained, and finally, a third
stage is devoted to the characterization of the optimal solutions, through the K-means
clustering method.

2.1. Finite Element Analyses

The first-order shear deformation theory is used to describe the displacement field,
which if assuming a beam deformation in the xz plane, is written as

u(x, y, z, t) = u0(x, y, t) + z θ0
y(x, y, t)

w(x, y, z, t) = w0(x, y, t)
(1)

The parameters u0 and w0 correspond, respectively, to the longitudinal (direction x)
and transverse (direction z) displacements of the beam’s centerline in the xz plane, and θ0

y
to the rotation of the beam’s center plane in the direction perpendicular to the xz plane.
Considering the kinematical relations from the Elasticity Theory for small deformations,
the constitutive relations and Hamilton’s principle [33,34], the equilibrium equations at the
element level are obtained:

[Me]
{ ..

qe
}
+ [Ke]{qe} = {Fe} (2)

By simplifying this equation for linear static or free vibration analysis, it yields

[Ke]{qe} = {Fe}(
[Ke]−ω2[Me]

)
{qe} = {0}

(3)

where [Ke], [Me], and {Fe} are respectively the element stiffness and mass matrices and
the element generalized forces; ω and {qe} stand for the k-th natural frequency and the
element generalized degrees of freedom vector.

As the fundamental aim of the present work is the implementation of a dataflow
framework integrating the prediction–optimization–optimal solutions analysis for a struc-
ture mechanical response, one has selected for that illustrative purpose discrete plane
structures submitted to in-plane loads. Under these conditions, the equilibrium equations
were implemented using quadratic beam elements (Figure 1) with three degrees of freedom
per node—the axial (u0) and transverse (w0) displacements and the rotation

(
θ0

y

)
—all

related to the midplane surface of the beam-bar element.
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Figure 1. Quadratic beam element and its degrees of freedom.

The numbering used in Figure 1 is related to the nodes numbering (1 to 3). This
numbering when considered in subscript, identify the degrees of freedom associated to
each node. For the studies performed, quadratic element allows in general improved
accuracy with fewer elements and better convergence rates, when compared to lower order
high density meshes. According to the FEM procedure [35], following the calculation of the
element matrices and vectors, they are assembled to model the whole discretized domain,
being the specified analysis performed after the boundary conditions imposition.

2.2. Red Fox Optimization

The Red Fox Optimization (RFO) algorithm is used to optimize a selected objective
function, combining global and local search phases to explore the solution design space. To
briefly illustrate how this algorithm works, a schematic dataflow of the key aspects in a
single optimization process is presented in Algorithm 1.

Algorithm 1. Red fox algorithm. Schematic representation

Input: Number individuals, Max iterations
Output: best solution, associated design variables
Initialize, randomly the population
For each iteration do

For each individual do
Compute objective function via FEM
xbest ←maximum value of objective function

# Global search phase

d
(
(xi)

t, (xbest)
t
)
←

√∣∣∣∣∣∣(xi)
t − (xbest)

t
∣∣∣∣∣∣

(xi)
t ← (xi)

t + α sign
(
(xbest)

t − (xi)
t
)

α← random
(

0, d
(
(xi)

t, (xbest)
t
))

# Local search phase
Initialize, random parameters: µ, a, ϕ0

If µ > 0.75, then
xn−1

new ← a rsin(ϕ1) + a rsin(ϕ2) + · · ·+ a rsin(ϕn−1) + xn−1
actual

End If
# Dynamic control of population

Initialize random parameter: κ

If κ ≥ 0.45, then
Initialize new individuals

Else(
x(reproduced)

)t
← κ

(x(1))
t
+(x(2))

t

2
End If

End For
End For

The schematic dataflow comprises the population initialization, where each individual
(red fox) is randomly generated within the design space. Loops are then initiated until
convergence criteria are met. Within these loops, the fitness assessment of each individual



Algorithms 2025, 18, 375 6 of 20

is carried out considering the selected objective function. Then, the global search (explo-
ration) starts, performing wider searches. The local, detailed, search (exploitation) is then
carried out in promising regions, using smaller movements. The population control is
implemented in a probabilistic basis, considering a random parameter that will define if
the worst individuals will be removed. The global and local searches allow us to adapt the
technique approach to the population evolution, avoiding the process to get stuck in a local
optimum, and refining near-optimal solutions. Additionally, a continuous improvement
of the solutions is achieved by retaining high-quality solutions while ensuring population
diversity. Further details about this algorithm can be found in [8]. Unless otherwise stated,
in this work, a population of 30 individuals progressing during 100 iterations was used for
each optimization process, in this way balancing computational cost and solution accuracy,
while observing Central Limit Theorem ([36,37]).

2.3. Optimal Configurations Analysis Using Clustering

The achieved optimal design variables’ configurations are subsequently analyzed to
identify if it is possible to establish groups of optimal configurations with similar types of
characteristics and mechanical responses and how they will be constituted. To this purpose,
an unsupervised machine learning method, the K-means method, is used [38,39]. K-means
partitions a dataset into a number of non-overlapping clusters, assigning each data point to
a certain cluster. In the present study, we have used the Silhouette method which checks
the consistency of clusters’ fit. The procedure dataflow of this method is schematically
represented in Algorithm 2, where d(i, j) is the Euclidean distance between two points and
µ and σ2 stand for a feature mean value and variance.

Algorithm 2. Silhouette method. Schematic representation.

Input: Optimal solutions dataset
Output: Silhouette scores
Center and Scale Design Variables to µ = 0 and σ2 = 1
For each number of clusters

For each point in cluster k
# Compute Intra-cluster distance a(i)

a(i)← 1
Nk−1 ∑j∈Ck ,j ̸=i d(i, j)

# Compute Inter-cluster distance b(i)
b(i)← min

Cm ̸=Ck

(
1
|Cm | ∑j∈Cm d(i, j)

)
# Compute point Silhouette score

s(i)← b(i)−a(i)
max{a(i),b(i)}

Compute average Silhouette score within cluster k (Ck)
Compute global average Silhouette score
End For

End For

The Silhouette score, which varies between −1 and +1, allows us to verify the points’
cohesion within their cluster and how distinctly separated the clusters are from each other.
The robustness of the clustering structure increases as the score approximates +1. The
K-means method is schematically represented in Algorithm 3.

The initial calculation of the centroids was performed using K-means++ initialization
to have better initial centroids and subsequent convergence. In the present work, the
datasets for each case study are matrices constituted by a number of lines equal to the
number of runs (10) and with a number of features (columns) corresponding to the number
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of design variables (b1, b2, b3). Each line contains the values each design variable assumes
for the best solution found in each optimization run.

Algorithm 3. K-means method. Schematic representation.

Input: Optimal solutions dataset
Output Clusters, Centroids
Center and Scale Design Variables to µ = 0 and σ2 = 1
Select K Clusters and Initialize their Centroids
While not converged do

For each point do
Compute Euclidean Distance from Point to Clusters’ Centroids
Assign Point i to Cluster with Nearest Centroid

End do
For each cluster do

# Update Centroids µk

µk ← 1
Nk

∑Nk
i=1 x(i)

# Compute the Euclidean Norm of the Centroids Shifts
shi f t = ∑Nk

k=1 ∥µ
t
k − µt−1

k ∥
End For

# Check Convergence Based on Centroids Shifts
converged = (shi f t < tolerance)

End While

3. Results
3.1. Verification Studies

The model implemented was firstly verified through static and dynamic analyses
of isotropic beams. The results showed an excellent agreement with reference solutions,
confirming the accuracy of the model.

3.1.1. Static Analysis of an Isotropic Beam

The first verification case consists of studying a cantilever beam [40], made of an
isotropic material with a modulus of elasticity of 200 GPa, with a length of 3 m, and a
cross-section with a second moment of area Iy = 29× 10−6 m4. In the present study, the
cross-section of the beam was considered to be square, with the second moment of the area
referenced by [40]. The beam is subjected to a point load of 60 kN at the free end and a
uniformly distributed load of 24 kN/m over its entire length. The beam and the actuation
direction of these loads are schematically shown in Figure 2.

P

L

q

Figure 2. Cantilever beam with transverse uniformly distributed and tip loads.

Reddy [40] presents the exact value and the one obtained by the finite element method
using two elements, for the relation M/EI, where M stands for the bending moment and EI
the bending stiffness. This corresponds for the moment, respectively, the values of 288,260
N.m and 283,620 N.m. Table 1 presents for a set of discretizations, the moments, and the
relative deviations, in comparison to the values presented by [40].
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Table 1. Bending moment at the beam clamped support.

Exact [40] Discretization FEM [40] My [N.m] Deviation (%)

288,260 2 elements 283,620 283,684.1332 1.587
8 elements - 286,799.6315 0.5066

16 elements - 287,931.2144 0.1140
32 elements - 288,087.0711 0.0599

The discretizations considered were aimed to approximate the bending moment exact
value, although for the lower discretization, only two elements, the relative deviation was
already very small. These deviations were calculated according to the expression

Deviation(%) =

⌈
Calculated− Exact

Exact

⌉
× 100 (4)

considering as reference the exact solution [38].
Table 2 shows the transverse displacement and rotation results for the beam along

its length, obtained using the finite element method and the reference solution, derived
from the expressions defined by the direct integration method. In this case, as it is a beam
with a high length-to-thickness ratio, the results from the present model are very close
to both the reference solutions [40], based on the Euler–Bernoulli theory, using the exact
solution obtained from direct integration of the equilibrium differential equation that rules
the problem and the finite element implementation.

Table 2. Transverse displacement (w0) and rotation (θ0
y) in the clamped beam.

x [m]
Transverse Displacement [m] Rotation [rad]

FEM Exact Present FEM Exact Present

0 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000
0.1875 0.0008 0.0008 0.0009 0.00880 0.00891 0.00891
0.375 0.0033 0.0033 0.0033 0.01690 0.01706 0.01706
0.5625 0.0071 0.0072 0.0073 0.02440 0.02445 0.02445

0.75 0.0124 0.01242 0.0125 0.03110 0.03113 0.03113
0.9375 0.0188 0.0188 0.0189 0.03720 0.03712 0.03712
1.125 0.0263 0.0263 0.0264 0.04260 0.04244 0.04244
1.3125 0.0347 0.0347 0.0348 0.04720 0.04713 0.04713

1.5 0.0439 0.0439 0.0441 0.05120 0.05121 0.05121
1.6875 0.0539 0.05387 0.0540 0.05460 0.05470 0.05470
1.875 0.0644 0.0644 0.0646 0.05750 0.05764 0.05764
2.0625 0.0754 0.0755 0.0756 0.06000 0.06006 0.06006

2.25 0.0868 0.0869 0.0871 0.06200 0.06197 0.06197
2.4375 0.0986 0.0987 0.0989 0.06350 0.06341 0.06341
2.625 0.1106 0.1107 0.1109 0.06450 0.06441 0.06441
2.8025 0.1228 0.1228 0.1230 0.06510 0.06497 0.06499

3 0.135 0.135 0.1352 0.06520 0.06517 0.06517

3.1.2. Free Vibration Analysis of an Isotropic Beam

The second verification case consists of analyzing the free vibration of a cantilever
beam made of isotropic material, with a unit length, rectangular cross-section of height
h and width b, modulus of elasticity E, density ρ, 2nd moment of area I, Poisson’s ratio
ν = 0.25, with EI = 1, ρI = 1, and h taking values such that L/h = 10 and L/h = 100. The
results to be compared will be transformed into dimensionless frequency values using
the expression

ω = ω L2
(

ρA
EI

) 1
2

(5)
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Thus, studies were carried out for two, four, and eight quadratic elements, in order
to compare the present predictions with the reference obtained by the Timoshenko (TBT)
and Euller–Bernoulli (EBT and EBT*) beam theories, where EBT corresponds to the Euler–
Bernoulli beam theory considering rotational inertia, and EBT* corresponds to the Euler–
Bernoulli theory considering rotational inertia to be negligible (the results are independent
of L/h), for the structure under study, and using the finite element method. Looking at
the results presented by Reddy [40] for the exact solutions according to both the Euler–
Bernoulli and Timoshenko beam theories (Tables 3 and 4), it should be noted that when the
rotational inertia is neglected (EBT*), the resonance frequencies are slightly higher than the
other solutions. Tables 3–6 show the first four resonance frequencies of the cantilever beam,
for L/h = 10 and L/h = 100, respectively, predicted by Reddy’s model, and the resonance
frequencies obtained using the implemented model.

Table 3. First four resonance frequencies of the beam, obtained according to the Timoshenko theory
and the Euler–Bernoulli theory, L/h = 10.

¯
ω TBT EBT EBT*

ω1 [40] 3.5158 3.5158 3.5160
ω2 [40] 22.0226 22.0315 22.0345
ω3 [40] 61.6179 61.6774 61.6972
ω4 [40] 120.6152 120.8300 120.9019

Table 4. First four resonance frequencies of the beam, obtained according to the Timoshenko theory
and the Euler–Bernoulli theory, L/h = 100.

¯
ω TBT EBT EBT*

ω1 [40] 3.4892 3.5092 3.5160
ω2 [40] 20.9374 21.7425 22.0345
ω3 [40] 55.1530 59.8013 61.6972
ω4 [40] 100.2116 114.2898 120.9019

Table 5. Comparison of the first four resonance frequencies calculated using 2, 4, and 8 quadratic
elements, with the finite element model of [40], L/h = 10.

¯
ω 2 Elements 4 Elements 8 Elements

ω 3.5214 3.5161 3.5158
ω1 [40] 3.5214 3.5161 3.5130
ω1 23.3226 22.1054 22.0280

ω2 [40] 23.3226 22.1054 22.0275
ω2 78.3115 63.3271 61.7325

ω3 [40] 78.3115 63.3271 61.7323
ω3 328.3250 133.9828 121.4458

ω4 [40] 328.3251 133.9828 121.4456

It is important to note that, as can be seen in Table 6, the model implemented allows
us to obtain not only the resonance frequencies associated with transverse displacement,
but also for axial displacement, which is why the positions of the resonance frequencies
obtained do not correspond directly to those of Reddy [40]. For example, in the case
of modeling the beam with eight quadratic elements, the third fundamental frequency
presented in Reddy corresponds to the fourth frequency obtained with this model. For ver-
ification purposes, the graphical representation of the first four vibration modes associated
with the transverse displacement of the beam considering eight quadratic elements is also
shown in Figure 3, in order to compare with [40], in which the same vibration modes were
represented considering 16 linear elements, noting that, in the case of the calculated mode
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4, it is out of step with the reference mode; however, the model, in terms of representation
of vibration modes, is verified, since in this case the comparison is between linear elements
(in the referenced author) and quadratic elements (in the present model).

Table 6. Comparison of the first four resonance frequencies calculated using 2, 4, and 8 quadratic
elements, with the finite element model of [40], L/h = 100.

¯
ω 2 Elements 4 Elements 8 Elements

ω1 [40] 3.4947 3.4895 3.4892
ω1 3.4947 3.4895 3.4891

ω2 [40] 22.0762 21.0103 20.4421
ω2 22.0762 21.0103 20.9421

ω3 [40] 67.0884 56.4572 55.2405
ω3 54.4279 54.4149 54.4140

ω4 [40] 67.0884 56.4572 55.2406
ω4 181.0682 108.6060 100.7496
ω5 67.0884 56.4581 100.7496
ω6 165.9379 108.6060 -
ω7 181.0683 - -

Figure 3. Graphical representation of the first 4 vibration modes associated with the transverse
displacement of the cantilever beam with L/h=10, shown in [40].

3.1.3. Benchmark Function

To verify the Red Fox algorithm, we studied the Jones function [1], which consists
of a multimodal function of dimension 2, useful for testing global search algorithms and
gradient-based algorithms with different starting points. It is a function that has local
maxima and minimum, and a global minimum as presented in Table 7, and is defined by
the expression

f (x1, x2) = x4
1 + x4

2 − 4x3
1 − 3x3

2 + 2x2
1 + 2x1x2 (6)

Table 7. Global and local minima of Jones benchmark function.

Minimum [1] f
(
x*) x*

1 x*
2

Global −13.5320 2.6732 −0.6759

Local
−9.7770 −0.4495 2.2928
−9.0312 2.4939 1.9219

In order to verify and test the behavior of the algorithm, the function was tested for
different population values and iterations. Sets of 10 runs were carried out for N 10, 20, 30,
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40, and 50 foxes (individuals), for 50, 100, 150, 200, and 1000 iterations, in order to define
parameters that would make it possible to reconcile good accuracy and results without
compromising computational resources.

Based on the results (means and standard deviations) achieved and presented in
Table 8, in the next studies, the evolution of a population of 30 individuals will be analyzed
along 100 iterations. As mentioned in Section 2, this population dimension observes
the guidelines of the Central Limit Theorem ([36,37]), for each optimization process. In
addition to this, a set of 10 runs (10 complete optimization processes) is conducted for each
optimization case.

Table 8. Effect of the optimization parameters tmax and N on the results obtained for the benchmark
Jones function.

Number
of Foxes

Number of Iterations

50 100 150 200 500 1000

Mean
10

−12.7866 −13.5320 −13.5320 −13.0820 −13.5320 −13.5320
SD 1.4910 1.0257 × 10−10 2.4418 × 10−10 1.3502 × 10−11 2.3262 × 10−13 9.3925 × 10−14

Mean
20

−12.7737 −13.5320 −13.5320 −13.5320 −13.5320 −13.5320
SD 1.5796 1.0581 × 10−11 3.4485 × 10−12 1.3143 × 10−11 1.7249 × 10−13 1.7764 × 10−15

Mean
30

−13.5319 −13.5320 −13.5320 −13.5320 −13.5320 −13.5320
SD 0.0003 2.8218 × 10−11 1.4790 × 10−12 1.9876 × 10−14 6.4782 × 10−15 3.2269 × 10−15

Mean
40

−13.5320 −13.5320 −13.5320 −13.5320 −13.5320 −13.5320
SD 5.7240 × 10−7 1.7452 × 10−11 6.8349 × 10−12 4.3701 × 10−12 9.3638 × 10−14 1.6852 × 10−15

Mean
50

−13.1565 −13.5320 −13.5320 −13.5320 −13.5320 −13.5320
SD 1.1265 2.9396 × 10−11 2.9753 × 10−13 3.1482 × 10−14 6.3553 × 10−15 1.7764 × 10−15

3.2. Study of a Frame-Type Structure

The optimization studies carried out focus on frame-type structures with square cross-
sections, having as a goal the minimization of the maximum resultant displacement while
considering mass constraints. Although in the present work only square cross-sections
were considered, other geometrical configurations could be considered, either standard or
customized ones, as the implementation considered allows us to deal with continuous or
discrete design variables. In addition, other constraints could also be accommodated, for
example, related to Eurocode design rules, manufacturability constraints, or cost sensitivity
factors. However, considering the aim of this work, related to the evaluation of the
mentioned dataflow, only stiffness and mass constraints were considered in the next
case studies.

The frame-type structures studied have the configuration and loading illustrated in
Figure 4. The design variables are related to the members’ cross-section dimensions.

In the present study, a selective discretization approach was adopted, considering
10 quadratic beam elements in the member subject to distributed loading, and 5 elements
in the remaining ones. This discretized model was selected after convergence tests.
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Figure 4. Schematic representation of geometrical characteristics for the illustrative frame structure
studied. Loads and boundary conditions.

3.2.1. Case Study 1—Optimization of a Frame-Type Structure with Constant Square
Cross-Section

The first case study is about the structure presented in Figure 4 considering an equal
square cross-section in all elements. Two behavioral constraints were initially considered;
the maximum allowable displacement was set to correspond to the length of the member
suffering the greatest displacement divided by 200. It was also considered a minimum
displacement, to avoid unnecessary over-dimensioning of the structure, defined as the
length of the member suffering the greatest displacement divided by 400. It is also assumed
that no buckling occurs under the circumstances in which the structures are analyzed.

The results achieved in the 10 runs performed, considering in each run 100 iterations
and populations of 30 individuals, are presented in Table 9. The number of runs was limited
to 10 as a balance solution between computational resources and solutions’ representativity.

Table 9. Optimization of the structure with equal constant square cross-section in all members.

Run Best Solution (b)
[mm]

Displacement
[mm]

Fundamental
Frequency [Hz] Mass [kg]

1 74.7529 15.0000 57.2724 1202.1071
2 74.7529 15.0000 57.2723 1202.1056
3 74.7528 15.0001 57.2722 1202.1029
4 74.7529 15.0001 57.2723 1202.1060
5 74.7528 15.0001 57.2722 1202.1024
6 74.7529 15.0000 57.2723 1202.1061
7 74.7496 15.0027 57.2697 1201.9992
8 74.7529 15.0001 57.2723 1202.1042
9 74.7463 15.0054 57.2672 1201.8921
10 74.7521 15.0007 57.2716 1202.0795

The results obtained show a concentration of results at the lower limit defined for the
maximum resulting displacement of the structure, corresponding to a cross-section with an
edge of approximately 74.75 mm.
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3.2.2. Case Study 2—Frame-Type Structure with Constant Square Cross-Section and
Mass Restriction

In addition to the structure’s previous constraints, the second case study considers a
mass restriction of 1000 kg. The results obtained are presented in Table 10.

Table 10. Optimization of the structure with equal constant square cross-section in all members with
mass restriction.

Run Best Solution
[mm]

Displacement
[mm]

Fundamental
Frequency [Hz] Mass [kg]

1 68.1797 21.6346 52.2594 999.9921
2 68.1798 21.6344 52.2595 999.9959
3 68.1784 21.6361 52.2583 999.9555
4 68.1794 21.6350 52.2590 999.9850
5 68.1799 21.6349 52.2594 999.9975
6 68.1783 21.6364 52.2583 999.9504
7 68.1799 21.6343 52.2594 999.9977
8 68.1799 21.6343 52.2594 999.9979
9 68.1790 21.6356 52.2586 999.9721
10 68.1799 21.6345 52.2595 999.9991

The application of the mass restriction implies a reduction square cross-section edge
value of the members of the structure of near 8.8%, converging to approximately 68.2 mm,
with a consequent increase in the value of the maximum resulting displacement of the
structure, located close to the average value of the range defined for the displacement to
be evaluated. This increase in the maximum displacement is near 44.2%. As an additional
consequence of this stiffness reduction, the fundamental frequency shows a decreasing
trend of about 8.8%.

3.2.3. Case Study 3—Frame-Type Structure with Different Square Cross-Sections

In the third case study, it is considered that the structure is built with members with
different cross-section dimensions, although maintaining the square configuration. This
approach took into account the structure characteristics, so, edge b1 was considered for
vertical elements, b2 for horizontal elements, and b3 for the inclined ones. The results of
this study are shown in Table 11.

Table 11. Optimization of the structure considering different square cross-section values, using
30 individuals and 100 iterations in each run.

Run Best Solution
(b1) [mm]

Best Solution
(b2) [mm]

Best Solution
(b3) [mm]

Displacement
[mm]

Fundamental
Frequency [Hz] Mass [kg]

1 72.3722 104.5734 89.4797 15.0004 64.3588 1530.3103
2 73.4485 163.9175 21.4854 15.0070 18.7650 1187.2763
3 71.4657 167.4615 149.2217 15.0019 65.7274 3307.8591
4 99.0440 19.7390 82.8014 15.0013 49.7960 1601.0065
5 72.0807 113.8000 96.5733 15.0010 64.8184 1702.1619
6 72.4883 98.6433 135.6577 15.0008 64.4031 2514.2470
7 81.8877 193.2437 10.8062 15.0009 9.4457 1524.3766
8 72.0906 108.8678 168.9929 15.0004 64.9802 3546.2081
9 73.1327 86.2316 178.9409 15.0031 63.8004 3792.8592

10 72.3458 186.3778 30.4415 15.0065 26.5590 1402.8488

In opposition to previous case studies, in this case as the number of design variables
increased, the optimal solutions obtained during the ten runs show a greater dispersion,
which is an expected trend. Although the minimum maximum displacement is fairly close
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among the different runs, the corresponding structures’ masses and fundamental frequen-
cies present, in some cases, significant differences. This is an aspect for which analysis is
relevant to better characterize the different optimal design variables’ configurations. To this
purpose, the K-means algorithm was used [41] for clustering, while the Silhouette score
was considered to determine the number of clusters that should be used in each case. The
global average Silhouette scores for the other number of clusters is given in Table 12.

Table 12. Silhouette score for 2 to 8 clusters in the optimization process using 30 individuals and
100 iterations in each run.

Clusters 2 3 4 5 6 7 8

Silhouette score 0.500 0.516 0.385 0.440 0.405 0.318 0.262

According to the scores in Table 12, we selected three clusters as this number of clusters
corresponds to the highest Silhouette score (0.516). The three clusters can be observed in
the scatter plot presented in Figure 5, using different colors for the three regions.

 

Figure 5. Clusters for the optimal solutions dataset in the optimization process using 30 individuals
and 100 iterations in each run.

In Cluster 1, we have high values for b3 and moderate values for b1 and b2 variables
yielding heavier structures with higher fundamental frequencies. In Cluster 2, varied
values for b1, very high values of b2, and very low values of b3 are found. This inverse
correlation between b2 and b3 leads to very low frequency and mass values. Finally, for
Cluster 3, we find a low value for b2 and moderate values for b1 and b3. The centroids and
intervals of each cluster considering the original scale of each variable are presented in
Table 13.
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Table 13. Cluster centroids for the optimization process using 30 individuals and 100 iterations.

Cluster Runs b1 [mm] b2 [mm] b3 [mm]

1 1, 3, 5, 6, 8, 9 72.2717
(71.47–72.49)

113.2629
(86.23–167.46)

136.4777
(89.48–178.94)

2 2, 7, 10 75.8940
(73.45–81.89)

181.1797
(163.92–193.24)

20.9110
(10.81–30.44)

3 4 99.0440 19.7390 82.8014

Note that all the instances are effective optimal solutions, so the unique point in the
third cluster does not constitute an outlier, but a valid instance as well as the others.

Summarizing the key aspects for this optimization process, we can say that high
values of b3 consistently correlate with high frequencies as shown in the first and third
cluster. Low values of b3 lead to low frequencies. The structure mass follows a similar trend.
These conclusions are supported by the role that the inclined elements play in the analyzed
structure. Regarding b2, when these values are very high, Cluster 2 forces b3 values to
be lower. However, for moderate b2 values, high values of b3 are found, yielding to high
masses and frequencies. Overall, it is seen that b3 has a greater influence on clustering
followed by b2 as they possess greater standard deviations, namely 58.25 and 50.81 against
8.19 for b1.

Within the same case study, it was intended to allow the optimization algorithm
to progress in a higher number of iterations, although maintaining the same number of
function evaluations, so we have further considered the following optimization parameters:
10 runs, where in each run a population of 20 individuals is allowed to progress along
150 iterations. The results obtained in this optimization process are presented in Table 14.

Table 14. Optimization of the structure considering different square cross-section values, using
20 individuals and 150 iterations in each run.

Run Best Solution
(b1) [mm]

Best Solution
(b2) [mm]

Best Solution
(b3) [mm]

Displacement
[mm]

Fundamental
Frequency [Hz] Mass [kg]

1 72.0103 113.4950 138.2667 15.0026 65.0105 2651.5073
2 71.4793 158.1470 199.1264 15.0045 65.7291 4926.6675
3 175.6964 19.9670 13.8323 15.0049 11.7764 2939.5891
4 72.0715 111.4927 129.9525 15.0018 64.9146 2424.9065
5 72.9301 90.3299 133.6916 15.0015 63.8515 2431.7774
6 76.0955 101.4636 16.8798 15.0039 14.7473 816.6170
7 76.2100 87.4959 18.8374 15.0011 16.4516 762.8236
8 71.5161 188.7119 77.3680 15.0012 65.2092 1904.0974
9 71.6778 152.5432 69.0547 15.0092 59.3841 1496.8936

10 71.5032 156.2309 172.1362 15.0008 65.6971 3938.5718

As expected, and similar to the results obtained previously, Table 13 shows that the
results obtained for the objective function are very close, although the design variables’
configurations achieved in each run show clear differences. Thus, as shown previously,
we have proceeded to a clustering analysis of those configurations, for a more systematic
characterization. In this set of optimal solutions, five clusters were found to be the best
clustering arrangement, according to the Silhouette score (0.628). The global average
Silhouette scores for other numbers of clusters are given in Table 15.
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Table 15. Silhouette score for 2 to 8 clusters in the optimization process using 20 individuals and
150 iterations in each run.

Clusters 2 3 4 5 6 7 8

Silhouette score 0.559 0.366 0.488 0.628 0.520 0.436 0.303

The clusters’ centroids, considering the original scale of each variable, are presented
in Table 16. This table also presents the corresponding optimization runs where those
configurations were obtained.

Table 16. Cluster centroids for the optimization process using 20 individuals and 150 iterations in
each run.

Cluster Runs b1 [mm] b2 [mm] b3 [mm]

1 6, 7 76.1528
(76.10–76.21)

94.4798
(87.50–101.46)

17.8596
(16.88–18.84)

2 1, 4, 5 72.3373
(72.01–72.93)

105.1059
(90.33–113.50)

133.9703
(129.95–138.27)

3 3 175.6964 19.9670 13.8323

4 8, 9 71.5970
(71.52–71.68)

170.6276
(152.54–188.71)

73.2114
(69.05–77.37)

5 2, 10 71.4913
(71.48–71.50)

157.1890
(156.23–158.15)

185.6313
(172.14–199.13)

From Table 14, we can see that Cluster 1 is particularly characterized by very low
values of b3, while b1 and b2 present moderate values. Cluster 2 is characterized by high b3
values and moderate b1 and b2 values. Cluster 3 contains a low value of b3 and b2, and a
very high b1 value. Regarding Cluster 4, it includes moderate values of b3 and b1 and very
high values of b2. Finally, Cluster 5 includes instances with very high values of b3, high
values of b2, and moderate b1 values. Figure 6 presents a scatter plot where these clusters
are represented.

According to the achieved clustering, it is possible to summarize that the configu-
rations in Cluster 1 provide the lightest structures with lower fundamental frequencies
while the ones in Cluster 5 provide heavier structures with higher frequencies followed by
Cluster 3. The remaining configurations demonstrate intermediate values, with opposite
range values regarding the b2 and b3 variables.

The design variables of the achieved optimal configurations show less discrepant
standard deviations. Now, we have 30.91, 45.73, and 63.89 for the features b1, b2, and b3,
respectively. Although b3 continues to be the most influential on clustering, b2 lost some
importance while the opposite happened in the case of b1. Again, the influence of b3 from
the mechanical perspective supports the results arising from the optimal solutions analysis.

As a final scenario in this case study, we have considered a mass constraint of 1000 kg.
The optimal solutions obtained in ten runs, maintaining the latter number of individuals
and iterations, are presented in Table 17.

Table 17. Optimization of the structure considering mass constraint, using 20 individuals and
150 iterations in each run.

Run Best Solution
(b1) [mm]

Best Solution
(b2) [mm]

Best Solution
(b3) [mm]

Displacement
[mm]

Fundamental
Frequency [Hz] Mass [kg]

1 85.6639 86.6051 27.9362 9.5307 24.3466 944.8848
2 99.3422 26.6380 20.1129 8.9263 16.9451 986.8938
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Table 17. Cont.

Run Best Solution
(b1) [mm]

Best Solution
(b2) [mm]

Best Solution
(b3) [mm]

Displacement
[mm]

Fundamental
Frequency [Hz] Mass [kg]

3 97.2821 51.8613 21.2072 8.7075 18.4558 999.7722
4 91.1751 72.4751 24.3450 8.8589 21.2195 965.5522
5 89.2036 73.1721 26.5999 9.2525 23.1640 945.5724
6 89.4786 80.1648 26.1629 8.7600 22.8042 973.2495
7 87.1829 92.5082 27.4418 8.7934 23.9280 991.9190
8 92.4133 69.5464 24.7362 8.6579 21.5500 979.0511
9 93.1660 75.8590 19.3753 8.7174 16.9155 990.8795

10 87.4491 83.7596 32.9157 8.8326 28.6142 992.0630

 

Figure 6. Clusters for the optimal solutions dataset in the optimization process using 20 individuals
and 150 iterations in each run.

Regarding these optimal configurations, the Silhouette score pointed to a two-clusters
structure, for which the scatterplot is presented in Figure 7.

The centroids of the two clusters are characterized in Table 18, being presented also
with the corresponding design variables’ intervals and the runs in which solutions were
assigned to the clusters.

Table 18. Cluster centroids for the optimization process with mass constraint, using 30 individuals
and 100 iterations in each run.

Cluster Runs b1 [mm] b2 [mm] b3 [mm]

1 1, 4, 5, 6, 7, 8, 10 88.9381
(85.66–93.17)

79.7473
(69.55–92.51)

27.1625
(19.38–32.92)

2 2, 3, 9 96.5968
(93.17–99.34)

51.4528
(26.64–75.86)

20.2318
(19.38–21.21)

The imposition of a mass constraint produced a clear effect in narrowing the domain
of the previously most influential design variable, b3, significantly reducing its standard
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deviation. Cluster 2 is characterized by lower b3 values while Cluster 1 possesses slightly
higher b3 values. The major difference between the two clusters is related to the variables
b1 and b2. Under this constraint the design variable b2 has assumed a more influential role
although not as much as the b3 variable played in the previous situations. The masses of the
structures are now not significantly different in the two clusters; however, the fundamental
frequencies in Cluster 2 are lower than the ones in Cluster 1’s structures.

 

Figure 7. Clusters for the optimal solutions dataset in the optimization process with mass constraint,
using 20 individuals and 150 iterations in each run.

4. Conclusions
The main goal of the present work is the constitution of a framework that enables the

optimization and characterization of optimal solutions regarding the configurations that
minimize the maximum resultant displacement of steel-plane frame structures. Although
being considered as a single objective problem, multiple solutions will be achieved due to
the metaheuristic nature of the process; different runs and a subsequent exploratory data
analysis were performed.

Following a schematic dataflow to represent the Red Fox Optimization method inter-
acting with the finite element analysis, followed by the Silhouette method and the K-means
method, we present a set of studies aiming in a first stage to verify the implemented analy-
sis and optimization codes and in a second stage to illustrate the global procedure. From
the verification cases, the good performance of the implemented codes is concluded.

The optimal solutions dataset exploratory analysis performed through K-means al-
lowed us to identify groups of optimal solutions with specific characteristics that although
concurring to the minimum displacement solution present distinct responses regarding
the mass of the structures and their fundamental frequency. This demonstrates the need to
characterize the different solutions, as this information will provide valuable insights for a
better configuration selection. The study carried out also identified the most influential
design variables in different situations, information that is supported by the known contri-
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bution that the different members in the structure will play whether behavioral constraints
are imposed or not.
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