Characterizing and Optimizing Spatial Selectivity of Peripheral Nerve Stimulation Montages and Electrode Configurations In Silico
Abstract
1. Introduction
2. Materials and Methods
2.1. Finite Element Modelling and Neural Simulation
- 16 μm fiber diameter, myelinated, from [31], referred to in this work as “Aα fiber”.
- 8.7 μm fiber diameter, myelinated, from [31], referred to in this work as “Aβ fiber”.
- 2 μm fiber diameter, myelinated, from [32], referred to in this work as “Aδ fiber”.
- 0.8 μm fiber diameter, unmyelinated, from [33], referred to in this work as “C fiber”.
2.2. Investigated Electrode Configurations and Stimulation Montages
- “Longitudinal”: The most straightforward montage, and the easiest to implement, longitudinal stimulation relies on a single pair of longitudinally separated electrodes. One member of the pair receives one arbitrary unit (AU) of cathodic current, and the other receives one AU of anodic current. The two-ring implementation of this montage is recommended by [17] as a potential optimal solution. As shown in Figure 1A, the distribution of current is modified for three rings of electrodes to utilize the additional ring—splitting the anodic current among the available longitudinally located electrodes. Additionally, note that single-ring configurations have no longitudinally spaced electrodes—the single-ring version of this montage will therefore only include stimulation from a single electrode and will be referred to as “Single Electrode” stimulation to prevent confusion for the remainder of this paper. Single-electrode stimulation is not spatially charge-balanced but can be applied safely via biphasic pulse, which is standard practice regardless of montage.
- “X-Adjacent”: X-Adjacent montages are similar to longitudinal montages but also include activation of electrodes adjacent to the primary longitudinal electrodes. As shown in Figure 1B, electrodes adjacent to a primary cathodic source receive “X” anodic current, while electrodes adjacent to a primary anodic source receive “X” cathodic current. The value of X lies between zero and one and is determined via simulated annealing to achieve maximum success in our “Fiber Specificity” metric (described in “Metrics of Success” below). We are testing X-Adjacent montages because prior art has observed increases in spatial specificity when activating electrodes adjacent to primary sources in this way [22,25]. Note that when X is equal to zero, this montage simply becomes a longitudinal stimulation.
- “X-Decay”: X-decay montages are an extrapolation of X-adjacent montages, using all available electrodes. As shown in Figure 1C, each electrode farther away from a ring’s primary electrode will receive an additional power of X in its current calculation. Since X is a value between zero and one, electrodes farther away from the primary electrode receive less current. X-decay “X” values are calculated via simulated annealing in the same way as X-adjacent values. We are testing X-decay montages to observe the benefits and drawbacks of recruiting all possible electrodes, in comparison to the more straightforward X-Adjacent montages.
- “SBFI”: Our unique method is called “Stimulation Balancing Focality and Intensity” (SBFI). It was originally presented in [26] as a montage to accurately perform multi-electrode transcranial direct current stimulation. The method calculates the current to be applied at each electrode by maximizing voltage delivered to a target region while minimizing voltage delivered to non-target regions. As a result, SBFI optimizes a montage that will deliver high three-dimensional spatial specificity without requiring computationally expensive simulations of action potentials. This is accomplished by finding the value of that minimizes the convex expression as follows:
- 5.
- “Simulated Annealing”: Prior studies, including [22,25], have used global optimization tools to find the optimal current applied to electrodes to achieve spatially selective stimulation. To compare global optimization to our other montages, we include a simulated annealing montage. This montage begins from the initial condition of the longitudinal stimulation, and simulated annealing is applied in order to maximize success at our “Fiber Specificity” metric (described in “Metrics of Success” below). Simulated annealing was performed in MATLAB with a tolerance of 10−6. To reduce the number of variables for multiple-ring configurations, the two-ring simulated annealing montages constrained current values of one ring to be equal and opposite of the other, and the three-ring simulated annealing montages were constrained such that the outer ring electrode currents were equal to −1/2 multiplied by the center ring electrode currents.
2.3. Metrics of Success
- 3D Specificity: Following the definition of a “deep target” given by [17], a target voxel at a depth two-thirds of the distance from the nerve’s circumference to its center was selected. Current was applied to electrodes according to a selected stimulation montage, and the number of voxels that received a greater activating function than the target voxel was counted. 3D Error was calculated as the percent of all voxels with a higher activating function than the target, and 3D Specificity was calculated as 100% minus the 3D Error. Since this percentage is based on the size of the cuff, the results for 1-ring, 2-ring, and 3-ring cuffs have different meanings.
- Fiber Specificity: A set of 2000 identical, cylindrical, longitudinally oriented nerve fibers were assumed to be randomly distributed within the computational nerve. Following the definition of a “deep target” given by [17], a target fiber located deep into the nerve (two-thirds from the nerve’s circumference to its center) was selected, and current was applied to electrodes according to a selected stimulation montage such that the target fiber received a threshold stimulus. The percentage of total fibers activated by the stimulation was counted, revealing the fiber error. Fiber specificity was calculated as 100% minus the fiber error. Since this test calculates the fiber specificity at the exact level of current required to activate the target fiber, it measures maximum fiber specificity.
- Robustness: Reusing the 2000 fibers from the Fiber Specificity test, the order in which the fibers were recruited was determined. Then, a Specificity Index () and Robustness Index () were calculated according to the following equations:
- Safety: Reusing the 2000 fibers from the fiber specificity test amplitude of current at each electrode required to achieve maximum specificity was recorded. The maximum charge density applied to each electrode was then found, and the stimulation was marked as unsafe if the maximum applied charge density resulted in a Shannon neural safety parameter exceeding k = 1.85 [36].
2.4. Cost Functions
3. Results
3.1. Two- and Three-Ring Stimulation Are Safer and More Spatially Selective than Single-Ring Stimulation
3.2. Electrode Size Is Only a Major Concern for Longitudinal Montages
3.3. Maximum Specificity and Robustness Was Achieved by the X-Adjacent Montage
3.4. Longitudinal Montages Show Maximum Safety, but Have Low Robustness
3.5. Simulated Annealing Is Hampered by Local Minima in This Application
3.6. Cost Function Performance
4. Discussion
4.1. Our Recommendations
4.2. Influence of Fascicle Geometry
4.3. Additional Electrode and Nerve Geometries
4.4. Computational Time and Modelling Requirements
4.5. Hardware and Resolution Constraints
4.6. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Summary: Single-Ring Stimulation Montages | ||||||||
---|---|---|---|---|---|---|---|---|
Stimulation Montage | 3D Specificity (%) | Fiber Specificity (%) | RI | Shannon Value k, Aα Fibers (μC/cm2) | Shannon Value k, Aβ Fibers (μC/cm2) | Shannon Value k, Aδ Fibers (μC/cm2) | Shannon Value k, C Fibers (μC/cm2) | |
Single Electrode | 73.1 ± 0.47 | 59.1 ± 0.60 | 0.295 ± 0.023 | 0.770 ± 0.060 | 1.20 ± 0.060 | 1.59 ± 0.060 | 3.54 ± 0.060 | |
X-Adjacent | 77.1 ± 8.7 | 71.9 ± 6.9 | 0.772 ± 0.053 | 1.72 ± 0.041 | 2.16 ± 0.041 | 2.54 ± 0.041 | 4.49 ± 0.041 | |
X-Decay | 77.9 ± 1.7 | 71.7 ± 2.1 | 0.788 ± 0.017 | 1.55 ± 0.040 | 1.98 ± 0.040 | 2.37 ± 0.040 | 4.32 ± 0.040 | |
SBFI | 71.1 ± 3.0 | 69.3 ± 4.0 | 0.774 ± 0.035 | 1.97 ± 0.082 | 2.40 ± 0.082 | 2.79 ± 0.082 | 4.74 ± 0.082 | |
Simulated Annealing | 74.6 ± 0.81 | 68.8 ± 1.3 | 0.718 ± 0.012 | 0.968 ± 0.042 | 1.40 ± 0.042 | 1.79 ± 0.042 | 3.74 ± 0.042 |
Summary: Two-Ring Stimulation Montages | ||||||||
---|---|---|---|---|---|---|---|---|
Stimulation Montage | 3D Specificity (%) | Fiber Specificity (%) | RI | Shannon Value k, Aα Fibers (μC/cm2) | Shannon Value k, Aβ Fibers (μC/cm2) | Shannon Value k, Aδ Fibers (μC/cm2) | Shannon Value k, C Fibers (μC/cm2) | |
Longitudinal | 79.5 ± 0.30 | 63.6 ± 0.62 | 0.596 ± 0.016 | 0.629 ± 0.054 | 1.06 ± 0.054 | 1.45 ± 0.054 | 3.40 ± 0.054 | |
X-Adjacent | 83.3 ± 1.3 | 77.2 ± 3.4 | 0.870 ± 0.028 | 1.51 ± 0.036 | 1.94 ± 0.036 | 2.33 ± 0.036 | 4.28 ± 0.036 | |
X-Decay | 82.9 ± 0.98 | 75.2 ± 2.1 | 0.803 ± 0.027 | 1.28 ± 0.037 | 1.71 ± 0.037 | 2.10 ± 0.037 | 4.05 ± 0.037 | |
SBFI | 82.6 ± 2.1 | 74.2 ± 5.3 | 0.840 ± 0.057 | 1.09 ± 0.050 | 1.52 ± 0.050 | 1.91 ± 0.050 | 3.86 ± 0.050 | |
Simulated Annealing | 81.5 ± 0.78 | 72.2 ± 1.3 | 0.779 ± 0.011 | 0.695 ± 0.037 | 1.13 ± 0.037 | 1.52 ± 0.037 | 3.47 ± 0.037 |
Summary: Three-Ring Stimulation Montages | ||||||||
---|---|---|---|---|---|---|---|---|
Stimulation Montage | 3D Specificity (%) | Fiber Specificity (%) | RI | Shannon Value k, Aα Fibers (μC/cm2) | Shannon Value k, Aβ Fibers (μC/cm2) | Shannon Value k, Aδ Fibers (μC/cm2) | Shannon Value k, C Fibers (μC/cm2) | |
Longitudinal | 87.4 ± 0.16 | 65.2 ± 0.53 | 0.602 ± 0.018 | 0.597 ± 0.052 | 1.03 ± 0.052 | 1.42 ± 0.052 | 3.37 ± 0.052 | |
X-Adjacent | 89.0 ± 0.61 | 77.4 ± 3.0 | 0.856 ± 0.024 | 1.46 ± 0.037 | 1.89 ± 0.037 | 2.28 ± 0.037 | 4.23 ± 0.037 | |
X-Decay | 89.1 ± 0.80 | 76.1 ± 2.3 | 0.819 ± 0.022 | 1.23 ± 0.038 | 1.66 ± 0.038 | 2.05 ± 0.038 | 4.00 ± 0.038 | |
SBFI | 88.6 ± 1.2 | 72.6 ± 3.8 | 0.818 ± 0.052 | 1.21 ± 0.055 | 1.64 ± 0.055 | 2.03 ± 0.055 | 3.98 ± 0.055 | |
Simulated Annealing | 87.8 ± 0.41 | 72.5 ± 1.1 | 0.757 ± 0.014 | 0.664 ± 0.048 | 1.10 ± 0.048 | 1.49 ± 0.048 | 3.43 ± 0.048 |
Single-Ring X-Adjacent: X Values | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Electrode Arc Length | Number of Electrodes | |||||||||||||
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||
1/6 | 0.462 | - | - | - | - | - | - | - | - | - | - | - | - | |
1/8 | 0.376 | 0.183 | 0.270 | - | - | - | - | - | - | - | - | - | - | |
1/10 | 0.389 | 0.149 | 0.224 | 0.285 | 0.344 | - | - | - | - | - | - | - | - | |
1/12 | 0.362 | 0.125 | 0.199 | 0.258 | 0.309 | 0.351 | 0.385 | - | - | - | - | - | - | |
1/14 | 0.367 | 0.121 | 0.180 | 0.246 | 0.285 | 0.333 | 0.360 | 0.394 | 0.415 | - | - | - | - | |
1/16 | - | 0.110 | 0.171 | 0.227 | 0.279 | 0.316 | 0.345 | 0.376 | 0.398 | 0.415 | 0.433 | - | - | |
1/18 | - | - | - | 0.218 | 0.267 | 0.304 | 0.330 | 0.359 | 0.385 | 0.396 | 0.414 | 0.432 | 0.445 | |
1/20 | - | - | - | - | - | 0.294 | 0.306 | 0.344 | 0.376 | 0.395 | 0.404 | 0.418 | 0.433 | |
1/22 | - | - | - | - | - | - | - | 0.330 | 0.365 | 0.384 | 0.400 | 0.411 | 0.419 | |
1/24 | - | - | - | - | - | - | - | - | - | 0.379 | 0.394 | 0.403 | 0.415 | |
1/26 | - | - | - | - | - | - | - | - | - | - | - | 0.398 | 0.416 |
Single-Ring X-Decay: X Values | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Electrode Arc Length | Number of Electrodes | |||||||||||||
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||
1/6 | 0.237 | - | - | - | - | - | - | - | - | - | - | - | - | |
1/8 | 0.172 | 0.209 | 0.248 | - | - | - | - | - | - | - | - | - | - | |
1/10 | 0.145 | 0.177 | 0.215 | 0.242 | 0.267 | - | - | - | - | - | - | - | - | |
1/12 | 0.120 | 0.160 | 0.197 | 0.227 | 0.248 | 0.265 | 0.277 | - | - | - | - | - | - | |
1/14 | 0.106 | 0.156 | 0.188 | 0.212 | 0.233 | 0.252 | 0.265 | 0.276 | 0.285 | - | - | - | - | |
1/16 | - | 0.152 | 0.177 | 0.203 | 0.229 | 0.248 | 0.254 | 0.266 | 0.276 | 0.284 | 0.294 | - | - | |
1/18 | - | - | - | 0.202 | 0.222 | 0.239 | 0.251 | 0.261 | 0.267 | 0.278 | 0.286 | 0.292 | 0.299 | |
1/20 | - | - | - | - | - | 0.232 | 0.246 | 0.253 | 0.259 | 0.274 | 0.281 | 0.286 | 0.293 | |
1/22 | - | - | - | - | - | - | - | 0.251 | 0.260 | 0.268 | 0.271 | 0.281 | 0.289 | |
1/24 | - | - | - | - | - | - | - | - | - | 0.265 | 0.271 | 0.278 | 0.283 | |
1/26 | - | - | - | - | - | - | - | - | - | - | - | 0.276 | 0.280 |
Two-Ring X-Adjacent: X Values | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Electrode Arc Length | Number of Electrodes | |||||||||||||
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||
1/6 | 0.173 | - | - | - | - | - | - | - | - | - | - | - | - | |
1/8 | 0.134 | 0.205 | 0.281 | - | - | - | - | - | - | - | - | - | - | |
1/10 | 0.120 | 0.183 | 0.244 | 0.303 | 0.362 | - | - | - | - | - | - | - | - | |
1/12 | 0.107 | 0.170 | 0.223 | 0.277 | 0.329 | 0.370 | 0.402 | - | - | - | - | - | - | |
1/14 | 0.106 | 0.157 | 0.215 | 0.272 | 0.314 | 0.351 | 0.386 | 0.407 | 0.427 | - | - | - | - | |
1/16 | - | 0.153 | 0.209 | 0.258 | 0.303 | 0.343 | 0.371 | 0.394 | 0.414 | 0.429 | 0.443 | - | - | |
1/18 | - | - | - | 0.250 | 0.289 | 0.332 | 0.361 | 0.384 | 0.404 | 0.417 | 0.432 | 0.444 | 0.453 | |
1/20 | - | - | - | - | - | 0.321 | 0.352 | 0.378 | 0.399 | 0.412 | 0.425 | 0.436 | 0.444 | |
1/22 | - | - | - | - | - | - | - | 0.372 | 0.392 | 0.409 | 0.421 | 0.433 | 0.441 | |
1/24 | - | - | - | - | - | - | - | - | - | 0.403 | 0.418 | 0.430 | 0.438 | |
1/26 | - | - | - | - | - | - | - | - | - | - | - | 0.427 | 0.435 |
Two-Ring X-Decay: X Values | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Electrode Arc Length | Number of Electrodes | |||||||||||||
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||
1/6 | 0.176 | - | - | - | - | - | - | - | - | - | - | - | - | |
1/8 | 0.131 | 0.184 | 0.224 | - | - | - | - | - | - | - | - | - | - | |
1/10 | 0.118 | 0.168 | 0.204 | 0.232 | 0.257 | - | - | - | - | - | - | - | - | |
1/12 | 0.106 | 0.157 | 0.193 | 0.218 | 0.241 | 0.260 | 0.274 | - | - | - | - | - | - | |
1/14 | 0.103 | 0.149 | 0.185 | 0.210 | 0.230 | 0.248 | 0.263 | 0.274 | 0.285 | - | - | - | - | |
1/16 | - | 0.145 | 0.182 | 0.203 | 0.224 | 0.240 | 0.255 | 0.268 | 0.277 | 0.286 | 0.293 | - | - | |
1/18 | - | - | - | 0.199 | 0.219 | 0.233 | 0.249 | 0.262 | 0.271 | 0.279 | 0.286 | 0.292 | 0.299 | |
1/20 | - | - | - | - | - | 0.231 | 0.244 | 0.257 | 0.266 | 0.274 | 0.280 | 0.286 | 0.292 | |
1/22 | - | - | - | - | - | - | - | 0.253 | 0.260 | 0.272 | 0.278 | 0.283 | 0.289 | |
1/24 | - | - | - | - | - | - | - | - | - | 0.269 | 0.274 | 0.281 | 0.286 | |
1/26 | - | - | - | - | - | - | - | - | - | - | - | 0.280 | 0.283 |
Three-Ring X-Adjacent: X Values | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Electrode Arc Length | Number of Electrodes | |||||||||||||
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||
1/6 | 0.162 | - | - | - | - | - | - | - | - | - | - | - | - | |
1/8 | 0.124 | 0.204 | 0.287 | - | - | - | - | - | - | - | - | - | - | |
1/10 | 0.104 | 0.180 | 0.242 | 0.305 | 0.354 | - | - | - | - | - | - | - | - | |
1/12 | 0.106 | 0.162 | 0.223 | 0.273 | 0.326 | 0.362 | 0.393 | - | - | - | - | - | - | |
1/14 | 0.0935 | 0.164 | 0.206 | 0.258 | 0.309 | 0.340 | 0.368 | 0.392 | 0.417 | - | - | - | - | |
1/16 | - | 0.147 | 0.195 | 0.247 | 0.296 | 0.326 | 0.354 | 0.379 | 0.403 | 0.417 | 0.436 | - | - | |
1/18 | - | - | - | 0.237 | 0.288 | 0.318 | 0.346 | 0.368 | 0.392 | 0.407 | 0.422 | 0.435 | 0.449 | |
1/20 | - | - | - | - | - | 0.313 | 0.339 | 0.361 | 0.381 | 0.398 | 0.412 | 0.426 | 0.438 | |
1/22 | - | - | - | - | - | - | - | 0.356 | 0.375 | 0.393 | 0.406 | 0.421 | 0.428 | |
1/24 | - | - | - | - | - | - | - | - | - | 0.387 | 0.403 | 0.418 | 0.423 | |
1/26 | - | - | - | - | - | - | - | - | - | - | - | 0.416 | 0.420 |
Three-Ring X-Decay: X Values | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Electrode Arc Length | Number of Electrodes | |||||||||||||
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||
1/6 | 0.211 | - | - | - | - | - | - | - | - | - | - | - | - | |
1/8 | 0.117 | 0.194 | 0.209 | - | - | - | - | - | - | - | - | - | - | |
1/10 | 0.102 | 0.177 | 0.190 | 0.226 | 0.245 | - | - | - | - | - | - | - | - | |
1/12 | 0.0974 | 0.161 | 0.181 | 0.214 | 0.236 | 0.249 | 0.266 | - | - | - | - | - | - | |
1/14 | 0.0909 | 0.161 | 0.170 | 0.199 | 0.229 | 0.235 | 0.252 | 0.266 | 0.277 | - | - | - | - | |
1/16 | - | 0.146 | 0.169 | 0.193 | 0.220 | 0.227 | 0.245 | 0.256 | 0.267 | 0.277 | 0.286 | - | - | |
1/18 | - | - | - | 0.185 | 0.213 | 0.227 | 0.239 | 0.251 | 0.262 | 0.270 | 0.277 | 0.284 | 0.293 | |
1/20 | - | - | - | - | - | 0.226 | 0.236 | 0.246 | 0.257 | 0.264 | 0.271 | 0.278 | 0.286 | |
1/22 | - | - | - | - | - | - | - | 0.242 | 0.254 | 0.260 | 0.268 | 0.273 | 0.280 | |
1/24 | - | - | - | - | - | - | - | - | - | 0.257 | 0.265 | 0.270 | 0.277 | |
1/26 | - | - | - | - | - | - | - | - | - | - | - | 0.269 | 0.274 |
References
- Olofsson, P.S.; Tracey, K.J. Bioelectronic Medicine: Technology Targeting Molecular Mechanisms for Therapy. J. Intern. Med. 2017, 282, 3–4. [Google Scholar] [CrossRef]
- Johnson, R.; Wilson, C.G. A Review of Vagus Nerve Stimulation as a Therapeutic Intervention. J. Inflamm. Res. 2018, 11, 203–213. [Google Scholar] [CrossRef]
- Panebianco, M.; Zavanone, C.; Dupont, S.; Restivo, D.A.; Pavone, A. Vagus Nerve Stimulation Therapy in Partial Epilepsy: A Review. Acta Neurol. Belg. 2016, 116, 241–248. [Google Scholar] [CrossRef]
- Austelle, C.W.; O’LEary, G.H.; Thompson, S.; Gruber, E.; Kahn, A.; Manett, A.J.; Short, B.; Badran, B.W. A Comprehensive Review of Vagus Nerve Stimulation for Depression. Neuromodul. Technol. Neural Interface 2022, 25, 309–315. [Google Scholar] [CrossRef]
- Sabbah, H.N. Electrical Vagus Nerve Stimulation for the Treatment of Chronic Heart Failure. Clevel. Clin. J. Med. 2011, 78 (Suppl. 1), S24–S29. [Google Scholar] [CrossRef] [PubMed]
- Koopman, F.A.; Chavan, S.S.; Miljko, S.; Grazio, S.; Sokolovic, S.; Schuurman, P.R.; Mehta, A.D.; Levine, Y.A.; Faltys, M.; Zitnik, R.; et al. Vagus Nerve Stimulation Inhibits Cytokine Production and Attenuates Disease Severity in Rheumatoid Arthritis. Proc. Natl. Acad. Sci. USA 2016, 113, 8284–8289. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Wang, Z.; Bai, J.; Xiong, J.; Chen, J.; Ni, J. Research Advances in the Application of Vagus Nerve Electrical Stimulation in Ischemic Stroke. Front. Neurosci. 2022, 16, 1043446. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhan, G.; Cai, Z.; Jiao, B.; Zhao, Y.; Li, S.; Luo, A. Vagus Nerve Stimulation in Brain Diseases: Therapeutic Applications and Biological Mechanisms. Neurosci. Biobehav. Rev. 2021, 127, 37–53. [Google Scholar] [CrossRef]
- Xu, J.; Sun, Z.; Wu, J.; Rana, M.; Garza, J.; Zhu, A.C.; Chakravarthy, K.V.; Abd-Elsayed, A.; Rosenquist, E.; Basi, H.; et al. Peripheral Nerve Stimulation in Pain Management: A Systematic Review. Pain Physician 2021, 24, E131–E152. [Google Scholar] [CrossRef]
- Li, L.-F.; Leung, G.K.-K.; Lui, W.-M. Sacral Nerve Stimulation for Neurogenic Bladder. World Neurosurg. 2016, 90, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Bonaz, B.; Sinniger, V.; Pellissier, S. Vagus Nerve Stimulation: A New Promising Therapeutic Tool in Inflammatory Bowel Disease. J. Intern. Med. 2017, 282, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Ben-Menachem, E. Vagus Nerve Stimulation, Side Effects, and Long-Term Safety. J. Clin. Neurophysiol. 2001, 18, 415–418. [Google Scholar] [CrossRef]
- Redgrave, J.; Day, D.; Leung, H.; Laud, P.; Ali, A.; Lindert, R.; Majid, A. Safety and Tolerability of Transcutaneous Vagus Nerve Stimulation in Humans; a Systematic Review. Brain Stimul. 2018, 11, 1225–1238. [Google Scholar] [CrossRef]
- Mertens, A.C.; Raedt, R.; Gadeyne, S.; Carrette, E.; Boon, P.; Vonck, K. Recent Advances in Devices for Vagus Nerve Stimulation. Expert Rev. Med. Devices 2018, 15, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Rush, A.J.; Marangell, L.B.; Sackeim, H.A.; George, M.S.; Brannan, S.K.; Davis, S.M.; Howland, R.; Kling, M.A.; Rittberg, B.R.; Burke, W.J.; et al. Vagus Nerve Stimulation for Treatment-Resistant Depression: A Randomized, Controlled Acute Phase Trial. Biol. Psychiatry 2005, 58, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Tyler, D.J.; Durand, D.M. Functionally Selective Peripheral Nerve Stimulation With a Flat Interface Nerve Electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 2002, 10, 294–303. [Google Scholar] [CrossRef]
- Aristovich, K.; Donega, M.; Fjordbakk, C.; Tarotin, I.; Chapman, C.A.; Viscasillas, J.; Stathopoulou, T.-R.; Crawford, A.; Chew, D.; Perkins, J.; et al. Model-based Geometrical Optimisation and in Vivo Validation of a Spatially Selective Multielectrode Cuff Array for Vagus Nerve Neuromodulation. J. Neurosci. Methods 2021, 352, 109079. [Google Scholar] [CrossRef]
- Wodlinger, B.; Durand, D.M. Selective Recovery of Fascicular Activity in Peripheral Nerves. J. Neural Eng. 2011, 8, 056005. [Google Scholar] [CrossRef]
- Goodall, E.V.; de Breij, J.; Holsheimer, J. Position-selective Activation of Peripheral Nerve Fibers With a Cuff Electrode. IEEE Trans. Biomed. Eng. 1996, 43, 851–856. [Google Scholar] [CrossRef]
- Clark, G.A.; Ledbetter, N.M.; Warren, D.J.; Harrison, R.R. Recording sensory and motor information from peripheral nerves with Utah Slanted Electrode Arrays. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011, Boston, MA, USA, 30 August–3 September 2011. [Google Scholar] [CrossRef]
- Nanivadekar, A.C.; Ayers, C.A.; Gaunt, R.A.; Weber, D.J.; Fisher, L.E. Selectivity of Afferent Microstimulation at the DRG Using Epineural and Penetrating Electrode Arrays. J. Neural Eng. 2019, 17, 016011. [Google Scholar] [CrossRef]
- Kent, A.R.; Grill, W.M. Model-based Analysis and Design of Nerve Cuff Electrodes for Restoring Bladder Function by Selective Stimulation of the Pudendal Nerve. J. Neural Eng. 2013, 10, 036010. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakash, N.; Song, W.; Toth, V.; Vardhan, A.; Levy, T.; Tomaio, J.; Qanud, K.; Mughrabi, I.; Chang, Y.-C.; Rob, M.; et al. Organ- and function-specific anatomical organization of vagal fibers supports fascicular vagus nerve stimulation. Brain Stimul. 2023, 16, 484–506. [Google Scholar] [CrossRef]
- Blanz, S.L.; Musselman, E.D.; Settell, M.L.; Knudsen, B.E.; Nicolai, E.N.; Trevathan, J.K.; Verner, R.S.; Begnaud, J.; Skubal, A.C.; Suminski, A.J.; et al. Spatially selective stimulation of the pig vagus nerve to modulate target effect versus side effect. J. Neural Eng. 2023, 20, 016051. [Google Scholar] [CrossRef]
- Dali, M.; Rossel, O.; Andreu, D.; Laporte, L.; Hernández, A.; Laforet, J.; Marijon, E.; Hagège, A.; Clerc, M.; Henry, C.; et al. Model Based Optimal Multipolar Stimulation Without a Priori Knowledge of Nerve Structure: Application to Vagus Nerve Stimulation. J. Neural Eng. 2018, 15, 046018. [Google Scholar] [CrossRef]
- Wang, Y.; Brand, J.; Liu, W. Stimulation Montage Achieves Balanced Focality and Intensity. Algorithms 2022, 15, 169. [Google Scholar] [CrossRef]
- Choi, A.-J.; Cavanaugh, J.; Durand, D. Selectivity of Multiple-contact Nerve Cuff Electrodes: A Simulation Analysis. IEEE Trans. Biomed. Eng. 2001, 48, 165–172. [Google Scholar] [CrossRef]
- Calvetti, D.; Wodlinger, B.; Durand, D.M.; Somersalo, E. Hierarchical Beamformer and Cross-talk Reduction in Electroneurography. J. Neural Eng. 2011, 8, 056002. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.R.; Aristovich, K.; Donega, M.; Fjordbakk, C.T.; Stathopoulou, T.-R.; Viscasillas, J.; Avery, J.; Perkins, J.D.; Holder, D. Electrode Fabrication and Interface Optimization for Imaging of Evoked Peripheral Nervous System Activity With Electrical Impedance Tomography (EIT). J. Neural Eng. 2018, 16, 016001. [Google Scholar] [CrossRef]
- Hines, M.L.; Carnevale, N.T. The NEURON Simulation Environment. Neural Comput. 1997, 9, 1179–1209. [Google Scholar] [CrossRef]
- McIntyre, C.C.; Richardson, A.G.; Grill, W.M. Modeling the Excitability of Mammalian Nerve Fibers: Influence of Afterpotentials on the Recovery Cycle. J. Neurophysiol. 2002, 87, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.D.; McIntyre, C.C. Quantifying the Neural Elements Activated and Inhibited by Globus Pallidus Deep Brain Stimulation. J. Neurophysiol. 2008, 100, 2549–2563. [Google Scholar] [CrossRef] [PubMed]
- Sundt, D.; Gamper, N.; Jaffe, D.B. Spike Propagation Through the Dorsal Root Ganglia in an Unmyelinated Sensory Neuron: A Modeling Study. J. Neurophysiol. 2015, 114, 3140–3153. [Google Scholar] [CrossRef]
- CVX Research, Inc. CVX: Matlab Software for Disciplined Convex Programming, Version 2.0. 2011. Available online: http://cvxr.com/cvx (accessed on 11 May 2025).
- Grant, M.; Boyd, S. Graph implementations for nonsmooth convex programs, Recent Advances in Learning and Control (a tribute to M. Vidyasagar). In Lecture Notes in Control and Information Sciences; Blondel, V., Boyd, S., Kimura, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 95–110. [Google Scholar]
- Shannon, R.V. A model of safe levels for electrical stimulation. IEEE Trans. Biomed. Eng. 1992, 39, 424–426. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, J.M.; Cady, S.R.; Peterson, E.J.; Dunning, J.L.; Dinsmoor, D.A.; Pape, F.; Graczyk, E.L.; Tyler, D.J. A distributed, high-channel-count, implanted bidirectional system for restoration of somatosensation and myoelectric control. J. Neural Eng. 2024, 21, 036049. [Google Scholar] [CrossRef] [PubMed]
Cost Function (CF) Performance by Stimulation Montage | |||||
---|---|---|---|---|---|
Montage Name | Naïve CF: Best Output | Aα CF: Best Output | Aβ CF: Best Output | Aδ CF: Best Output | C CF: Best Output |
Three-Ring X-Adjacent | 1.04 × 10−4 | 0.0380 | 0.06034 | 0.1126 | N/A |
Three-Ring X-Decay | 1.05 × 10−4 | 0.0390 | 0.06026 | 0.1130 | N/A |
Two-Ring X-Adjacent | 1.07 × 10−4 | 0.0374 | 0.0627 | 0.123 | N/A |
Two-Ring X-Decay | 1.13 × 10−4 | 0.0416 | 0.0652 | 0.128 | N/A |
Three-Ring Simulated Annealing | 1.56 × 10−4 | 0.0531 | 0.0846 | 0.152 | N/A |
Two-Ring Simulated Annealing | 1.64 × 10−4 | 0.0549 | 0.0881 | 0.164 | N/A |
Two-Ring SBFI | 1.70 × 10−4 | 0.0464 | 0.0906 | 0.199 | N/A |
Single-Ring X-Decay | 1.81 × 10−4 | 0.0686 | 0.123 | 0.318 | N/A |
Three-Ring SBFI | 1.97 × 10−4 | 0.0637 | 0.115 | 0.221 | N/A |
Single-Ring X-Adjacent | 2.21 × 10−4 | 0.0700 | 0.127 | 0.365 | N/A |
Three-Ring Longitudinal | 2.65 × 10−4 | 0.0885 | 0.133 | 0.233 | N/A |
Single-Ring Simulated Annealing | 2.72 × 10−4 | 0.0878 | 0.164 | 0.412 | N/A |
Two-Ring Longitudinal | 3.55 × 10−4 | 0.113 | 0.173 | 0.313 | N/A |
Single-Ring SBFI | 4.70 × 10−4 | 0.193 | 0.344 | N/A | N/A |
Single-Ring Single-Electrode | 6.60 × 10−4 | 0.200 | 0.330 | 0.642 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brand, J.; Kochis, R.; Shah, V.; Liu, W. Characterizing and Optimizing Spatial Selectivity of Peripheral Nerve Stimulation Montages and Electrode Configurations In Silico. Algorithms 2025, 18, 635. https://doi.org/10.3390/a18100635
Brand J, Kochis R, Shah V, Liu W. Characterizing and Optimizing Spatial Selectivity of Peripheral Nerve Stimulation Montages and Electrode Configurations In Silico. Algorithms. 2025; 18(10):635. https://doi.org/10.3390/a18100635
Chicago/Turabian StyleBrand, Jonathan, Ryan Kochis, Vasav Shah, and Wentai Liu. 2025. "Characterizing and Optimizing Spatial Selectivity of Peripheral Nerve Stimulation Montages and Electrode Configurations In Silico" Algorithms 18, no. 10: 635. https://doi.org/10.3390/a18100635
APA StyleBrand, J., Kochis, R., Shah, V., & Liu, W. (2025). Characterizing and Optimizing Spatial Selectivity of Peripheral Nerve Stimulation Montages and Electrode Configurations In Silico. Algorithms, 18(10), 635. https://doi.org/10.3390/a18100635