A Gumbel-Based Selection Data-Driven Evolutionary Algorithm and Its Application to Chinese Text-Based Cheating Official Accounts Mining
Abstract
1. Introduction
2. Background and Related Work of DDEA
2.1. DDEA
2.2. Related Work on Enhanced DDEAs
3. The Proposed GBS-DDEA
3.1. The Framework of GBS-DDEA
3.2. Model Training
Algorithm 1: Model Training |
Input: Q—the dataset for training the model; R—the number of initial models. Output: U1, U2, …, UR-the R trained models; 1: Begin 2: For i = 1 to R Do 3: Initialize an empty set E; 4: For every x in Q Do 5: Sample r in [0, 1]; 6: If the sampled r > 0.5 Then 7: Add x into E; 8: End If 9: End For 10: Train Ui with E; 11: Calculate the error of Ui on Q as ai; 12: End For 13: End |
3.3. GBS
Algorithm 2: GBS |
Input: U1, U2, …, UR—the trained models; a1, a2, …, aR—the model prediction errors; L—the number of selected models; Output: I—the set containing the selected model index; 1: Begin 2: For j = 1 to R Do 3: Use Equation (2) to calculate pj; 4: End For 5: Select L models with larger pi and store their indexes in I; 6: End |
3.4. RBWE
3.5. The Entire GBS-DDEA
Algorithm 3: GBS-DDEA |
Input: Q—the evaluated dataset; R—the number of initial models; L—the number of selected models for predictions; Output: xbest—the best solution; 1: Begin 2: Get R models via Algorithm 1; 3: Perform the initialization of population; 4: While the algorithm does not meet the stop criteria Do 5: L models are selected from R models via GBS; 6: The predicted fitness of individuals is updated as Equation (4); 7: Perform crossover and mutation to generate new individuals; 8: The fitness of new individuals is predicted with Equation (4); 9: The old and new individuals are combined, and the better individuals among them based on predicted fitness are selected to form a new population; 10: The best solution in the new population is marked as xbest; 11: End While 12: The xbest is output; 13: End |
4. Experimental Studies
4.1. Experiment Setup
4.2. Compared Advanced Algorithms
4.3. Comparison Study with DDEAs
4.4. Component Analysis of GBS-DDEA
4.5. Parameter Study of GBS-DDEA
4.6. Case Study of GBS-DDEA on Cheating Official Accounts Mining
4.7. Computational Efficiency of GBS-DDEA
4.8. Discussion on Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DDEA | Data-driven evolutionary algorithm |
DDEO | Data-driven evolutionary optimization |
DE | Differential evolution |
EA | Evolutionary algorithm |
EC | Evolutionary computation |
EOP | Expensive optimization problem |
FE | Fitness evaluation |
GBS | Gumbel-based selection |
GBS-DDEA | Gumbel-based selection data-driven evolutionary algorithm |
MMS | Model management strategy |
RBFNN | Radial basis function neural network |
RBWE | Ranking-based weighting ensemble |
SMM | Surrogate model management |
References
- Winter, R.; Milatz, B.; Blank, J.; van Stein, N.; Bäck, T.; Deb, K. Parallel Multi-Objective Optimization for Expensive and Inexpensive Objectives and Constraints. Swarm Evol. Comput. 2024, 86, 101508. [Google Scholar] [CrossRef]
- Yang, Q.-T.; Li, J.-Y.; Zhan, Z.-H.; Jiang, Y.; Jin, Y.; Zhang, J. A Hierarchical and Ensemble Surrogate-Assisted Evolutionary Algorithm With Model Reduction for Expensive Many-Objective Optimization. IEEE Trans. Evol. Comput. 2024. [Google Scholar] [CrossRef]
- Espinosa, R.; Jiménez, F.; Palma, J. Surrogate-Assisted Multi-Objective Evolutionary Feature Selection of Generation-Based Fixed Evolution Control for Time Series Forecasting with LSTM Networks. Swarm Evol. Comput. 2024, 88, 101587. [Google Scholar] [CrossRef]
- Li, J.-Y.; Zhan, Z.-H.; Zhang, J. Evolutionary Computation for Expensive Optimization: A Survey. Mach. Intell. Res. 2022, 19, 3–23. [Google Scholar] [CrossRef]
- Luong, N.H.; Phan, Q.M.; Vo, A.; Pham, T.N.; Bui, D.T. Lightweight Multi-Objective Evolutionary Neural Architecture Search with Low-Cost Proxy Metrics. Inf. Sci. 2024, 655, 119856. [Google Scholar] [CrossRef]
- Wang, H.; Jin, Y. A Random Forest Assisted Evolutionary Algorithm for Data-Driven Constrained Multi-Objective Combinatorial Optimization of Trauma Systems. IEEE Trans. Cybern. 2020, 50, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wang, H.; Chugh, T.; Guo, D.; Miettinen, K. Data-Driven Evolutionary Optimization: An Overview and Case Studies. IEEE Trans. Evol. Comput. 2019, 23, 442–458. [Google Scholar] [CrossRef]
- Guo, Z.; Lin, S.; Suo, R.; Zhang, X. An Offline Weighted-Bagging Data-Driven Evolutionary Algorithm with Data Generation Based on Clustering. Mathematics 2023, 11, 431. [Google Scholar] [CrossRef]
- Horaguchi, Y.; Nakata, M. High-Dimensional Expensive Multiobjective Optimization Using a Surrogate-Assisted Multifactorial Evolutionary Algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference, Malaga, Spain, 14–18 July 2025; ACM: New York, NY, USA, 2025; pp. 572–580. [Google Scholar]
- Li, J.-Y.; Zhan, Z.-H.; Xu, J.; Kwong, S.; Zhang, J. Surrogate-Assisted Hybrid-Model Estimation of Distribution Algorithm for Mixed-Variable Hyperparameters Optimization in Convolutional Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 2023, 34, 2338–2352. [Google Scholar] [CrossRef]
- Huang, P.; Wang, H.; Ma, W. Stochastic Ranking for Offline Data-Driven Evolutionary Optimization Using Radial Basis Function Networks with Multiple Kernels. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2050–2057. [Google Scholar]
- He, C.; Zhang, Y.; Gong, D.; Ji, X. A Review of Surrogate-Assisted Evolutionary Algorithms for Expensive Optimization Problems. Expert Syst. Appl. 2023, 217, 119495. [Google Scholar] [CrossRef]
- Li, J.-Y.; Zhan, Z.-H.; Wang, H.; Zhang, J. Data-Driven Evolutionary Algorithm With Perturbation-Based Ensemble Surrogates. IEEE Trans. Cybern. 2020, 51, 3925–3937. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Zhan, Z.H.; Wang, C.; Jin, H.; Zhang, J. Boosting Data-Driven Evolutionary Algorithm with Localized Data Generation. IEEE Trans. Evol. Comput. 2020, 24, 923–937. [Google Scholar] [CrossRef]
- Petelin, D.; Filipič, B.; Kocijan, J. Optimization of Gaussian Process Models with Evolutionary Algorithms. In Adaptive and Natural Computing Algorithms. ICANNGA 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 420–429. [Google Scholar]
- Ikeguchi, T.; Nishihara, K.; Kawauchi, Y.; Koguma, Y.; Nakata, M. A Surrogate-Assisted Memetic Algorithm for Permutation-Based Combinatorial Optimization Problems. Swarm Evol. Comput. 2025, 98, 102060. [Google Scholar] [CrossRef]
- Sun, C.; Jin, Y.; Cheng, R.; Ding, J.; Zeng, J. Surrogate-Assisted Cooperative Swarm Optimization of High-Dimensional Expensive Problems. IEEE Trans. Evol. Comput. 2017, 21, 644–660. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Pan, S.; Lyu, J.; Ling, S.; Su, S. Convolutional Neural Networks-Based Lung Nodule Classification: A Surrogate-Assisted Evolutionary Algorithm for Hyperparameter Optimization. IEEE Trans. Evol. Comput. 2021, 25, 869–882. [Google Scholar] [CrossRef]
- Wang, H.; Jin, Y.; Sun, C.; Doherty, J. Offline Data-Driven Evolutionary Optimization Using Selective Surrogate Ensembles. IEEE Trans. Evol. Comput. 2018, 23, 203–216. [Google Scholar] [CrossRef]
- Huang, P.; Wang, H.; Jin, Y. Offline Data-Driven Evolutionary Optimization Based on Tri-Training. Swarm Evol. Comput. 2021, 60, 100800. [Google Scholar] [CrossRef]
- Haftka, R.T.; Villanueva, D.; Chaudhuri, A. Parallel Surrogate-Assisted Global Optimization with Expensive Functions—A Survey. Struct. Multidiscip. Optim. 2016, 54, 3–13. [Google Scholar] [CrossRef]
- Ardeh, M.A.; Mei, Y.; Zhang, M. A GPHH with Surrogate-Assisted Knowledge Transfer for Uncertain Capacitated Arc Routing Problem. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2786–2793. [Google Scholar]
- Min, A.T.W.; Ong, Y.-S.; Gupta, A.; Goh, C.-K. Multiproblem Surrogates: Transfer Evolutionary Multiobjective Optimization of Computationally Expensive Problems. IEEE Trans. Evol. Comput. 2019, 23, 15–28. [Google Scholar] [CrossRef]
- Russo, I.L.S.; Barbosa, H.J.C. A Multitasking Surrogate-Assisted Differential Evolution Method for Solving Bi-Level Optimization Problems. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8. [Google Scholar]
- Tian, J.; Tan, Y.; Zeng, J.; Sun, C.; Jin, Y. Multiobjective Infill Criterion Driven Gaussian Process-Assisted Particle Swarm Optimization of High-Dimensional Expensive Problems. IEEE Trans. Evol. Comput. 2019, 23, 459–472. [Google Scholar] [CrossRef]
- Lin, D.; Huang, H.; Li, X.; Gong, Y. Empirical Study of Data-Driven Evolutionary Algorithms in Noisy Environments. Mathematics 2022, 10, 943. [Google Scholar] [CrossRef]
- Yu, M.; Li, X.; Liang, J. A Dynamic Surrogate-Assisted Evolutionary Algorithm Framework for Expensive Structural Optimization. Struct. Multidiscip. Optim. 2020, 61, 711–729. [Google Scholar] [CrossRef]
- Huang, H.; Gong, Y. Contrastive Learning: An Alternative Surrogate for Offline Data-Driven Evolutionary Computation. IEEE Trans. Evol. Comput. 2023, 27, 370–384. [Google Scholar] [CrossRef]
- Hao, H.; Zhang, X.; Zhou, A. Expensive Optimization via Relation. IEEE Trans. Evol. Comput. 2025. [Google Scholar] [CrossRef]
- Sun, Y.H.; Huang, T.; Zhong, J.H.; Zhang, J.; Gong, Y.J. Symbolic Regression-Assisted Offline Data-Driven Evolutionary Computation. IEEE Trans. Evol. Comput. 2024, 29, 2158–2172. [Google Scholar] [CrossRef]
- Stein, M. Large Sample Properties of Simulations Using Latin Hypercube Sampling. Technometrics 1987, 29, 143–151. [Google Scholar] [CrossRef]
- Kenny, A.; Ray, T.; Singh, H.K. An Iterative Two-Stage Multifidelity Optimization Algorithm for Computationally Expensive Problems. IEEE Trans. Evol. Comput. 2023, 27, 520–534. [Google Scholar] [CrossRef]
- Gharavian, V.; Rahnamayan, S.; Bidgoli, A.A.; Makrehchi, M. A Pairwise Surrogate Model Using GNN for Evolutionary Optimization. In Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Oahu, HI, USA, 1–4 October 2023; pp. 3996–4002. [Google Scholar] [CrossRef]
- Harada, T. A Pairwise Ranking Estimation Model for Surrogate-Assisted Evolutionary Algorithms. Complex Intell. Syst. 2023, 9, 6875–6890. [Google Scholar] [CrossRef]
- Kumar, A.; Das, S.; Snášel, V. Efficient Three-Stage Surrogate-Assisted Differential Evolution for Expensive Optimization Problems. Swarm Evol. Comput. 2025, 98, 102093. [Google Scholar] [CrossRef]
- Cheng, X.; Fu, S.; de Vreede, G.-J. Understanding Trust Influencing Factors in Social Media Communication: A Qualitative Study. Int. J. Inf. Manag. 2017, 37, 25–35. [Google Scholar] [CrossRef]
- Zhao, N.; Li, H. How Can Social Commerce Be Boosted? The Impact of Consumer Behaviors on the Information Dissemination Mechanism in a Social Commerce Network. Electron. Commer. Res. 2020, 20, 833–856. [Google Scholar] [CrossRef]
- Che, H.; Pan, B.; Leung, M.-F.; Cao, Y.; Yan, Z. Tensor Factorization With Sparse and Graph Regularization for Fake News Detection on Social Networks. IEEE Trans. Comput. Soc. Syst. 2024, 11, 4888–4898. [Google Scholar] [CrossRef]
- Pan, B.; Li, C.; Che, H.; Leung, M.-F.; Yu, K. Low-Rank Tensor Regularized Graph Fuzzy Learning for Multi-View Data Processing. IEEE Trans. Consum. Electron. 2024, 70, 2925–2938. [Google Scholar] [CrossRef]
- Berrondo-Otermin, M.; Sarasa-Cabezuelo, A. Application of Artificial Intelligence Techniques to Detect Fake News: A Review. Electronics 2023, 12, 5041. [Google Scholar] [CrossRef]
- Mridha, M.F.; Keya, A.J.; Hamid, M.A.; Monowar, M.M.; Rahman, M.S. A Comprehensive Review on Fake News Detection With Deep Learning. IEEE Access 2021, 9, 156151–156170. [Google Scholar] [CrossRef]
- Aïmeur, E.; Amri, S.; Brassard, G. Fake News, Disinformation and Misinformation in Social Media: A Review. Soc. Netw. Anal. Min. 2023, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, J.V.N.; Gupta, S.; Quraishi, A.; Dutta, A.K.; Sinha, K.P.; Rao, G.S.N.; Sherkuziyeva, N.; Nimma, D.; Patni, J.C. Unified Fake News Detection Based on IoST-Driven Joint Detection Models. IEEE Trans. Comput. Soc. Syst. 2025. [Google Scholar] [CrossRef]
- Hu, Z.; Dong, Y.; Wang, K.; Sun, Y. Heterogeneous Graph Transformer. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; ACM: New York, NY, USA, 2020; pp. 2704–2710. [Google Scholar]
- Phan, H.T.; Nguyen, V.D.; Nguyen, N.T. MulGCN: MultiGraph Convolutional Network for Aspect-Level Sentiment Analysis. IEEE Access 2025, 13, 26304–26317. [Google Scholar] [CrossRef]
- Kim, Y. Convolutional Neural Networks for Sentence Classification. arXiv 2014, arXiv:1408.5882. [Google Scholar] [CrossRef]
Test Function ID | Function | Number of Variables | Optimum |
---|---|---|---|
TF1 | Ellipsoid | {10, 30, 50, 100} | 0 |
TF2 | Rosenbrock | 0 | |
TF3 | Ackley | 0 | |
TF4 | Griewank | 0 | |
TF5 | Rastrigin | 0 |
D | ID | GBS-DDEA | DDEA-SE | BDDEA | DDEA-PES |
---|---|---|---|---|---|
10 | TF1 | 1.09 ± 5.25 × 10−1 | 9.94 × 10−1 ± 4.68 × 10−1 (≈) | 1.11 ± 4.04 × 10−1 (≈) | 1.36 ± 6.52 × 10−1 (≈) |
TF2 | 2.93 × 101 ± 3.29 | 2.80 × 101 ± 5.31 (≈) | 3.44 × 101 ± 7.46 (+) | 2.99 × 101 ± 7.73 (≈) | |
TF3 | 5.91 ± 8.03 × 10−1 | 5.99 ± 7.92 × 10−1 (≈) | 6.67 ± 6.44 × 10−1 (+) | 6.50 ± 1.44 (≈) | |
TF4 | 1.24 ± 1.02 × 10−1 | 1.30 ± 1.39 × 10−1 (+) | 1.26 ± 1.23 × 10−1 (≈) | 1.33 ± 1.32 × 10−1 (+) | |
TF5 | 6.81 × 101 ± 2.04 × 101 | 6.08 × 101 ± 1.82 × 101 (≈) | 6.94 × 101 ± 2.68 × 101 (≈) | 5.87 × 101 ± 1.79 × 101 (≈) | |
+/≈/− | NA | 1/4/0 | 2/3/0 | 1/4/0 | |
30 | TF1 | 4.26 ± 9.55 × 10−1 | 4.09 ± 1.37 (≈) | 7.02 ± 2.21 (+) | 5.31 ± 1.39 (+) |
TF2 | 5.97 × 101 ± 6.54 | 5.71 × 101 ± 4.79 (≈) | 6.96 × 101 ± 8.22 (+) | 7.00 × 101 ± 8.61 (+) | |
TF3 | 5.17 ± 2.78 × 10−1 | 4.85 ± 5.24 × 10−1 (−) | 5.65 ± 6.85 × 10−1 (+) | 5.48 ± 3.62 × 10−1 (+) | |
TF4 | 1.15 ± 5.50 × 10−2 | 1.26 ± 7.83 × 10−2 (+) | 1.38 ± 1.14 × 10−1 (+) | 1.26 ± 9.47 × 10−2 (+) | |
TF5 | 1.16 × 102 ± 2.38 × 101 | 1.14 × 102 ± 2.72 × 101 (≈) | 1.53 × 102 ± 4.09 × 101 (+) | 1.46 × 102 ± 3.10 × 101 (+) | |
+/≈/− | NA | 1/3/1 | 5/0/0 | 5/0/0 | |
50 | TF1 | 9.33 ± 1.37 | 1.35 × 101 ± 4.74 (+) | 1.33 × 101 ± 3.18 (+) | 1.48 × 101 ± 4.48 (+) |
TF2 | 8.52 × 101 ± 3.06 | 8.24 × 101 ± 4.09 (−) | 9.88 × 101 ± 9.88 (+) | 1.09 × 102 ± 1.12 × 101 (+) | |
TF3 | 4.42 ± 2.21 × 10−1 | 4.90 ± 3.02 × 10−1 (+) | 4.79 ± 3.50 × 10−1 (+) | 4.90 ± 4.17 × 10−1 (+) | |
TF4 | 1.18 ± 3.60 × 10−2 | 1.89 ± 2.11 × 10−1 (+) | 1.42 ± 8.12 × 10−2 (+) | 1.34 ± 9.61 × 10−2 (+) | |
TF5 | 1.54 × 102 ± 2.80 × 101 | 1.78 × 102 ± 3.17 × 101 (+) | 1.98 × 102 ± 3.06 × 101 (+) | 2.38 × 102 ± 5.01 × 101 (+) | |
+/≈/− | NA | 4/0/1 | 5/0/0 | 5/0/0 | |
100 | TF1 | 8.27 × 101 ± 7.74 × 101 | 2.84 × 102 ± 7.87 × 101 (+) | 5.57 × 101 ± 1.25 × 101 (≈) | 4.17 × 102 ± 3.55 × 102 (+) |
TF2 | 1.89 × 102 ± 2.38 × 101 | 2.41 × 102 ± 2.60 × 101 (+) | 1.94 × 102 ± 2.01 × 101 (≈) | 4.99 × 102 ± 1.93 × 102 (+) | |
TF3 | 4.22 ± 2.43 × 10−1 | 7.16 ± 6.64 × 10−1 (+) | 4.69 ± 2.59 × 10−1 (+) | 5.17 ± 6.21 × 10−1 (+) | |
TF4 | 1.56 ± 1.70 × 10−1 | 1.84 × 101 ± 1.83 (+) | 1.85 ± 2.36 × 10−1 (+) | 3.83 ± 2.01 (+) | |
TF5 | 4.66 × 102 ± 9.26 × 101 | 7.79 × 102 ± 8.59 × 101 (+) | 4.30 × 102 ± 1.45 × 102 (≈) | 9.15 × 102 ± 1.28 × 102 (+) | |
+/≈/− | NA | 5/0/0 | 2/3/0 | 5/0/0 | |
D | ID | MFITS | PS-GA | ELDR-SAHO | TS-SADE |
10 | TF1 | 1.18 ± 6.28 × 10−1 (≈) | 1.17 ± 7.19 × 10−1 (≈) | 1.19 ± 4.82 × 10−1 (≈) | 1.31 ± 5.18 × 10−1 (≈) |
TF2 | 2.94 × 101 ± 6.75 (≈) | 3.59 × 101 ± 7.46 (+) | 3.43 × 101 ± 7.40 (+) | 3.01 × 101 ± 6.66 (≈) | |
TF3 | 6.51 ± 4.24 (≈) | 6.70 ± 3.39 × 10−1 (+) | 6.60 ± 6.07 × 10−1 (+) | 6.47 ± 1.79 (≈) | |
TF4 | 1.26 ± 2.21 × 10−1 (+) | 1.45 ± 1.54 × 10−1 (≈) | 1.28 ± 1.68 × 10−1 (≈) | 1.32 ± 1.80 × 10−1 (+) | |
TF5 | 5.83 × 101 ± 1.75 × 101 (≈) | 6.34 × 101 ± 2.15 × 101 (≈) | 6.96 × 101 ± 2.50 × 101 (≈) | 5.98 × 101 ± 1.59 × 101 (≈) | |
+/≈/− | 1/4/0 | 2/3/0 | 2/3/0 | 1/4/0 | |
30 | TF1 | 5.31 ± 1.60 (+) | 7.05 ± 2.15 (+) | 7.06 ± 3.21 (+) | 5.38 ± 2.05 (+) |
TF2 | 6.92 × 101 ± 7.58 (+) | 6.87 × 101 ± 8.62 (+) | 6.96 × 101 ± 7.22 (+) | 7.03 × 101 ± 9.03 (+) | |
TF3 | 5.71 ± 3.06 × 10−1 (+) | 5.13 ± 6.92 × 10−1 (+) | 5.65 ± 6.85 × 10−1 (+) | 5.56 ± 3.85 × 10−1 (+) | |
TF4 | 1.28 ± 8.05 × 10−2 (+) | 1.38 ± 2.18 × 10−1 (+) | 1.40 ± 5.71 × 10−1 (+) | 1.34 ± 8.85 × 10−2 (+) | |
TF5 | 1.43 × 102 ± 3.39 × 101 (+) | 1.63 × 102 ± 4.37 × 101 (+) | 1.50 × 102 ± 3.28 × 101 (+) | 1.76 × 102 ± 3.09 × 101 (+) | |
+/≈/− | 5/0/0 | 5/0/0 | 5/0/0 | 5/0/0 | |
50 | TF1 | 1.50 × 101 ± 3.60 (+) | 1.63 × 101 ± 1.37 (+) | 1.60 × 101 ± 2.53 (+) | 1.70 × 101 ± 4.41 (+) |
TF2 | 1.11 × 102 ± 2.15 × 101 (+) | 9.48 × 101 ± 8.08 (+) | 9.86 × 101 ± 9.77 (+) | 1.11 × 102 ± 1.66 × 101 (+) | |
TF3 | 4.91 ± 3.60 × 10−1 (+) | 4.76 ± 4.88 × 10−1 (+) | 4.71 ± 4.11 × 10−1 (+) | 4.76 ± 3.85 × 10−1 (+) | |
TF4 | 1.45 ± 8.15 × 10−2 (+) | 1.44 ± 7.57 × 10−2 (+) | 1.58 ± 7.69 × 10−2 (+) | 1.51 ± 8.83 × 10−2 (+) | |
TF5 | 2.58 × 102 ± 4.41 × 101 (+) | 1.64 × 102 ± 6.68 × 101 (+) | 1.79 × 102 ± 2.93 × 101 (+) | 2.15 × 102 ± 4.50 × 101 (+) | |
+/≈/− | 5/0/0 | 5/0/0 | 5/0/0 | 5/0/0 | |
100 | TF1 | 4.18 × 102 ± 3.41 × 102 (+) | 5.62 × 101 ± 2.21 × 101 (≈) | 5.58 × 101 ± 1.25 × 101 (≈) | 5.60 × 101 ± 4.50 × 102 (≈) |
TF2 | 4.85 × 102 ± 2.10 × 102 (+) | 1.58 × 102 ± 3.15 × 101 (≈) | 1.96 × 102 ± 1.57 × 101 (≈) | 1.97 × 102 ± 1.93 × 102 (≈) | |
TF3 | 5.23 ± 5.85 × 10−1 (+) | 4.72 ± 4.62 × 10−1 (+) | 4.70 ± 3.12 × 10−1 (+) | 4.27 ± 4.51 × 10−1 (≈) | |
TF4 | 3.90 ± 2.08 (+) | 1.82 ± 3.35 × 10−1 (+) | 1.84 ± 2.81 × 10−1 (+) | 1.88 ± 2.22 (+) | |
TF5 | 9.44 × 102 ± 2.02 × 102 (+) | 4.34 × 102 ± 2.13 × 102 (≈) | 4.50 × 102 ± 2.01 × 102 (≈) | 4.56 × 102 ± 1.33 × 102 (≈) | |
+/≈/− | 5/0/0 | 2/3/0 | 2/3/0 | 1/4/0 |
D | ID | GBS-DDEA | GBS-DDEA-noG | GBS-DDEA-noR |
---|---|---|---|---|
10 | TF1 | 1.09 ± 5.25 × 10−1 | 1.03 ± 4.47 × 10−1 (≈) | 1.25 ± 2.94 × 10−1 (+) |
TF2 | 2.93 × 101 ± 3.29 | 3.59 × 101 ± 7.26 (+) | 3.64 × 101 ± 6.34 (+) | |
TF3 | 5.91 ± 8.03 × 10−1 | 6.92 ± 7.85 × 10−1 (+) | 5.66 ± 6.43 × 10−1 (≈) | |
TF4 | 1.24 ± 1.02 × 10−1 | 1.17 ± 4.65 × 10−2 (−) | 1.35 ± 2.01 × 10−1 (≈) | |
TF5 | 6.81 × 101 ± 2.04 × 101 | 8.11 × 101 ± 1.82 × 101 (≈) | 5.42 × 101 ± 1.62 × 101 (≈) | |
+/≈/− | NA | 2/2/1 | 2/3/0 | |
30 | TF1 | 4.26 ± 9.55 × 10−1 | 5.84 ± 1.95 (≈) | 4.30 ± 9.62 × 10−1 (≈) |
TF2 | 5.97 × 101 ± 6.54 | 6.35 × 101 ± 5.58 (≈) | 6.53 × 101 ± 3.89 (+) | |
TF3 | 5.17 ± 2.78 × 10−1 | 5.34 ± 4.50 × 10−1 (≈) | 5.74 ± 5.08 × 10−1 (+) | |
TF4 | 1.15 ± 5.50 × 10−2 | 1.25 ± 7.31 × 10−2 (+) | 1.20 ± 2.45 × 10−2 (+) | |
TF5 | 1.16 × 102 ± 2.38 × 101 | 1.54 × 102 ± 2.02 × 101 (+) | 1.20 × 101 ± 1.60 × 101 (+) | |
+/≈/− | NA | 2/3/0 | 4/1/0 | |
50 | TF1 | 9.33 ± 1.37 | 1.26 × 101 ± 3.68 (+) | 1.13 × 101 ± 2.28 (+) |
TF2 | 8.52 × 101 ± 3.06 | 8.98 × 101 ± 6.99 (+) | 9.07 × 101 ± 2.81 (+) | |
TF3 | 4.42 ± 2.21 × 10−1 | 4.91 ± 3.51 × 10−1 (+) | 5.29 ± 2.41 × 10−1 (+) | |
TF4 | 1.18 ± 3.60 × 10−2 | 1.20 ± 4.79 × 10−2 (≈) | 1.22 ± 7.44 × 10−2 (≈) | |
TF5 | 1.54 × 102 ± 2.80 × 101 | 1.98 × 102 ± 3.89 × 101 (+) | 1.37 × 102 ± 3.44 × 101 (≈) | |
+/≈/− | NA | 4/1/0 | 3/2/0 | |
100 | T1 | 8.27 × 101 ± 7.74 × 101 | 9.13 × 101 ± 3.08 × 101 (≈) | 5.81 × 101 ± 1.96 × 101 (≈) |
T2 | 1.89 × 102 ± 2.38 × 101 | 2.22 × 102 ± 4.33 × 101 (+) | 1.79 × 102 ± 2.25 × 101 (≈) | |
T3 | 4.22 ± 2.43 × 10−1 | 4.64 ± 3.03 × 10−1 (+) | 4.11 ± 2.78 × 10−1 (≈) | |
T4 | 1.56 ± 1.70 × 10−1 | 1.50 ± 9.73 × 10−2 (≈) | 1.94 ± 6.89 × 10−1 (+) | |
T5 | 4.66 × 102 ± 9.26 × 101 | 7.16 × 102 ± 2.64 × 102 (+) | 4.29 × 102 ± 1.34 × 102 (≈) | |
+/≈/− | NA | 3/2/0 | 1/4/0 |
D | ID | GBS-DDEA (L = 300) | GBS-DDEA (L = 100) | GBS-DDEA (L = 200) | GBS-DDEA (L = 250) | GBS-DDEA (L = 400) |
---|---|---|---|---|---|---|
10 | TF1 | 1.09 ± 5.25 × 10−1 | 1.04 ± 5.62 × 10−1 (≈) | 8.62 × 10−1 ± 3.10 × 10−1 (≈) | 9.26 × 10−1 ± 3.23 × 10−1 (≈) | 9.47 × 10−1 ± 3.52 × 10−1 (≈) |
TF2 | 2.93 × 101 ± 3.29 | 3.22 × 101 ± 6.05 (≈) | 2.76 × 101 ± 5.35 (≈) | 3.37 × 101 ± 5.80 (+) | 3.14 × 101 ± 6.44 (≈) | |
TF3 | 5.91 ± 8.03 × 10−1 | 6.14 ± 9.72 × 10−1 (≈) | 6.08 ± 1.22 (≈) | 6.40 ± 1.13 (≈) | 6.05 ± 1.12 (≈) | |
TF4 | 1.24 ± 1.02 × 10−1 | 1.26 ± 1.17 × 10−1 (≈) | 1.19 ± 1.10 × 10−1 (≈) | 1.19 ± 9.51 × 10−2 (≈) | 1.29 ± 1.25 × 10−1 (≈) | |
TF5 | 6.81 × 101 ± 2.04 × 101 | 7.29 × 101 ± 1.77 × 101 (≈) | 6.41 × 101 ± 1.48 × 101 (≈) | 6.54 × 101 ± 2.09 × 101 (≈) | 6.99 × 101 ± 2.25 × 101 (≈) | |
+/≈/− | NA | 0/5/0 | 0/5/0 | 1/4/0 | 0/5/0 | |
30 | TF1 | 4.26 ± 9.55 × 10−1 | 4.80 ± 1.84 (≈) | 3.82 ± 1.04 (≈) | 4.88 ± 1.21 (≈) | 4.77 ± 1.68 (≈) |
TF2 | 5.97 × 101 ± 6.54 | 5.38 × 101 ± 8.92 (−) | 6.07 × 101 ± 3.90 (≈) | 6.48 × 101 ± 1.13 × 101 (≈) | 5.90 × 101 ± 4.63 (≈) | |
TF3 | 5.17 ± 2.78 × 10−1 | 4.93 ± 4.38 × 10−1 (≈) | 5.35 ± 7.04 × 10−1 (≈) | 5.25 ± 6.06 × 10−1 (≈) | 4.91 ± 2.07 × 10−1 (−) | |
TF4 | 1.15 ± 5.50 × 10−2 | 1.20 ± 3.24 × 10−2 (+) | 1.20 ± 5.63 × 10−2 (+) | 1.23 ± 6.47 × 10−2 (+) | 1.17 ± 6.08 × 10−2 (≈) | |
TF5 | 1.16 × 102 ± 2.38 × 101 | 1.06 × 102±2.58 × 101 (≈) | 1.26 × 102 ± 2.47 × 101 (≈) | 1.24 × 102 ± 2.61 × 101 (≈) | 1.25 × 102 ± 3.72 × 101 (≈) | |
+/≈/− | NA | 1/3/1 | 1/4/0 | 1/4/0 | 0/4/1 | |
50 | TF1 | 9.33 ± 1.37 | 1.06 × 101 ± 2.36 (≈) | 1.21 × 101 ± 4.27 (+) | 1.32 × 101 ± 2.39 (+) | 8.80 ± 3.06 (≈) |
TF2 | 8.52 × 101 ± 3.06 | 8.84 × 101 ± 5.34 (≈) | 9.11 × 101 ± 1.04 × 101 (≈) | 8.51 × 101 ± 3.99 (≈) | 8.45 × 101 ± 4.70 (≈) | |
TF3 | 4.42 ± 2.21 × 10−1 | 4.42 ± 3.21 × 10−1 (≈) | 4.43 ± 2.30 × 10−1 (≈) | 4.48 ± 2.53 × 10−1 (≈) | 4.44 ± 3.20 × 10−1 (≈) | |
TF4 | 1.18 ± 3.60 × 10−2 | 1.21 ± 5.07 × 10−2 (≈) | 1.22 ± 6.77 × 10−2 (≈) | 1.20 ± 5.71 × 10−2 (≈) | 1.17 ± 5.23 × 10−2 (≈) | |
TF5 | 1.54 × 102 ± 2.80 × 101 | 1.50 × 102 ± 1.90 × 101 (≈) | 1.61 × 102 ± 3.65 × 101 (≈) | 1.61 × 102 ± 2.87 × 101 (≈) | 1.52 × 102 ± 2.38 × 101 (≈) | |
+/≈/− | NA | 0/5/0 | 1/4/0 | 1/4/0 | 0/5/0 | |
100 | TF1 | 8.27 × 101 ± 7.74 × 101 | 8.05 × 101 ± 3.77 × 101 (≈) | 6.82 × 101 ± 1.39 × 101 (≈) | 6.52 × 101 ± 2.13 × 101 (≈) | 5.65 × 101 ± 1.18 × 101 (≈) |
TF2 | 1.89 × 102 ± 2.38 × 101 | 1.96 × 102 ± 4.46 × 101 (≈) | 1.85 × 102 ± 1.15 × 101 (≈) | 1.86 × 102 ± 2.58 × 101 (≈) | 1.73 × 102 ± 1.80 × 101 (≈) | |
TF3 | 4.22 ± 2.43 × 10−1 | 4.34 ± 2.30 × 10−1 (≈) | 4.34 ± 2.51 × 10−1 (≈) | 4.32 ± 2.46 × 10−1 (≈) | 4.26 ± 2.37 × 10−1 (≈) | |
TF4 | 1.56 ± 1.70 × 10−1 | 1.84 ± 3.39 × 10−1 (+) | 1.71 ± 3.29 × 10−1 (≈) | 1.76 ± 4.09 × 10−1 (+) | 1.74 ± 2.98 × 10−1 (+) | |
TF5 | 4.66 × 102 ± 9.26 × 101 | 4.61 × 102 ± 9.33 × 101 (≈) | 4.85 × 102 ± 1.42 × 102 (≈) | 5.29 × 102 ± 1.06 × 102 (≈) | 4.98 × 102 ± 1.43 × 102 (≈) | |
+/≈/− | NA | 1/4/0 | 0/5/0 | 1/4/0 | 1/4/0 |
D | ID | GBS-DDEA (R = 2000) | GBS-DDEA (R = 1000) | GBS-DDEA (R = 1500) | GBS-DDEA (R = 2500) | GBS-DDEA (R = 3000) |
---|---|---|---|---|---|---|
10 | TF1 | 1.09 ± 5.25 × 10−1 | 8.96 × 10−1 ± 2.94 × 10−1 (≈) | 8.37 × 10−1 ± 2.89 × 10−1 (≈) | 9.08 × 10−1 ± 3.86 × 10−1 (≈) | 9.27 × 10−1 ± 3.63 × 10−1 (≈) |
TF2 | 2.93 × 101 ± 3.29 | 3.37 × 101 ± 1.19 × 101 (≈) | 2.74 × 101 ± 5.02 (≈) | 2.51 × 101 ± 4.76 (≈) | 2.99 × 101 ± 5.10 (≈) | |
TF3 | 5.91 ± 8.03 × 10−1 | 5.55 ± 8.36 × 10−1 (≈) | 6.29 ± 8.72 × 10−1 (≈) | 6.10 ± 1.06 (≈) | 6.41 ± 5.07 × 10−1 (≈) | |
TF4 | 1.24 ± 1.02 × 10−1 | 1.27 ± 1.12 × 10−1 (≈) | 1.32 ± 1.76 × 10−1 (≈) | 1.25 ± 1.12 × 10−1 (≈) | 1.25 ± 1.31 × 10−1 (≈) | |
TF5 | 6.81 × 101 ± 2.04 × 101 | 6.24 × 101 ± 1.94 × 101 (≈) | 7.20 × 101 ± 2.22 × 101 (≈) | 6.39 × 101 ± 1.23 × 101 (≈) | 6.24 × 101 ± 1.91 × 101 (≈) | |
+/≈/− | NA | 0/5/0 | 0/5/0 | 0/5/0 | 0/5/0 | |
30 | TF1 | 4.26 ± 9.55 × 10−1 | 3.73 ± 1.29 (≈) | 4.09 ± 1.73 (≈) | 3.91 ± 8.45 × 10−1 (≈) | 4.00 ± 8.68 × 10−1 (≈) |
TF2 | 5.97 × 101 ± 6.54 | 5.95 × 101 ± 5.07 (≈) | 5.99 × 101 ± 4.92 (≈) | 5.96 × 101 ± 4.81 (≈) | 5.94 × 101 ± 7.15 (≈) | |
TF3 | 5.17 ± 2.78 × 10−1 | 4.49 ± 4.71 × 10−1 (≈) | 4.55 ± 3.54 × 10−1 (≈) | 4.87 ± 3.89 × 10−1 (≈) | 4.74 ± 5.96 × 10−1 (≈) | |
TF4 | 1.15 ± 5.50 × 10−2 | 1.25 ± 4.68 × 10−2 (+) | 1.22 ± 7.47 × 10−2 (+) | 1.18 ± 4.50 × 10−2 (+) | 1.19 ± 7.98 × 10−2 (≈) | |
TF5 | 1.16 × 102 ± 2.38 × 101 | 1.14 × 102 ± 3.11 × 101 (≈) | 1.14 × 102 ± 1.97 × 101 (≈) | 1.16 × 102 ± 2.51 × 101 (≈) | 1.04 × 102 ± 1.98 × 101 (≈) | |
+/≈/− | NA | 1/4/0 | 1/4/0 | 1/4/0 | 0/5/0 | |
50 | TF1 | 9.33 ± 1.37 | 9.24 ± 1.92 (≈) | 8.93 ± 3.05 (≈) | 1.01 × 101 ± 2.61 (≈) | 8.67 ± 1.92 (≈) |
TF2 | 8.52 × 101 ± 3.06 | 8.29 × 101 ± 5.09 (≈) | 8.88 × 101 ± 4.94 (≈) | 8.63 × 101 ± 3.54 (≈) | 8.12 × 101 ± 6.25 (≈) | |
TF3 | 4.42 ± 2.21 × 10−1 | 4.34 ± 3.16 × 10−1 (≈) | 4.32 ± 3.68 × 10−1 (≈) | 4.28 ± 3.67 × 10−1 (≈) | 4.47 ± 2.22 × 10−1 (≈) | |
TF4 | 1.18 ± 3.60 × 10−2 | 1.21 ± 5.77 × 10−2 (≈) | 1.18 ± 3.78 × 10−2 (≈) | 1.24 ± 1.05 × 10−1 (+) | 1.18 ± 4.25 × 10−2 (≈) | |
TF5 | 1.54 × 102 ± 2.80 × 101 | 1.54 × 102 ± 2.98 × 101 (≈) | 1.55 × 102 ± 3.82 × 101 (≈) | 1.52 × 102 ± 3.18 × 101 (≈) | 1.56 × 102 ± 3.42 × 101 (≈) | |
+/≈/− | NA | 0/5/0 | 0/5/0 | 1/4/0 | 0/5/0 | |
100 | TF1 | 8.27 × 101 ± 7.74 × 101 | 6.13 × 101 ± 1.71 × 101 (≈) | 5.03 × 101 ± 1.29 × 101 (≈) | 6.46 × 101 ± 2.57 × 101 (≈) | 6.11 × 101 ± 3.50 × 101 (≈) |
TF2 | 1.89 × 102 ± 2.38 × 101 | 1.90 × 102 ± 3.77 × 101 (≈) | 1.75 × 102 ± 2.81 × 101 (≈) | 1.75 × 102 ± 2.42 × 101 (≈) | 1.74 × 102 ± 2.79 × 101 (≈) | |
TF3 | 4.22 ± 2.43 × 10−1 | 4.25 ± 2.55 × 10−1 (≈) | 4.10 ± 2.24 × 10−1 (≈) | 4.11 ± 2.69 × 10−1 (≈) | 4.39 ± 1.89 × 10−1 (≈) | |
TF4 | 1.56 ± 1.70 × 10−1 | 2.02 ± 5.92 × 10−1 (+) | 1.91 ± 7.18 × 10−1 (≈) | 1.86 ± 6.74 × 10−1 (≈) | 2.04 ± 9.61 × 10−1 (≈) | |
TF5 | 4.66 × 102 ± 9.26 × 101 | 4.52 × 102 ± 1.47 × 102 (≈) | 4.56 × 102 ± 1.74 × 102 (≈) | 4.13 × 102 ± 1.32 × 102 (≈) | 4.63 × 102 ± 1.81 × 102 (≈) | |
+/≈/− | NA | 1/4/0 | 0/5/0 | 0/5/0 | 0/5/0 |
Hyperparameter | Search Range |
---|---|
Dropout rate | [0, 1] |
Learning rate | [1 × 10−6, 1] |
Text Embedding dimension | [32, 1024] |
Hyperparameter | Micro F1 | Macro F1 |
---|---|---|
HGT | 0.88 | 0.43 |
DDEA-SE-HGT | 0.93 | 0.48 |
BDDEA-HGT | 0.92 | 0.47 |
DDEA-PES-HGT | 0.92 | 0.46 |
GBS-DDEA-HGT | 0.94 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Li, J.-Y. A Gumbel-Based Selection Data-Driven Evolutionary Algorithm and Its Application to Chinese Text-Based Cheating Official Accounts Mining. Algorithms 2025, 18, 643. https://doi.org/10.3390/a18100643
Yuan J, Li J-Y. A Gumbel-Based Selection Data-Driven Evolutionary Algorithm and Its Application to Chinese Text-Based Cheating Official Accounts Mining. Algorithms. 2025; 18(10):643. https://doi.org/10.3390/a18100643
Chicago/Turabian StyleYuan, Jiheng, and Jian-Yu Li. 2025. "A Gumbel-Based Selection Data-Driven Evolutionary Algorithm and Its Application to Chinese Text-Based Cheating Official Accounts Mining" Algorithms 18, no. 10: 643. https://doi.org/10.3390/a18100643
APA StyleYuan, J., & Li, J.-Y. (2025). A Gumbel-Based Selection Data-Driven Evolutionary Algorithm and Its Application to Chinese Text-Based Cheating Official Accounts Mining. Algorithms, 18(10), 643. https://doi.org/10.3390/a18100643