Hybrid Deep Learning Framework for Anomaly Detection in Power Plant Systems
Abstract
1. Introduction
2. Unsupervised Anomaly Detection Methods
2.1. Deep Autoencoder (DAE)
2.2. Deep Autoencoding Gaussian Mixture Model (DAGMM)
3. Proposed Method
3.1. DAE-Transformer-GMM (DTGMM)
3.1.1. Overall Architecture
3.1.2. Temporal Self-Attention Mechanism
3.1.3. DTGMM’s Latent Representation and Output
3.1.4. Loss Function
3.2. Anomaly Detection Process
3.2.1. Data Preprocessing
3.2.2. Model Construction
3.2.3. Equipment Health Assessment and Early Warning of Failures
3.2.4. Model Evaluation Metrics
4. Example Analysis
4.1. Boiler Superheater Condition Monitoring
4.1.1. Anomaly Detection
4.1.2. Feature Analysis
4.2. Validation of Other Equipment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fausing Olesen, J.; Shaker, H.R. Predictive maintenance for pump systems and thermal power plants: State-of-the-art review, trends and challenges. Sensors 2020, 20, 2425. [Google Scholar] [CrossRef]
- Velayutham, P.; Ismail, F.B. A review on power plant maintenance and operational performance. MATEC Web Conf. 2018, 225, 05003. [Google Scholar] [CrossRef]
- Wang, P.; Tian, X.; Sun, K.; Huang, Y.; Wang, Z.; Sun, L. Power System Reliability Assessment Considering Coal-Fired Unit Peaking Characteristics. Algorithms 2025, 18, 197. [Google Scholar] [CrossRef]
- Choi, H.; Kim, C.W.; Kwon, D. Data-driven fault diagnosis based on coal-fired power plant operating data. J. Mech. Sci. Technol. 2020, 34, 3931–3936. [Google Scholar] [CrossRef]
- Miao, J.; Tao, H.; Xie, H.; Sun, J.; Cao, J. Reconstruction-based anomaly detection for multivariate time series using contrastive generative adversarial networks. Inf. Process. Manag. 2024, 61, 103569. [Google Scholar] [CrossRef]
- Agrawal, V.; Panigrahi, B.K.; Subbarao, P.M.V. Review of control and fault diagnosis methods applied to coal mills. J. Process Control 2015, 32, 138–153. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, X.; Wang, T.; Hou, H.; Wang, S.; Yang, T. A GNN-Based False Data Detection Scheme for Smart Grids. Algorithms 2025, 18, 166. [Google Scholar] [CrossRef]
- Nachman, B.; Shih, D. Anomaly detection with density estimation. Phys. Rev. D 2020, 101, 075042. [Google Scholar] [CrossRef]
- Hu, W.; Gao, J.; Li, B.; Wu, O.; Du, J.; Maybank, S. Anomaly detection using local kernel density estimation and context-based regression. IEEE Trans. Knowl. Data Eng. 2018, 32, 218–233. [Google Scholar] [CrossRef]
- Dang, T.T.; Ngan, H.Y.T.; Liu, W. Distance-based k-nearest neighbors outlier detection method in large-scale traffic data. In Proceedings of the 2015 IEEE International Conference on Digital Signal Processing (DSP), Singapore, 21–24 July 2015; pp. 507–510. [Google Scholar]
- Choi, Y.; Lim, H.; Choi, H.; Kim, I.J. Gan-based anomaly detection and localization of multivariate time series data for power plant. In Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), Busan, Korea, 19–22 February 2020; pp. 71–74. [Google Scholar]
- Hu, D.; Zhang, C.; Yang, T.; Chen, G. Anomaly detection of power plant equipment using long short-term memory based autoencoder neural network. Sensors 2020, 20, 6164. [Google Scholar] [CrossRef]
- Fahmi, A.T.W.K.; Kashyzadeh, K.R.; Ghorbani, S. Fault detection in the gas turbine of the Kirkuk power plant: An anomaly detection approach using DLSTM-Autoencoder. Eng. Fail. Anal. 2024, 160, 108213. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, W.; Zhang, G.; Shu, L. Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data. Renew. Energy 2021, 171, 103–115. [Google Scholar] [CrossRef]
- He, Q.; Li, Y.; Jiang, G.; Su, N.; Xie, P.; Wu, X. Health assessment of wind turbine gearboxes based on conditional convolutional self-coding Gaussian mixture models. Acta Energiae Solaris Sin. 2023, 44, 214–220. [Google Scholar]
- Hu, D.; Zhang, C.; Yang, T.; Fang, Q. A deep autoencoder with structured latent space for process monitoring and anomaly detection in coal-fired power units. Reliab. Eng. Syst. Saf. 2025, 261, 111060. [Google Scholar] [CrossRef]
- Li, X.; Huang, T.; Cheng, K.; Qiu, Z.; Sichao, T. Research on anomaly detection method of nuclear power plant operation state based on unsupervised deep generative model. Ann. Nucl. Energy 2022, 167, 108785. [Google Scholar] [CrossRef]
- Mienye, I.D.; Swart, T.G. Deep autoencoder neural networks: A comprehensive review and new perspectives. Arch. Comput. Methods Eng. 2025, 1–20. [Google Scholar] [CrossRef]
- Mejri, N.; Lopez-Fuentes, L.; Roy, K.; Chernakov, P.; Ghorbel, E.; Aouada, D. Unsupervised anomaly detection in time-series: An extensive evaluation and analysis of state-of-the-art methods. Expert Syst. Appl. 2024, 256, 124922. [Google Scholar] [CrossRef]
- Zhou, C.; Paffenroth, R.C. Anomaly detection with robust deep autoencoders. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 665–674. [Google Scholar]
- Zong, B.; Song, Q.; Min, M.R.; Cheng, W.; Lumezanu, C.; Cho, D.; Chen, H. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Yang, X.; Li, Y.; Zhao, Y.; Li, Y.; Hao, G.; Wang, Y. Gaussian mixture model uncertainty modeling for power systems considering mutual assistance of latent variables. IEEE Trans. Sustain. Energy 2024, 16, 1483–1486. [Google Scholar] [CrossRef]
- Habeb, M.H.; Salama, M.; Elrefaei, L.A. Enhancing video anomaly detection using a transformer spatiotemporal attention unsupervised framework for large datasets. Algorithms 2024, 17, 286. [Google Scholar] [CrossRef]
- Chen, Y.; Ashizawa, N.; Yeo, C.K.; Yanai, N.; Yean, S. Multi-scale self-organizing map assisted deep autoencoding Gaussian mixture model for unsupervised intrusion detection. Knowl -Based Syst. 2021, 224, 107086. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, H.; Li, S. Pavement anomaly detection based on transformer and self-supervised learning. Autom. Constr. 2022, 143, 104544. [Google Scholar] [CrossRef]







| Structure | Hyperparameter | Value |
|---|---|---|
| Transformer encoder | [numHeads numKeyChannels Neurons] | [4 128 20] |
| Encoder | [Layers (Neurons per Layer) Activation] | [3 (80,40,10) tanh] |
| Decoder | [Layers (Neurons per Layer) Activation] | [3 (64,32,13) tanh] |
| GMM | [Layers (Neurons per Layer) Activation] | [3 (128,64,4) tanh] |
| Loss funciton | [0.13 0.002] |
| Number | Variant | Unit |
|---|---|---|
| 1 | Feedwater flow | t·h−1 |
| 2 | Main steam flow | t·h−1 |
| 3 | Main steam temp | °C |
| 4 | Main steam pressure | MPa |
| 5 | Load | MW |
| 6 | Primary desuperheating water flow | t·h−1 |
| 7 | Steam temperature after superheater primary desuperheater | °C |
| 8 | Steam temperature before superheater primary desuperheater | °C |
| 9 | Flue gas oxygen content | % |
| 10 | Rear screen superheater outlet steam temperature | °C |
| 11 | Low-temperature superheater inlet flue gas temperature | t·h−1 |
| Model | D/hours | FNR | EWFNR |
|---|---|---|---|
| DTGMM | −90 | 0.0913 | 0.1362 |
| DAGMM | −71 | 0.0547 | 0.1433 |
| TGMM | −85 | 0.422 | 0.4587 |
| LSTM-VAE | −82 | 0.7251 | 0.636 |
| Number | Variant | Unit |
|---|---|---|
| 1 | Shaft #4 Vibration in X Direction | μm |
| 2 | Shaft #4 Vibration in Y Direction | μm |
| 3 | Bearing #4 Oil Return Temperature | °C |
| 4 | Shaft Displacement 1A | mm |
| 5 | Shaft Displacement 1B | mm |
| 6 | Bearing #4 Metal Temperature (Left Pad) | °C |
| 7 | Bearing #4 Metal Temperature (Right Pad) | °C |
| 8 | Bearing Lubricating Oil Pressure | MPa |
| 9 | Pressure at Control Stage | MPa |
| 10 | Generator Power Output | MW |
| 11 | Low-Pressure Cylinder Inlet Pressure | MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhao, C.; Liu, X.; Ni, X.; Chen, X.; Gao, X.; Sun, L. Hybrid Deep Learning Framework for Anomaly Detection in Power Plant Systems. Algorithms 2025, 18, 704. https://doi.org/10.3390/a18110704
Wang S, Zhao C, Liu X, Ni X, Chen X, Gao X, Sun L. Hybrid Deep Learning Framework for Anomaly Detection in Power Plant Systems. Algorithms. 2025; 18(11):704. https://doi.org/10.3390/a18110704
Chicago/Turabian StyleWang, Shuchong, Changxiang Zhao, Xingchen Liu, Xianghong Ni, Xu Chen, Xinglong Gao, and Li Sun. 2025. "Hybrid Deep Learning Framework for Anomaly Detection in Power Plant Systems" Algorithms 18, no. 11: 704. https://doi.org/10.3390/a18110704
APA StyleWang, S., Zhao, C., Liu, X., Ni, X., Chen, X., Gao, X., & Sun, L. (2025). Hybrid Deep Learning Framework for Anomaly Detection in Power Plant Systems. Algorithms, 18(11), 704. https://doi.org/10.3390/a18110704

