An Adaptive Memetic Differential Evolution with Virtual Population and Multi-Mutation Strategies for Multimodal Optimization Problems
Abstract
1. Introduction
2. Prerequisites
2.1. Problem Description
2.2. Differential Evolution
3. Related Works
3.1. Hybrid Evolutionary Algorithms
3.2. Population Diversity
3.3. Local Searches
4. Proposed Algorithm
| Algorithm 1 The procedure of VMPMA. |
|
4.1. Virtual Population Mechanism
| Algorithm 2 Virtual Population Mechanism. |
|
4.2. Multi-Mutation Strategy
4.3. Adaptive Local Search Strategy
| Algorithm 3 Adaptive Local Search Operation. |
|
5. Experiments
5.1. Experimental Data and Settings
5.2. Exploring the Proposed Method
5.3. Comparing with Related Algorithms
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gong, M.; Tang, Z.; Li, H.; Zhang, J. Evolutionary multitasking with dynamic resource allocating strategy. IEEE Trans. Evol. Comput. 2019, 23, 858–869. [Google Scholar] [CrossRef]
- Yu, Y.; Gao, S.; Wang, Y.; Cheng, J.; Todo, Y. ASBSO: An improved brain storm optimization with flexible search length and memory-based selection. IEEE Access 2018, 6, 36977–36994. [Google Scholar] [CrossRef]
- Liu, X.F.; Zhan, Z.H.; Deng, J.D.; Li, Y.; Gu, T.; Zhang, J. An energy efficient ant colony system for virtual machine placement in cloud computing. IEEE Trans. Evol. Comput. 2016, 22, 113–128. [Google Scholar] [CrossRef]
- Zaman, F.; Elsayed, S.M.; Ray, T.; Sarkerr, R.A. Evolutionary algorithms for finding nash equilibria in electricity markets. IEEE Trans. Evol. Comput. 2017, 22, 536–549. [Google Scholar] [CrossRef]
- Vidanalage, B.D.S.G.; Toulabi, M.S.; Filizadeh, S. Multimodal design optimization of V-shaped magnet IPM synchronous machines. IEEE Trans. Energy Convers. 2018, 33, 1547–1556. [Google Scholar] [CrossRef]
- Gao, W.; Yen, G.G.; Liu, S. A cluster-based differential evolution with self-adaptive strategy for multimodal optimization. IEEE Trans. Cybern. 2013, 44, 1314–1327. [Google Scholar] [CrossRef]
- Li, C.; Zhai, Y.; Palade, V.; Fang, W.; Lu, H.; Mao, L.; Sun, J. Diversity-based adaptive differential evolution algorithm for multimodal optimization problems. Swarm Evol. Comput. 2025, 93, 101869. [Google Scholar] [CrossRef]
- Cheng, R.; Li, M.; Li, K.; Yao, X. Evolutionary multiobjective optimization-based multimodal optimization: Fitness landscape approximation and peak detection. IEEE Trans. Evol. Comput. 2017, 22, 692–706. [Google Scholar] [CrossRef]
- Yan, L.; Guo, S.; Liang, J.; Qu, B.; Li, C.; Yu, K. A subspace strategy based coevolutionary framework for constrained multimodal multiobjective optimization problems. Swarm Evol. Comput. 2025, 95, 101941. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Xiao, J.; Yang, Y.; Liang, J.; Li, T. Particle swarm optimizer with crossover operation. Eng. Appl. Artif. Intell. 2018, 70, 159–169. [Google Scholar] [CrossRef]
- Akopov, A.S. A clustering-based hybrid particle swarm optimization algorithm for solving a multisectoral agent-based model. Stud. Inform. Control 2024, 33, 83–95. [Google Scholar] [CrossRef]
- Harik, G.R. Finding multimodal solutions using restricted tournament selection. In Proceedings of the ICGA, Pittsburgh, PA, USA, 15–19 July 1995; pp. 24–31. [Google Scholar]
- Della Cioppa, A.; De Stefano, C.; Marcelli, A. Where are the niches? Dynamic fitness sharing. IEEE Trans. Evol. Comput. 2007, 11, 453–465. [Google Scholar] [CrossRef]
- Miller, B.L.; Shaw, M.J. Genetic algorithms with dynamic niche sharing for multimodal function optimization. In Proceedings of the IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 786–791. [Google Scholar]
- Thomsen, R. Multimodal optimization using crowding-based differential evolution. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), Portland, OR, USA, 19–23 June 2004; Volume 2. pp. 1382–1389. [Google Scholar]
- Qu, B.Y.; Suganthan, P.N.; Liang, J.J. Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans. Evol. Comput. 2012, 16, 601–614. [Google Scholar] [CrossRef]
- Biswas, S.; Kundu, S.; Das, S. Inducing niching behavior in differential evolution through local information sharing. IEEE Trans. Evol. Comput. 2014, 19, 246–263. [Google Scholar] [CrossRef]
- Li, X.; Epitropakis, M.G.; Deb, K.; Engelbrecht, A. Seeking multiple solutions: An updated survey on niching methods and their applications. IEEE Trans. Evol. Comput. 2016, 21, 518–538. [Google Scholar] [CrossRef]
- Huang, T.; Gong, Y.J.; Kwong, S.; Wang, H.; Zhang, J. A niching memetic algorithm for multi-solution traveling salesman problem. IEEE Trans. Evol. Comput. 2019, 24, 508–522. [Google Scholar] [CrossRef]
- Shi, L.; Hu, Z.; Su, Q.; Miao, Y. A modified multifactorial differential evolution algorithm with optima-based transformation. Appl. Intell. 2023, 53, 2989–3001. [Google Scholar] [CrossRef]
- Wang, X.; Sheng, M.; Ye, K.; Lin, J.; Mao, J.; Chen, S.; Sheng, W. A multilevel sampling strategy based memetic differential evolution for multimodal optimization. Neurocomputing 2019, 334, 79–88. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, W.N.; Li, Y.; Chen, C.P.; Xu, X.M.; Zhang, J. Multimodal estimation of distribution algorithms. IEEE Trans. Cybern. 2016, 47, 636–650. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Shuai, Y.; Shen, D.; Shen, M. Potential-optima guided adaptive neighborhood differential evolution algorithm for multimodal optimization problems. J. Supercomput. 2025, 81, 1–39. [Google Scholar] [CrossRef]
- Teo, J. Exploring dynamic self-adaptive populations in differential evolution. Soft Comput. 2006, 10, 673–686. [Google Scholar]
- Zamuda, A.; Brest, J. Population reduction differential evolution with multiple mutation strategies in real world industry challenges. In Proceedings of the International Symposium on Evolutionary Computation, Zakopane, Poland, 29 April–3 May 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 154–161. [Google Scholar]
- Zaharie, D.; Petcu, D. Parallel Implementation of Multi-population. Concurr. Inf. Process. Comput. 2005, 195, 223. [Google Scholar]
- De Falco, I.; Della Cioppa, A.; Maisto, D.; Scafuri, U.; Tarantino, E. Biological invasion–inspired migration in distributed evolutionary algorithms. Inf. Sci. 2012, 207, 50–65. [Google Scholar] [CrossRef]
- Dorronsoro, B.; Bouvry, P. Improving classical and decentralized differential evolution with new mutation operator and population topologies. IEEE Trans. Evol. Comput. 2011, 15, 67–98. [Google Scholar] [CrossRef]
- Jin, P.; Cen, J.; Feng, Q.; Ai, W.; Chen, H.; Qiao, H. Differential evolution with the mutation strategy transformation based on a quartile for numerical optimization. Appl. Intell. 2024, 54, 334–356. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Yan, X. A variable population size opposition-based learning for differential evolution algorithm and its applications on feature selection. Appl. Intell. 2024, 54, 959–984. [Google Scholar] [CrossRef]
- Yuan, G.; Sun, G.; Deng, L.; Li, C.; Yang, G. A novel differential evolution algorithm based on periodic intervention and systematic regulation mechanisms. Appl. Intell. 2024, 54, 11779–11803. [Google Scholar] [CrossRef]
- Epitropakis, M.G.; Plagianakos, V.P.; Vrahatis, M.N. Multimodal optimization using niching differential evolution with index-based neighborhoods. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8. [Google Scholar]
- Varela, D.; Santos, J. Protein structure prediction in an atomic model with differential evolution integrated with the crowding niching method. Nat. Comput. 2022, 21, 537–551. [Google Scholar] [CrossRef]
- Li, Y.; Guo, H.; Liu, X.; Li, Y.; Pan, W.; Gong, B.; Pang, S. New mutation strategies of differential evolution based on clearing niche mechanism. Soft Comput. 2017, 21, 5939–5974. [Google Scholar]
- Gong, Y.J.; Zhang, J.; Zhou, Y. Learning multimodal parameters: A bare-bones niching differential evolution approach. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 2944–2959. [Google Scholar] [CrossRef] [PubMed]
- Li, X. Efficient differential evolution using speciation for multimodal function optimization. In Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, Washington DC, USA, 25–29 June 2005; pp. 873–880. [Google Scholar]
- Li, X. Niching without niching parameters: Particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 2009, 14, 150–169. [Google Scholar] [CrossRef]
- Chen, Z.G.; Zhan, Z.H.; Wang, H.; Zhang, J. Distributed individuals for multiple peaks: A novel differential evolution for multimodal optimization problems. IEEE Trans. Evol. Comput. 2019, 24, 708–719. [Google Scholar] [CrossRef]
- Vitela, J.E.; Castaños, O. A real-coded niching memetic algorithm for continuous multimodal function optimization. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp. 2170–2177. [Google Scholar]
- Ni, J.; Li, L.; Qiao, F.; Wu, Q. A novel memetic algorithm based on the comprehensive learning PSO. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8. [Google Scholar]
- Ono, S.; Hirotani, Y.; Nakayama, S. Multiple solution search based on hybridization of real-coded evolutionary algorithm and quasi-newton method. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 1133–1140. [Google Scholar]
- Wang, Z.J.; Zhan, Z.H.; Lin, Y.; Yu, W.J.; Wang, H.; Kwong, S.; Zhang, J. Automatic niching differential evolution with contour prediction approach for multimodal optimization problems. IEEE Trans. Evol. Comput. 2019, 24, 114–128. [Google Scholar] [CrossRef]
- Tanabe, R.; Fukunaga, A.S. Improving the search performance of SHADE using linear population size reduction. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 1658–1665. [Google Scholar]
- Karafotias, G.; Hoogendoorn, M.; Eiben, Á.E. Parameter control in evolutionary algorithms: Trends and challenges. IEEE Trans. Evol. Comput. 2014, 19, 167–187. [Google Scholar] [CrossRef]
- Zhou, A.; Sun, J.; Zhang, Q. An estimation of distribution algorithm with cheap and expensive local search methods. IEEE Trans. Evol. Comput. 2015, 19, 807–822. [Google Scholar] [CrossRef]
- Li, X.; Engelbrecht, A.; Epitropakis, M.G. Benchmark Functions for CEC’2013 Special Session and Competition on Niching Methods for Multimodal Function Optimization; Technical Report; RMIT University, Evolutionary Computation and Machine Learning Group: Melbourne, VIC, Australia, 2013. [Google Scholar]
- Wang, Z.J.; Zhou, Y.R.; Zhang, J. Adaptive estimation distribution distributed differential evolution for multimodal optimization problems. IEEE Trans. Cybern. 2020, 52, 6059–6070. [Google Scholar] [CrossRef]
- Qu, B.Y.; Suganthan, P.N.; Das, S. A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans. Evol. Comput. 2012, 17, 387–402. [Google Scholar] [CrossRef]


| Functions | Population Size | MNFE |
|---|---|---|
| F1–F5 | 80 | |
| F6 | 100 | |
| F7 | 300 | |
| F8–F9 | 300 | |
| F10 | 100 | |
| F11–F13 | 200 | |
| F14–F20 | 200 |
| VMP | VMP | VMP | VMP | VMP | VMP | VMP | VMP | VMP | VMP | VMP | VMP | VMP | VMP | VMP | VMP | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MA | MA_1 | MA_2 | MA_3 | MA | MA_1 | MA_2 | MA_3 | MA | MA_1 | MA_2 | MA_3 | MA | MA_1 | MA_2 | MA_3 | |
| F1 | F2 | F3 | F4 | |||||||||||||
| 1.0E−1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.0E−2 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.0E−3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.0E−4 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.0E−5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F5 | F6 | F7 | F8 | |||||||||||||
| 1.0E−1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.944 | 0.911 | 0.996 | 0.997 |
| 1.0E−2 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.923 | 0.846 | 0.809 | 0.808 | 0.936 | 0.911 | 0.987 | 0.989 |
| 1.0E−3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.921 | 0.832 | 0.782 | 0.778 | 0.979 | 0.939 | 0.949 | 0.947 |
| 1.0E−4 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.996 | 0.920 | 0.832 | 0.758 | 0.750 | 0.926 | 0.876 | 0.663 | 0.696 |
| 1.0E−5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.990 | 0.889 | 0.814 | 0.729 | 0.730 | 0.919 | 0.876 | 0.183 | 0.211 |
| F9 | F10 | F11 | F12 | |||||||||||||
| 1.0E−1 | 0.671 | 0.691 | 0.828 | 0.821 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.961 | 0.944 | 0.941 |
| 1.0E−2 | 0.478 | 0.467 | 0.389 | 0.380 | 1.000 | 1.000 | 1.000 | 1.000 | 0.971 | 0.699 | 0.716 | 0.667 | 1.000 | 0.890 | 0.895 | 0.784 |
| 1.0E−3 | 0.473 | 0.427 | 0.361 | 0.347 | 1.000 | 1.000 | 1.000 | 1.000 | 0.967 | 0.690 | 0.686 | 0.667 | 1.000 | 0.833 | 0.883 | 0.696 |
| 1.0E−4 | 0.470 | 0.413 | 0.334 | 0.330 | 1.000 | 1.000 | 1.000 | 1.000 | 0.958 | 0.670 | 0.673 | 0.667 | 1.000 | 0.784 | 0.737 | 0.696 |
| 1.0E−5 | 0.444 | 0.413 | 0.315 | 0.312 | 1.000 | 1.000 | 1.000 | 1.000 | 0.947 | 0.667 | 0.667 | 0.667 | 0.998 | 0.748 | 0.765 | 0.647 |
| F13 | F14 | F15 | F16 | |||||||||||||
| 1.0E−1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1.0E−2 | 0.791 | 0.667 | 0.677 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.697 | 0.598 | 0.593 | 0.527 | 0.680 | 0.670 | 0.680 | 0.686 |
| 1.0E−3 | 0.712 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.647 | 0.598 | 0.593 | 0.488 | 0.667 | 0.667 | 0.667 | 0.657 |
| 1.0E−4 | 0.708 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.647 | 0.596 | 0.591 | 0.486 | 0.667 | 0.667 | 0.667 | 0.657 |
| 1.0E−5 | 0.706 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.667 | 0.647 | 0.596 | 0.588 | 0.461 | 0.667 | 0.667 | 0.667 | 0.631 |
| F17 | F18 | F19 | F20 | |||||||||||||
| 1.0E−1 | 1.000 | 0.995 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.309 | 0.255 | 0.828 | 0.924 | 0.998 | 0.963 | 0.007 | 0.003 |
| 1.0E−2 | 0.493 | 0.419 | 0.409 | 0.331 | 0.667 | 0.663 | 0.680 | 0.522 | 0.262 | 0.228 | 0.257 | 0.253 | 0.125 | 0.125 | 0.000 | 0.000 |
| 1.0E−3 | 0.493 | 0.419 | 0.409 | 0.330 | 0.667 | 0.644 | 0.598 | 0.421 | 0.262 | 0.211 | 0.125 | 0.125 | 0.125 | 0.123 | 0.000 | 0.000 |
| 1.0E−4 | 0.469 | 0.419 | 0.409 | 0.294 | 0.667 | 0.444 | 0.526 | 0.420 | 0.262 | 0.179 | 0.015 | 0.020 | 0.125 | 0.066 | 0.000 | 0.000 |
| 1.0E−5 | 0.426 | 0.419 | 0.409 | 0.255 | 0.663 | 0.330 | 0.415 | 0.255 | 0.262 | 0.179 | 0.000 | 0.003 | 0.003 | 0.005 | 0.000 | 0.000 |
| Functions | Method | |||
|---|---|---|---|---|
| VMPMA_3 | VMPMA_2 | VMPMA_1 | VMPMA | |
| F1 | ||||
| F2 | ||||
| F3 | ||||
| F4 | ||||
| F5 | ||||
| F6 | ||||
| F7 | ||||
| F8 | ||||
| F9 | ||||
| F10 | ||||
| F11 | ||||
| F12 | ||||
| F13 | ||||
| F14 | ||||
| F15 | ||||
| F16 | ||||
| F17 | ||||
| F18 | ||||
| F19 | ||||
| F20 | ||||
| Func | VMPMA | CDE | SDE | R2PSO | R3PSO | SCCDE | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | |
| F1 | 1.000 | 1.000 | 1.000 | 1.000 | 0.971 | 0.941 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F2 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F4 | 1.000 | 1.000 | 1.000 | 1.000 | 0.789 | 0.392 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F6 | 1.000 | 1.000 | 1.000 | 1.000 | 0.257 | 0.000 | 0.579 | 0.000 | 0.636 | 0.000 | 1.000 | 1.000 |
| F7 | 1.000 | 1.000 | 0.999 | 0.980 | 0.482 | 0.000 | 0.934 | 0.255 | 0.994 | 0.941 | 0.987 | 0.902 |
| F8 | 0.944 | 0.059 | 0.105 | 0.000 | 0.025 | 0.000 | 0.036 | 0.000 | 0.451 | 0.000 | 1.000 | 1.000 |
| F9 | 0.671 | 0.000 | 0.503 | 0.000 | 0.095 | 0.000 | 0.238 | 0.000 | 0.198 | 0.000 | 0.432 | 0.000 |
| F10 | 1.000 | 1.000 | 1.000 | 1.000 | 0.842 | 0.039 | 0.985 | 0.824 | 0.985 | 0.824 | 1.000 | 1.000 |
| F11 | 1.000 | 1.000 | 0.983 | 0.941 | 0.657 | 0.000 | 0.951 | 0.745 | 0.974 | 0.863 | 1.000 | 1.000 |
| F12 | 1.000 | 1.000 | 0.360 | 0.000 | 0.610 | 0.000 | 0.549 | 0.000 | 0.556 | 0.000 | 0.950 | 0.686 |
| F13 | 1.000 | 1.000 | 0.895 | 0.255 | 0.637 | 0.000 | 0.761 | 0.118 | 0.997 | 0.980 | 1.000 | 1.000 |
| F14 | 1.000 | 1.000 | 1.000 | 1.000 | 0.428 | 0.000 | 0.988 | 0.902 | 0.876 | 0.000 | 1.000 | 1.000 |
| F15 | 1.000 | 1.000 | 0.993 | 0.961 | 0.245 | 0.000 | 0.756 | 0.000 | 0.792 | 0.000 | 0.995 | 0.961 |
| F16 | 1.000 | 1.000 | 0.899 | 0.706 | 0.173 | 0.000 | 0.663 | 0.000 | 0.761 | 0.000 | 1.000 | 1.000 |
| F17 | 1.000 | 1.000 | 0.365 | 0.020 | 0.554 | 0.000 | 0.006 | 0.000 | 0.369 | 0.000 | 0.993 | 0.941 |
| F18 | 1.000 | 1.000 | 0.993 | 0.980 | 0.198 | 0.000 | 0.258 | 0.000 | 0.468 | 0.000 | 1.000 | 1.000 |
| F19 | 0.309 | 0.000 | 0.000 | 0.000 | 0.025 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 | 0436 | 0.000 |
| F20 | 0.998 | 0.980 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.494 | 0.000 |
| + | 11 | 17 | 15 | 15 | 5 | |||||||
| − | 0 | 0 | 0 | 0 | 2 | |||||||
| ≈ | 9 | 3 | 5 | 5 | 13 | |||||||
| Func | SCSDE | NCDE | NSDE | LIPS | LMSEDA | AED-DDE | ||||||
| PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | |
| F1 | 0.980 | 0.961 | 1.000 | 1.000 | 1.000 | 1.000 | 0.726 | 0.549 | 1.000 | 1.000 | 1.000 | 1.000 |
| F2 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F4 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F6 | 0.926 | 0.490 | 0.910 | 0.490 | 0.056 | 0.000 | 0.889 | 0.039 | 0.953 | 0.471 | 1.000 | 1.000 |
| F7 | 1.000 | 1.000 | 0.885 | 0.020 | 0.048 | 0.000 | 0.489 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F8 | 0.999 | 0.980 | 0.999 | 0.980 | 0.013 | 0.000 | 0.616 | 0.000 | 0.619 | 0.000 | 0.836 | 0.078 |
| F9 | 0.272 | 0.000 | 0.454 | 0.000 | 0.005 | 0.000 | 0.194 | 0.000 | 0.318 | 0.000 | 0.458 | 0.000 |
| F10 | 1.000 | 1.000 | 1.000 | 1.000 | 0.079 | 0.000 | 0.989 | 0.882 | 1.000 | 1.000 | 1.000 | 1.000 |
| F11 | 1.000 | 1.000 | 0.768 | 0.118 | 0.846 | 0.255 | 0.941 | 0.647 | 1.000 | 1.000 | 1.000 | 1.000 |
| F12 | 0.797 | 0.275 | 0.775 | 0.059 | 0.175 | 0.000 | 0.917 | 0.373 | 0.968 | 0.745 | 1.000 | 1.000 |
| F13 | 0.994 | 0.961 | 0.673 | 0.000 | 0.188 | 0.000 | 0.768 | 0.020 | 0.994 | 0.961 | 1.000 | 1.000 |
| F14 | 1.000 | 1.000 | 0.686 | 0.000 | 0.712 | 0.020 | 0.667 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F15 | 0.628 | 0.000 | 0.419 | 0.000 | 0.583 | 0.000 | 0.609 | 0.000 | 0.998 | 0.980 | 1.000 | 1.000 |
| F16 | 1.000 | 1.000 | 0.755 | 0.157 | 0.791 | 0.177 | 0.445 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F17 | 0.375 | 0.000 | 0.292 | 0.000 | 0.314 | 0.000 | 0.228 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F18 | 0.486 | 0.000 | 0.909 | 0.647 | 0.516 | 0.020 | 0.617 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F19 | 0.269 | 0.000 | 0.306 | 0.000 | 0.299 | 0.000 | 0.008 | 0.000 | 0.838 | 0.608 | 0.627 | 0.000 |
| F20 | 0.128 | 0.000 | 0.451 | 0.000 | 0.392 | 0.000 | 0.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| + | 9 | 12 | 15 | 15 | 5 | 2 | ||||||
| − | 2 | 1 | 0 | 0 | 1 | 1 | ||||||
| ≈ | 9 | 7 | 5 | 5 | 14 | 17 | ||||||
| Func | VMPMA | CDE | SDE | R2PSO | R3PSO | SCCDE | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | |
| F1 | 1.000 | 1.000 | 1.000 | 1.000 | 0.971 | 0.941 | 1.000 | 1.000 | 1.000 | 1.000 | 0.990 | 0.980 |
| F2 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F4 | 1.000 | 1.000 | 1.000 | 1.000 | 0.789 | 0.392 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F6 | 1.000 | 1.000 | 0.990 | 0.941 | 0.257 | 0.000 | 0.579 | 0.000 | 0.633 | 0.000 | 0.999 | 0.980 |
| F7 | 0.923 | 0.471 | 0.884 | 0.000 | 0.478 | 0.000 | 0.567 | 0.000 | 0.537 | 0.000 | 0.883 | 0.020 |
| F8 | 0.936 | 0.706 | 0.000 | 0.000 | 0.025 | 0.000 | 0.036 | 0.000 | 0.406 | 0.000 | 0.997 | 0.980 |
| F9 | 0.478 | 0.000 | 0.474 | 0.000 | 0.095 | 0.000 | 0.127 | 0.000 | 0.198 | 0.000 | 0.456 | 0.000 |
| F10 | 1.000 | 1.000 | 1.000 | 1.000 | 0.842 | 0.039 | 0.942 | 0.490 | 0.962 | 0.647 | 1.000 | 1.000 |
| F11 | 0.971 | 0.843 | 0.605 | 0.000 | 0.657 | 0.000 | 0.660 | 0.000 | 0.670 | 0.000 | 0.953 | 0.902 |
| F12 | 1.000 | 1.000 | 0.054 | 0.000 | 0.605 | 0.000 | 0.449 | 0.000 | 0.551 | 0.000 | 0.782 | 0.000 |
| F13 | 0.791 | 0.098 | 0.627 | 0.000 | 0.637 | 0.000 | 0.660 | 0.000 | 0.663 | 0.000 | 0.667 | 0.000 |
| F14 | 0.667 | 0.000 | 0.337 | 0.000 | 0.428 | 0.000 | 0.437 | 0.000 | 0.644 | 0.000 | 0.667 | 0.000 |
| F15 | 0.697 | 0.000 | 0.147 | 0.000 | 0.245 | 0.000 | 0.174 | 0.000 | 0.179 | 0.000 | 0.404 | 0.000 |
| F16 | 0.680 | 0.000 | 0.062 | 0.000 | 0.173 | 0.000 | 0.183 | 0.000 | 0.461 | 0.000 | 0.667 | 0.000 |
| F17 | 0.493 | 0.000 | 0.007 | 0.000 | 0.091 | 0.000 | 0.006 | 0.000 | 0.123 | 0.000 | 0.311 | 0.000 |
| F18 | 0.667 | 0.000 | 0.134 | 0.000 | 0.009 | 0.000 | 0.058 | 0.000 | 0.065 | 0.000 | 0.647 | 0.000 |
| F19 | 0.262 | 0.000 | 0.000 | 0.000 | 0.025 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 | 0.320 | 0.000 |
| F20 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.253 | 0.000 |
| + | 13 | 17 | 15 | 15 | 10 | |||||||
| − | 0 | 0 | 0 | 0 | 3 | |||||||
| ≈ | 7 | 3 | 5 | 5 | 7 | |||||||
| Func | SCSDE | NCDE | NSDE | LIPS | LMSEDA | AED-DDE | ||||||
| PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | |
| F1 | 0.980 | 0.961 | 1.000 | 1.000 | 1.000 | 1.000 | 0.726 | 0.549 | 1.000 | 1.000 | 1.000 | 1.000 |
| F2 | 1.000 | 1.000 | 1.000 | 1.000 | 0.786 | 0.255 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F4 | 1.000 | 1.000 | 1.000 | 1.000 | 0.887 | 0.039 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.928 | 0.353 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F6 | 0.769 | 0.020 | 0.659 | 0.000 | 0.056 | 0.000 | 0.798 | 0.039 | 0.939 | 0.353 | 1.000 | 1.000 |
| F7 | 0.882 | 0.000 | 0.884 | 0.020 | 0.036 | 0.000 | 0.489 | 0.000 | 0.746 | 0.000 | 0.808 | 0.039 |
| F8 | 0.990 | 0.922 | 0.999 | 0.980 | 0.013 | 0.000 | 0.613 | 0.000 | 0.553 | 0.000 | 0.706 | 0.000 |
| F9 | 0.260 | 0.000 | 0.454 | 0.000 | 0.005 | 0.000 | 0.167 | 0.000 | 0.318 | 0.000 | 0.402 | 0.000 |
| F10 | 1.000 | 1.000 | 1.000 | 1.000 | 0.079 | 0.000 | 0.989 | 0.882 | 0.998 | 0.980 | 1.000 | 1.000 |
| F11 | 0.706 | 0.000 | 0.703 | 0.000 | 0.814 | 0.157 | 0.928 | 0.569 | 0.931 | 0.588 | 1.000 | 1.000 |
| F12 | 0.488 | 0.000 | 0.522 | 0.000 | 0.135 | 0.000 | 0.769 | 0.000 | 0.958 | 0.686 | 1.000 | 1.000 |
| F13 | 0.667 | 0.000 | 0.667 | 0.000 | 0.188 | 0.000 | 0.768 | 0.020 | 0.667 | 0.000 | 0.808 | 0.078 |
| F14 | 0.667 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 | 0.663 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 |
| F15 | 0.385 | 0.000 | 0.370 | 0.000 | 0.483 | 0.000 | 0.435 | 0.000 | 0.726 | 0.000 | 0.647 | 0.000 |
| F16 | 0.657 | 0.000 | 0.644 | 0.000 | 0.660 | 0.000 | 0.440 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 |
| F17 | 0.267 | 0.000 | 0.243 | 0.000 | 0.257 | 0.000 | 0.228 | 0.000 | 0.493 | 0.000 | 0.375 | 0.000 |
| F18 | 0.480 | 0.000 | 0.360 | 0.000 | 0.363 | 0.000 | 0.217 | 0.000 | 0.628 | 0.000 | 0.654 | 0.000 |
| F19 | 0.248 | 0.000 | 0.230 | 0.000 | 0.098 | 0.000 | 0.008 | 0.000 | 0.407 | 0.000 | 0.375 | 0.000 |
| F20 | 0.129 | 0.000 | 0.253 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.250 | 0.000 | 0.250 | 0.000 |
| + | 12 | 11 | 17 | 15 | 10 | 7 | ||||||
| − | 2 | 2 | 0 | 0 | 3 | 4 | ||||||
| ≈ | 6 | 7 | 3 | 5 | 7 | 9 | ||||||
| Func | VMPMA | CDE | SDE | R2PSO | R3PSO | SCCDE | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | |
| F1 | 1.000 | 1.000 | 1.000 | 1.000 | 0.971 | 0.941 | 0.971 | 0.941 | 1.000 | 1.000 | 0.990 | 0.980 |
| F2 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F4 | 1.000 | 1.000 | 1.000 | 1.000 | 0.789 | 0.392 | 0.897 | 0.647 | 0.946 | 0.804 | 1.000 | 1.000 |
| F5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F6 | 1.000 | 1.000 | 0.987 | 0.922 | 0.257 | 0.000 | 0.406 | 0.000 | 0.633 | 0.000 | 0.998 | 0.980 |
| F7 | 0.921 | 0.078 | 0.884 | 0.000 | 0.478 | 0.000 | 0.514 | 0.000 | 0.488 | 0.000 | 0.883 | 0.020 |
| F8 | 0.929 | 0.039 | 0.000 | 0.000 | 0.025 | 0.000 | 0.036 | 0.000 | 0.406 | 0.000 | 0.997 | 0.980 |
| F9 | 0.473 | 0.000 | 0.467 | 0.000 | 0.094 | 0.000 | 0.092 | 0.000 | 0.105 | 0.000 | 0.451 | 0.000 |
| F10 | 1.000 | 1.000 | 1.000 | 1.000 | 0.842 | 0.039 | 0.933 | 0.216 | 0.930 | 0.431 | 1.000 | 1.000 |
| F11 | 0.967 | 0.824 | 0.605 | 0.000 | 0.657 | 0.000 | 0.641 | 0.000 | 0.654 | 0.000 | 0.938 | 0.726 |
| F12 | 1.000 | 1.000 | 0.005 | 0.000 | 0.596 | 0.000 | 0.382 | 0.000 | 0.547 | 0.000 | 0.628 | 0.000 |
| F13 | 0.712 | 0.000 | 0.300 | 0.000 | 0.637 | 0.000 | 0.621 | 0.000 | 0.650 | 0.000 | 0.667 | 0.000 |
| F14 | 0.667 | 0.000 | 0.225 | 0.000 | 0.428 | 0.000 | 0.437 | 0.000 | 0.644 | 0.000 | 0.667 | 0.000 |
| F15 | 0.647 | 0.000 | 0.059 | 0.000 | 0.213 | 0.000 | 0.167 | 0.000 | 0.179 | 0.000 | 0.368 | 0.000 |
| F16 | 0.667 | 0.000 | 0.003 | 0.000 | 0.173 | 0.000 | 0.139 | 0.000 | 0.437 | 0.000 | 0.667 | 0.000 |
| F17 | 0.493 | 0.000 | 0.000 | 0.000 | 0.091 | 0.000 | 0.006 | 0.000 | 0.123 | 0.000 | 0.260 | 0.000 |
| F18 | 0.667 | 0.000 | 0.046 | 0.000 | 0.009 | 0.000 | 0.058 | 0.000 | 0.065 | 0.000 | 0.637 | 0.000 |
| F19 | 0.262 | 0.000 | 0.000 | 0.000 | 0.025 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 | 0.240 | 0.000 |
| F20 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.233 | 0.000 |
| + | 14 | 17 | 17 | 16 | 10 | |||||||
| − | 0 | 0 | 0 | 0 | 2 | |||||||
| ≈ | 6 | 3 | 3 | 4 | 8 | |||||||
| Func | SCSDE | NCDE | NSDE | LIPS | LMSEDA | AED-DDE | ||||||
| PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | |
| F1 | 0.980 | 0.961 | 1.000 | 1.000 | 1.000 | 1.000 | 0.726 | 0.549 | 1.000 | 1.000 | 1.000 | 1.000 |
| F2 | 1.000 | 1.000 | 1.000 | 1.000 | 0.756 | 0.255 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F4 | 1.000 | 1.000 | 1.000 | 1.000 | 0.387 | 0.039 | 0.917 | 0.784 | 1.000 | 1.000 | 1.000 | 1.000 |
| F5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.728 | 0.353 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F6 | 0.769 | 0.020 | 0.523 | 0.000 | 0.056 | 0.000 | 0.658 | 0.000 | 0.924 | 0.216 | 1.000 | 1.000 |
| F7 | 0.881 | 0.000 | 0.884 | 0.020 | 0.036 | 0.000 | 0.431 | 0.000 | 0.686 | 0.000 | 0.808 | 0.000 |
| F8 | 0.990 | 0.922 | 0.999 | 0.980 | 0.013 | 0.000 | 0.509 | 0.000 | 0.386 | 0.000 | 0.706 | 0.000 |
| F9 | 0.258 | 0.000 | 0.451 | 0.000 | 0.005 | 0.000 | 0.164 | 0.000 | 0.283 | 0.000 | 0.386 | 0.000 |
| F10 | 0.998 | 0.980 | 0.998 | 0.980 | 0.076 | 0.000 | 0.989 | 0.882 | 0.997 | 0.961 | 1.000 | 1.000 |
| F11 | 0.690 | 0.000 | 0.693 | 0.000 | 0.791 | 0.137 | 0.918 | 0.510 | 0.918 | 0.510 | 1.000 | 1.000 |
| F12 | 0.284 | 0.000 | 0.328 | 0.000 | 0.132 | 0.000 | 0.709 | 0.000 | 0.946 | 0.608 | 1.000 | 1.000 |
| F13 | 0.667 | 0.000 | 0.667 | 0.000 | 0.187 | 0.000 | 0.755 | 0.020 | 0.667 | 0.000 | 0.755 | 0.000 |
| F14 | 0.667 | 0.000 | 0.667 | 0.000 | 0.153 | 0.000 | 0.660 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 |
| F15 | 0.360 | 0.000 | 0.358 | 0.000 | 0.183 | 0.000 | 0.435 | 0.000 | 0.711 | 0.000 | 0.632 | 0.000 |
| F16 | 0.657 | 0.000 | 0.641 | 0.000 | 0.127 | 0.000 | 0.308 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 |
| F17 | 0.267 | 0.000 | 0.240 | 0.000 | 0.058 | 0.000 | 0.213 | 0.000 | 0.480 | 0.000 | 0.375 | 0.000 |
| F18 | 0.477 | 0.000 | 0.294 | 0.000 | 0.056 | 0.000 | 0.209 | 0.000 | 0.618 | 0.000 | 0.647 | 0.000 |
| F19 | 0.248 | 0.000 | 0.189 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.404 | 0.000 | 0.364 | 0.000 |
| F20 | 0.128 | 0.000 | 0.250 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.250 | 0.000 | 0.250 | 0.000 |
| + | 13 | 12 | 18 | 16 | 10 | 6 | ||||||
| − | 2 | 2 | 0 | 1 | 3 | 4 | ||||||
| ≈ | 5 | 6 | 2 | 3 | 7 | 10 | ||||||
| Func | VMPMA | CDE | SDE | R2PSO | R3PSO | SCCDE | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | |
| F1 | 1.000 | 1.000 | 1.000 | 1.000 | 0.971 | 0.941 | 0.971 | 0.941 | 1.000 | 1.000 | 0.990 | 0.980 |
| F2 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F4 | 1.000 | 1.000 | 0.887 | 1.000 | 0.789 | 0.392 | 0.876 | 0.590 | 0.887 | 0.628 | 1.000 | 1.000 |
| F5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F6 | 1.000 | 1.000 | 0.970 | 0.824 | 0.257 | 0.000 | 0.406 | 0.000 | 0.633 | 0.000 | 0.987 | 0.824 |
| F7 | 0.920 | 0.020 | 0.884 | 0.000 | 0.478 | 0.000 | 0.448 | 0.000 | 0.441 | 0.000 | 0.882 | 0.000 |
| F8 | 0.926 | 0.039 | 0.000 | 0.000 | 0.025 | 0.000 | 0.022 | 0.000 | 0.084 | 0.000 | 0.997 | 0.980 |
| F9 | 0.470 | 0.000 | 0.404 | 0.000 | 0.094 | 0.000 | 0.035 | 0.000 | 0.043 | 0.000 | 0.451 | 0.000 |
| F10 | 1.000 | 1.000 | 1.000 | 1.000 | 0.835 | 0.000 | 0.894 | 0.078 | 0.861 | 0.157 | 1.000 | 1.000 |
| F11 | 0.958 | 0.745 | 0.209 | 0.000 | 0.657 | 0.000 | 0.598 | 0.000 | 0.621 | 0.000 | 0.920 | 0.667 |
| F12 | 1.000 | 1.000 | 0.003 | 0.000 | 0.596 | 0.000 | 0.326 | 0.000 | 0.547 | 0.000 | 0.820 | 0.000 |
| F13 | 0.708 | 0.000 | 0.168 | 0.000 | 0.637 | 0.000 | 0.575 | 0.000 | 0.624 | 0.000 | 0.667 | 0.000 |
| F14 | 0.667 | 0.000 | 0.078 | 0.000 | 0.428 | 0.000 | 0.437 | 0.000 | 0.644 | 0.000 | 0.667 | 0.000 |
| F15 | 0.647 | 0.000 | 0.005 | 0.000 | 0.198 | 0.000 | 0.133 | 0.000 | 0.179 | 0.000 | 0.368 | 0.000 |
| F16 | 0.667 | 0.000 | 0.000 | 0.000 | 0.173 | 0.000 | 0.058 | 0.000 | 0.437 | 0.000 | 0.667 | 0.000 |
| F17 | 0.469 | 0.000 | 0.000 | 0.000 | 0.091 | 0.000 | 0.006 | 0.000 | 0.123 | 0.000 | 0.260 | 0.000 |
| F18 | 0.667 | 0.000 | 0.003 | 0.000 | 0.009 | 0.000 | 0.000 | 0.000 | 0.065 | 0.000 | 0.327 | 0.000 |
| F19 | 0.262 | 0.000 | 0.000 | 0.000 | 0.025 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.167 | 0.000 |
| F20 | 0.125 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.068 | 0.000 |
| + | 15 | 17 | 17 | 16 | 11 | |||||||
| − | 0 | 0 | 0 | 0 | 1 | |||||||
| ≈ | 5 | 3 | 3 | 4 | 8 | |||||||
| Func | SCSDE | NCDE | NSDE | LIPS | LMSEDA | AED-DDE | ||||||
| PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | |
| F1 | 0.980 | 0.961 | 1.000 | 1.000 | 1.000 | 1.000 | 0.726 | 0.549 | 1.000 | 1.000 | 1.000 | 1.000 |
| F2 | 1.000 | 1.000 | 1.000 | 1.000 | 0.756 | 0.255 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F4 | 1.000 | 1.000 | 1.000 | 1.000 | 0.387 | 0.039 | 0.917 | 0.784 | 1.000 | 1.000 | 1.000 | 1.000 |
| F5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.728 | 0.353 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F6 | 0.769 | 0.020 | 0.382 | 0.000 | 0.056 | 0.000 | 0.655 | 0.000 | 0.887 | 0.098 | 1.000 | 1.000 |
| F7 | 0.881 | 0.000 | 0.882 | 0.020 | 0.036 | 0.000 | 0.431 | 0.000 | 0.623 | 0.000 | 0.808 | 0.000 |
| F8 | 0.990 | 0.922 | 0.999 | 0.980 | 0.013 | 0.000 | 0.505 | 0.000 | 0.386 | 0.000 | 0.706 | 0.000 |
| F9 | 0.258 | 0.000 | 0.446 | 0.000 | 0.005 | 0.000 | 0.104 | 0.000 | 0.242 | 0.000 | 0.384 | 0.000 |
| F10 | 0.994 | 0.941 | 0.998 | 0.980 | 0.076 | 0.000 | 0.989 | 0.882 | 0.992 | 0.902 | 1.000 | 1.000 |
| F11 | 0.686 | 0.000 | 0.693 | 0.000 | 0.774 | 0.098 | 0.918 | 0.510 | 0.853 | 0.471 | 1.000 | 1.000 |
| F12 | 0.240 | 0.000 | 0.233 | 0.000 | 0.132 | 0.000 | 0.704 | 0.000 | 0.936 | 0.549 | 1.000 | 1.000 |
| F13 | 0.667 | 0.000 | 0.638 | 0.000 | 0.187 | 0.000 | 0.743 | 0.020 | 0.667 | 0.000 | 0.679 | 0.000 |
| F14 | 0.667 | 0.000 | 0.667 | 0.000 | 0.153 | 0.000 | 0.660 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 |
| F15 | 0.360 | 0.000 | 0.348 | 0.000 | 0.183 | 0.000 | 0.373 | 0.000 | 0.699 | 0.000 | 0.630 | 0.000 |
| F16 | 0.657 | 0.000 | 0.621 | 0.000 | 0.127 | 0.000 | 0.308 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 |
| F17 | 0.260 | 0.000 | 0.230 | 0.000 | 0.058 | 0.000 | 0.213 | 0.000 | 0.465 | 0.000 | 0.375 | 0.000 |
| F18 | 0.359 | 0.000 | 0.245 | 0.000 | 0.056 | 0.000 | 0.203 | 0.000 | 0.611 | 0.000 | 0.647 | 0.000 |
| F19 | 0.126 | 0.000 | 0.157 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.399 | 0.000 | 0.304 | 0.000 |
| F20 | 0.087 | 0.000 | 0.233 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 | 0.250 | 0.000 | 0.250 | 0.000 |
| + | 14 | 12 | 17 | 16 | 10 | 7 | ||||||
| − | 1 | 2 | 0 | 1 | 3 | 3 | ||||||
| ≈ | 5 | 6 | 3 | 3 | 7 | 10 | ||||||
| Func | VMPMA | CDE | SDE | R2PSO | R3PSO | SCCDE | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | |
| F1 | 1.000 | 1.000 | 1.000 | 1.000 | 0.971 | 0.941 | 0.971 | 0.941 | 1.000 | 1.000 | 0.990 | 0.980 |
| F2 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F4 | 1.000 | 1.000 | 0.881 | 1.000 | 0.789 | 0.392 | 0.876 | 0.590 | 0.887 | 0.628 | 1.000 | 1.000 |
| F5 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F6 | 1.000 | 1.000 | 0.944 | 0.706 | 0.257 | 0.000 | 0.406 | 0.000 | 0.633 | 0.000 | 0.979 | 0.726 |
| F7 | 0.889 | 0.000 | 0.686 | 0.000 | 0.473 | 0.000 | 0.396 | 0.000 | 0.397 | 0.000 | 0.872 | 0.000 |
| F8 | 0.919 | 0.020 | 0.000 | 0.000 | 0.025 | 0.000 | 0.022 | 0.000 | 0.084 | 0.000 | 0.995 | 0.941 |
| F9 | 0.444 | 0.000 | 0.375 | 0.000 | 0.094 | 0.000 | 0.010 | 0.000 | 0.043 | 0.000 | 0.451 | 0.000 |
| F10 | 1.000 | 1.000 | 1.000 | 1.000 | 0.827 | 0.000 | 0.835 | 0.000 | 0.861 | 0.157 | 1.000 | 1.000 |
| F11 | 0.947 | 0.451 | 0.033 | 0.000 | 0.657 | 0.000 | 0.510 | 0.000 | 0.621 | 0.000 | 0.918 | 0.647 |
| F12 | 0.998 | 0.980 | 0.000 | 0.000 | 0.596 | 0.000 | 0.238 | 0.000 | 0.547 | 0.000 | 0.446 | 0.000 |
| F13 | 0.706 | 0.000 | 0.026 | 0.000 | 0.637 | 0.000 | 0.471 | 0.000 | 0.624 | 0.000 | 0.667 | 0.000 |
| F14 | 0.667 | 0.000 | 0.003 | 0.000 | 0.428 | 0.000 | 0.405 | 0.000 | 0.644 | 0.000 | 0.667 | 0.000 |
| F15 | 0.647 | 0.000 | 0.000 | 0.000 | 0.193 | 0.000 | 0.133 | 0.000 | 0.179 | 0.000 | 0.368 | 0.000 |
| F16 | 0.667 | 0.000 | 0.000 | 0.000 | 0.173 | 0.000 | 0.058 | 0.000 | 0.437 | 0.000 | 0.667 | 0.000 |
| F17 | 0.426 | 0.000 | 0.000 | 0.000 | 0.091 | 0.000 | 0.006 | 0.000 | 0.123 | 0.000 | 0.247 | 0.000 |
| F18 | 0.663 | 0.000 | 0.003 | 0.000 | 0.009 | 0.000 | 0.000 | 0.000 | 0.065 | 0.000 | 0.327 | 0.000 |
| F19 | 0.262 | 0.000 | 0.000 | 0.000 | 0.025 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.068 | 0.000 |
| F20 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.015 | 0.000 |
| + | 15 | 17 | 17 | 16 | 9 | |||||||
| − | 0 | 30 | 0 | 0 | 2 | |||||||
| ≈ | 5 | 3 | 3 | 4 | 9 | |||||||
| Func | SCSDE | NCDE | NSDE | LIPS | LMSEDA | AED-DDE | ||||||
| PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | PR | SR | |
| F1 | 0.980 | 0.961 | 1.000 | 1.000 | 1.000 | 1.000 | 0.720 | 0.549 | 0.912 | 0.824 | 1.000 | 1.000 |
| F2 | 1.000 | 1.000 | 1.000 | 1.000 | 0.756 | 0.255 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F3 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F4 | 1.000 | 1.000 | 1.000 | 1.000 | 0.387 | 0.039 | 0.917 | 0.784 | 1.000 | 1.000 | 1.000 | 1.000 |
| F5 | 1.000 | 1.000 | 1.000 | 1.000 | 0.728 | 0.353 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| F6 | 0.769 | 0.020 | 0.219 | 0.000 | 0.056 | 0.000 | 0.653 | 0.000 | 0.809 | 0.020 | 1.000 | 1.000 |
| F7 | 0.881 | 0.000 | 0.872 | 0.020 | 0.036 | 0.000 | 0.421 | 0.000 | 0.554 | 0.000 | 0.808 | 0.000 |
| F8 | 0.990 | 0.922 | 0.996 | 0.922 | 0.013 | 0.000 | 0.503 | 0.000 | 0.382 | 0.000 | 0.706 | 0.000 |
| F9 | 0.258 | 0.000 | 0.442 | 0.000 | 0.005 | 0.000 | 0.104 | 0.000 | 0.203 | 0.000 | 0.384 | 0.000 |
| F10 | 0.987 | 0.863 | 0.995 | 0.941 | 0.076 | 0.000 | 0.989 | 0.882 | 0.987 | 0.843 | 1.000 | 1.000 |
| F11 | 0.680 | 0.000 | 0.693 | 0.000 | 0.771 | 0.078 | 0.918 | 0.510 | 0.837 | 0.451 | 1.000 | 1.000 |
| F12 | 0.189 | 0.000 | 0.201 | 0.000 | 0.132 | 0.000 | 0.704 | 0.000 | 0.931 | 0.510 | 1.000 | 1.000 |
| F13 | 0.667 | 0.000 | 0.638 | 0.000 | 0.187 | 0.000 | 0.743 | 0.020 | 0.667 | 0.000 | 0.676 | 0.000 |
| F14 | 0.667 | 0.000 | 0.667 | 0.000 | 0.153 | 0.000 | 0.660 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 |
| F15 | 0.343 | 0.000 | 0.343 | 0.000 | 0.133 | 0.000 | 0.373 | 0.000 | 0.691 | 0.000 | 0.630 | 0.000 |
| F16 | 0.653 | 0.000 | 0.604 | 0.000 | 0.127 | 0.000 | 0.300 | 0.000 | 0.667 | 0.000 | 0.667 | 0.000 |
| F17 | 0.254 | 0.000 | 0.223 | 0.000 | 0.056 | 0.000 | 0.203 | 0.000 | 0.456 | 0.000 | 0.375 | 0.000 |
| F18 | 0.088 | 0.000 | 0.199 | 0.000 | 0.055 | 0.000 | 0.123 | 0.000 | 0.608 | 0.000 | 0.647 | 0.000 |
| F19 | 0.000 | 0.000 | 0.105 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.390 | 0.000 | 0.304 | 0.000 |
| F20 | 0.000 | 0.000 | 0.233 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.250 | 0.000 | 0.250 | 0.000 |
| + | 14 | 12 | 17 | 16 | 9 | 7 | ||||||
| − | 1 | 2 | 0 | 1 | 4 | 3 | ||||||
| ≈ | 5 | 6 | 3 | 3 | 7 | 10 | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, T.; Wang, Z.; Liu, Q.; Wang, Y.; Yan, L. An Adaptive Memetic Differential Evolution with Virtual Population and Multi-Mutation Strategies for Multimodal Optimization Problems. Algorithms 2025, 18, 784. https://doi.org/10.3390/a18120784
Ding T, Wang Z, Liu Q, Wang Y, Yan L. An Adaptive Memetic Differential Evolution with Virtual Population and Multi-Mutation Strategies for Multimodal Optimization Problems. Algorithms. 2025; 18(12):784. https://doi.org/10.3390/a18120784
Chicago/Turabian StyleDing, Tianyan, Zuling Wang, Qingping Liu, Yongtao Wang, and Le Yan. 2025. "An Adaptive Memetic Differential Evolution with Virtual Population and Multi-Mutation Strategies for Multimodal Optimization Problems" Algorithms 18, no. 12: 784. https://doi.org/10.3390/a18120784
APA StyleDing, T., Wang, Z., Liu, Q., Wang, Y., & Yan, L. (2025). An Adaptive Memetic Differential Evolution with Virtual Population and Multi-Mutation Strategies for Multimodal Optimization Problems. Algorithms, 18(12), 784. https://doi.org/10.3390/a18120784

