Advanced Dynamic Vibration Control Algorithms of Materials Terfenol-D Si3N4 and SUS304 Plates/Cylindrical Shells with Velocity Feedback Control Law
Abstract
:1. Introduction
2. Formulations
3. Numerical Results
3.1. Dynamic Convergence
3.2. Time Responses of Results
3.3. Values for w(a/2,b/2), vs. T and
3.4. Compared Transient Responses of w(a/2,b/2) and
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Furjan, M.S.H.; Fan, S.; Shan, L.; Farrokhian, A.; Sheen, X.; Kolahchi, R. Wave propagation analysis of micro air vehicle wings with honeycomb core covered by porous FGM and nanocomposite magnetostrictive layers. Waves Random Complex Media 2023. [Google Scholar] [CrossRef]
- Chen, G.; Jin, Z.; Chen, J. A review: Magneto-optical sensor based on magnetostrictive materials and magneto-optical material. Sens. Actuators Rep. 2023, 5, 100152. [Google Scholar] [CrossRef]
- El-Shahrany, H.D.; Zenkour, A.M. Control of dynamic response of the functionally graded smart sandwich beam coupled variable Kelvin–Voigt–Pasternak’s model. Ain Shams Eng. J. 2023, 5, 100152. [Google Scholar] [CrossRef]
- Wang, P.; Yuan, P.; Sahmani, S.; Safaei, B. Size-dependent nonlinear harmonically soft excited oscillations of nonlocal strain gradient FGM composite truncated conical microshells with magnetostrictive facesheets. Mech. Based Des. Struct. Mach. 2023, 51, 102476. [Google Scholar] [CrossRef]
- Gao, C.; Zeng, Z.; Peng, S.; Shuai, C. Magnetostrictive alloys: Promising materials for biomedical applications. Bioact. Mater. 2022, 8, 177–195. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Xia, Z.; Guo, P.; Weng, L. Analysis and experimental research on high frequency magnetic properties of different magnetostrictive materials under variable temperature conditions. AIP Adv. 2022, 12, 035231. [Google Scholar] [CrossRef]
- Yan, S.; Wang, W.; Yan, X.; Zhou, J.; Liu, Y. Temperature characterization of magnetic and elastic parameters of TFD giant magnetostrictive materials. J. Magn. Magn. Mater. 2022, 563, 169979. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, W.; Zang, J.; Zhang, Y. A supersonic aerodynamic energy harvester: A functionally graded material beam with a giant magnetostrictive thin film. Acta Mech. Solida Sin. 2022, 35, 161–173. [Google Scholar] [CrossRef]
- Zhan, Y.S.; Lin, C.H. A constitutive model of coupled magneto-thermo-mechanical hysteresis behavior for giant magnetostrictive materials. Mech. Mater. 2020, 148, 103477. [Google Scholar] [CrossRef]
- Tornabene, F.; Viscoti, M.; Dimitri, R. Equivalent layer-wise theory for the hygro-thermo-magneto-electro-elastic analysis of laminated curved shells. Thin-Walled Struct. 2024, 198, 111751. [Google Scholar] [CrossRef]
- Tornabene, F.; Viscoti, M.; Dimitri, R. Thermo-mechanical analysis of laminated doubly-curved shells: Higher order equivalent layer-wise formulation. Compos. Struct. 2024, 335, 117995. [Google Scholar] [CrossRef]
- Sheng, G.G.; Wang, X. Nonlinear vibration control of functionally graded laminated cylindrical shells. Compos. Part B 2013, 52, 1–10. [Google Scholar] [CrossRef]
- Mohammadrezazadeh, S.; Jafari, A.A. Active control of free and forced vibration of rotating laminated composite cylindrical shells embedded with magnetostrictive layers based on classical shell theory. Mech. Adv. Compos. Struct. 2020, 7, 355–369. [Google Scholar]
- Dong, Y.; Li, Y.; Li, X.; Yang, J. Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Appl. Math. Model. 2020, 82, 252–270. [Google Scholar] [CrossRef]
- Wang, D.; Bai, C.; Zhang, H. Active vibration control of a fluid-conveying functionally graded cylindrical shell using piezoelectric material. In Proceedings of the MATEC Web of Conferences ACMME 2020, Singapore, 11–14 June 2020; Volume 319, p. 03003. [Google Scholar] [CrossRef]
- Rostami, R.; Mohammadimehr, M. Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers. Eng. Comput. 2022, 38, 87–100. [Google Scholar] [CrossRef]
- Gupta, V.; Sharma, M.; Thakur, N.; Singh, S.P. Active vibration control of a smart plate using a piezoelectric sensor–actuator pair at elevated temperatures. Smart Mater. Struct. 2011, 20, 105023. [Google Scholar] [CrossRef]
- Fakhari, V.; Ohadi, A. Nonlinear vibration control of functionally graded plate with piezoelectric layers in thermal environment. J. Vib. Control 2010, 17, 449–469. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Ahari, M.F. Active vibration control of the multilayered smart nanobeams: Velocity feedback gain effects on the system’s behavior. Acta Mech. 2024, 235, 493–510. [Google Scholar] [CrossRef]
- Hong, C.C. Advanced dynamic thermal vibration of thick FGM plates-cylindrical shells. Ocean Eng. 2022, 266, 112701. [Google Scholar] [CrossRef]
- Chi, S.H.; Chung, Y.L. Mechanical behavior of functionally graded material plates under transverse load, part I: Analysis. Int. J. Solids Struct. 2006, 43, 3657–3674. [Google Scholar] [CrossRef]
- Lee, S.J.; Reddy, J.N.; Rostam-Abadi, F. Transient analysis of laminated composite plates with embedded smart-material layers. Finite Elem. Anal. Des. 2004, 40, 463–483. [Google Scholar] [CrossRef]
- Bert, C.W.; Jang, S.K.; Striz, A.G. Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature. Comput. Mech. 1989, 5, 217–226. [Google Scholar] [CrossRef]
- Shu, C.; Du, H. Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analyses of beams and plates. Int. J. Solids Struct. 1997, 34, 819–835. [Google Scholar] [CrossRef]
(mm) | |||||||
---|---|---|---|---|---|---|---|
: 0.1 | 0.2 | 0.5 | 1 | 2 | 5 | 10 | |
0.1 | 0.037104 | 0.039685 | 0.049168 | 0.069195 | 0.117301 | 0.245510 | 0.334065 |
0.2 | 0.041771 | 0.045295 | 0.058288 | 0.086731 | 0.161186 | 0.384678 | 0.521903 |
0.3 | 0.049420 | 0.054397 | 0.072819 | 0.114345 | 0.229530 | 0.566865 | 0.694518 |
0.4 | 0.062453 | 0.069776 | 0.096835 | 0.158129 | 0.323746 | 0.677580 | 0.722486 |
0.5 | 0.084918 | 0.095833 | 0.134965 | 0.216903 | 0.390003 | 0.571030 | 0.560417 |
0.6 | 0.120294 | 0.134674 | 0.180651 | 0.254273 | 0.344935 | 0.381031 | 0.368428 |
0.7 | 0.157532 | 0.169341 | 0.199188 | 0.230172 | 0.251058 | 0.251351 | 0.245202 |
0.8 | 0.167441 | 0.171462 | 0.179415 | 0.184980 | 0.186852 | 0.184625 | 0.182127 |
0.9 | 0.155595 | 0.155993 | 0.156575 | 0.156684 | 0.156272 | 0.155241 | 0.154367 |
1.0 | 0.147206 | 0.147117 | 0.146916 | 0.146709 | 0.146496 | 0.146213 | 0.145987 |
Grids | w(a/2,b/2)(mm) | ||||
---|---|---|---|---|---|
= 0.5 | = 1 | = 2 | |||
5 | 7 × 7 | 0.039876 | 0.048409 | 0.066685 | |
9 × 9 | 0.065312 | 0.047408 | 0.066193 | ||
11 × 11 | 0.032934 | 0.042817 | 0.058517 | ||
13 × 13 | 0.031425 | 0.043521 | 0.055847 | ||
7 × 7 | −0.004903 | 0.081978 | 0.122267 | ||
9 × 9 | 0.009086 | 0.019592 | 0.031389 | ||
11 × 11 | 0.015974 | 0.023372 | 0.032928 | ||
13 × 13 | 0.016464 | 0.022055 | 0.030752 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, C.-C. Advanced Dynamic Vibration Control Algorithms of Materials Terfenol-D Si3N4 and SUS304 Plates/Cylindrical Shells with Velocity Feedback Control Law. Algorithms 2024, 17, 539. https://doi.org/10.3390/a17120539
Hong C-C. Advanced Dynamic Vibration Control Algorithms of Materials Terfenol-D Si3N4 and SUS304 Plates/Cylindrical Shells with Velocity Feedback Control Law. Algorithms. 2024; 17(12):539. https://doi.org/10.3390/a17120539
Chicago/Turabian StyleHong, Chih-Chiang. 2024. "Advanced Dynamic Vibration Control Algorithms of Materials Terfenol-D Si3N4 and SUS304 Plates/Cylindrical Shells with Velocity Feedback Control Law" Algorithms 17, no. 12: 539. https://doi.org/10.3390/a17120539
APA StyleHong, C.-C. (2024). Advanced Dynamic Vibration Control Algorithms of Materials Terfenol-D Si3N4 and SUS304 Plates/Cylindrical Shells with Velocity Feedback Control Law. Algorithms, 17(12), 539. https://doi.org/10.3390/a17120539