Multi-Material Topology Optimization on Separate Tetrahedral Meshes with Explicit Design Resolution by Means of Remeshing
Abstract
:1. Introduction
2. Methods
2.1. Boundary Value Problem of Elastostatics
2.2. Single-Material
2.2.1. Optimization Problem
2.2.2. Velocity Field Level Set Method
2.3. Multi-Material
2.3.1. Optimization Problem
2.3.2. Reconciled Level Set Method
2.4. Optimization Method
2.4.1. Velocity Extension
2.4.2. Velocity Filtering
2.4.3. Advection
2.4.4. Redistancing
2.4.5. Remeshing
- Split all edges with ,
- Collapse edges ,
- Swap edges of elements with ,
- Smooth all vertices.
3. Numerical Experiments
3.1. Cases
3.2. Single-Material
3.3. Multi-Material
4. Sensitivity Studies
4.1. Edge Length Ratio
4.2. Filter Radius
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FE | Finite Element |
FEM | Finite Element Method |
LS | Level Set |
MDPI | Multidisciplinary Digital Publishing Institute |
MBO | Merriman–Bence–Osher |
MMA | Method of Moving Asymptotes |
RCLSM | Reconciled Level Set Method |
VFLSM | Velocity Field Level Set Method |
References
- Li, D.; Kim, I.Y. Multi-material topology optimization for practical lightweight design. Struct. Multidiscip. Optim. 2018, 58, 1081–1094. [Google Scholar] [CrossRef]
- Feppon, F. Shape and Topology Optimization Applied to Compact Heat Exchangers. 2021. Available online: https://hal.science/hal-03207863/document (accessed on 16 August 2024).
- Borrvall, T.; Petersson, J. Topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Fluids 2003, 41, 77–107. [Google Scholar] [CrossRef]
- Fraldi, M.; Esposito, L.; Perrella, G.; Cutolo, A.; Cowin, S.C. Topological optimization in hip prosthesis design. Biomech. Model. Mechanobiol. 2010, 9, 389–402. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Kikuchi, N. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Bendsøe, M.P. Optimal shape design as a material distribution problem. Struct. Optim. 1989, 1, 193–202. [Google Scholar] [CrossRef]
- Rozvany, G.I.N. Structural Design via Optimality Criteria; Mechanics of Elastic and Inelastic Solids; Springer: Dordrecht, The Netherlands, 1989; Volume 8. [Google Scholar] [CrossRef]
- Wang, M.Y.; Zhou, S. Phase field: A variational method for structural topology optimization. Comput. Model. Eng. Sci. 2004, 6, 547–566. [Google Scholar] [CrossRef]
- Xie, Y.; Steven, G. A simple evolutionary procedure for structural optimization. Comput. Struct. 1993, 49, 885–896. [Google Scholar] [CrossRef]
- Querin, O.; Steven, G.; Xie, Y. Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng. Comput. 1998, 15, 1031–1048. [Google Scholar] [CrossRef]
- Sethian, J.; Wiegmann, A. Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 2000, 163, 489–528. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, X.; Guo, D. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 2003, 192, 227–246. [Google Scholar] [CrossRef]
- Allaire, G.; Jouve, F.; Toader, A.M. Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 2004, 194, 363–393. [Google Scholar] [CrossRef]
- Van Dijk, N.P.; Maute, K.; Langelaar, M.; Van Keulen, F. Level-set methods for structural topology optimization: A review. Struct. Multidiscip. Optim. 2013, 48, 437–472. [Google Scholar] [CrossRef]
- Yaji, K.; Otomori, M.; Yamada, T.; Izui, K.; Nishiwaki, S.; Pironneau, O. Shape and topology optimization based on the convected level set method. Struct. Multidiscip. Optim. 2016, 54, 659–672. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, S.; Soleymani, F. A new efficient parametric level set method based on radial basis function-finite difference for structural topology optimization. Comput. Struct. 2024, 297, 107364. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, Z. A velocity field level set method for shape and topology optimization. Int. J. Numer. Methods Eng. 2018, 115, 1315–1336. [Google Scholar] [CrossRef]
- Svanberg, K. The method of moving asymptotes—A new method for structural optimization. Int. J. Numer. Methods Eng. 1987, 24, 359–373. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, X. “Color” level sets: A multi-phase method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Eng. 2004, 193, 469–496. [Google Scholar] [CrossRef]
- Merriman, B.; Bence, J.K.; Osher, S.J. Motion of multiple junctions: A level set approach. J. Comput. Phys. 1994, 112, 334–363. [Google Scholar] [CrossRef]
- Chen, S.; Gonella, S.; Chen, W.; Liu, W.K. A level set approach for optimal design of smart energy harvesters. Comput. Methods Appl. Mech. Eng. 2010, 199, 2532–2543. [Google Scholar] [CrossRef]
- Vogiatzis, P.; Chen, S.; Wang, X.; Li, T.; Wang, L. Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method. Comput.-Aided Des. 2017, 83, 15–32. [Google Scholar] [CrossRef]
- Tian, J.; Li, M.; Han, Z.; Chen, Y.; Gu, X.D.; Ge, Q.; Chen, S. Conformal topology optimization of multi-material ferromagnetic soft active structures using an extended level set method. Comput. Methods Appl. Mech. Eng. 2022, 389, 114394. [Google Scholar] [CrossRef]
- Belytschko, T.; Xiao, S.P.; Parimi, C. Topology optimization with implicit functions and regularization. Int. J. Numer. Methods Eng. 2003, 57, 1177–1196. [Google Scholar] [CrossRef]
- Burman, E.; Elfverson, D.; Hansbo, P.; Larson, M.G.; Larsson, K. Shape optimization using the cut finite element method. Comput. Methods Appl. Mech. Eng. 2018, 328, 242–261. [Google Scholar] [CrossRef]
- Ha, S.H.; Cho, S. Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh. Comput. Struct. 2008, 86, 1447–1455. [Google Scholar] [CrossRef]
- Allaire, G.; Dapogny, C.; Frey, P. A mesh evolution algorithm based on the level set method for geometry and topology optimization. Struct. Multidiscip. Optim. 2013, 48, 711–715. [Google Scholar] [CrossRef]
- Li, H.; Yamada, T.; Jolivet, P.; Furuta, K.; Kondoh, T.; Izui, K.; Nishiwaki, S. Full-scale 3D structural topology optimization using adaptive mesh refinement based on the level-set method. Finite Elem. Anal. Des. 2021, 194, 103561. [Google Scholar] [CrossRef]
- Yamada, T.; Izui, K.; Nishiwaki, S.; Takezawa, A. A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput. Methods Appl. Mech. Eng. 2010, 199, 2876–2891. [Google Scholar] [CrossRef]
- Osher, S.; Fedkiw, R. Level Set Methods and Dynamic Implicit Surfaces; Number 153 in Applied Mathematical Sciences; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Aage, N.; Lazarov, B.S. Parallel framework for topology optimization using the method of moving asymptotes. Struct. Multidiscip. Optim. 2013, 47, 493–505. [Google Scholar] [CrossRef]
- Saye, R. High-order methods for computing distances to implicitly defined surfaces. Commun. Appl. Math. Comput. Sci. 2014, 9, 107–141. [Google Scholar] [CrossRef]
- Renz, R.; Frank, N.; Albers, A. Three-dimensional multi-material topology optimization considering interface behavior. In Proceedings of the 15th World Congress of Structural and Multidisciplinary Optimization (WCSMO 2023), Cork, UK, 5–9 June 2023. [Google Scholar]
- Lazarov, B.S.; Sigmund, O. Filters in topology optimization based on Helmholtz-type differential equations. Int. J. Numer. Methods Eng. 2011, 86, 765–781. [Google Scholar] [CrossRef]
- Morgan, N.R.; Waltz, J.I. 3D level set methods for evolving fronts on tetrahedral meshes with adaptive mesh refinement. J. Comput. Phys. 2017, 336, 492–512. [Google Scholar] [CrossRef]
- Bagley, B.; Sastry, S.P.; Whitaker, R.T. A marching-tetrahedra algorithm for feature-preserving meshing of piecewise-smooth implicit surfaces. Procedia Eng. 2016, 163, 162–174. [Google Scholar] [CrossRef]
- Barill, G.; Dickson, N.G.; Schmidt, R.; Levin, D.I.W.; Jacobson, A. Fast winding numbers for soups and clouds. ACM Trans. Graph. 2018, 37, 1–12. [Google Scholar] [CrossRef]
- Faraj, N.; Thiery, J.M.; Boubekeur, T. Multi-material adaptive volume remesher. Comput. Graph. 2016, 58, 150–160. [Google Scholar] [CrossRef]
- Parthasarathy, V.; Graichen, C.; Hathaway, A. A comparison of tetrahedron quality measures. Finite Elem. Anal. Des. 1994, 15, 255–261. [Google Scholar] [CrossRef]
- Dassi, F.; Formaggia, L.; Zonca, S. Degenerate tetrahedra removal. Appl. Numer. Math. 2016, 110, 1–13. [Google Scholar] [CrossRef]
- Loseille, A.; Menier, V. Serial and parallel mesh modification through a unique cavity-based primitive. In Proceedings of the 22nd International Meshing Roundtable, Orlando, FL, USA, 13–16 October 2013; Sarrate, J., Staten, M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 541–558. [Google Scholar] [CrossRef]
- Devillers, O.; Pion, S. Efficient Exact Geometric Predicates for Delaunay Triangulations; Technical Report RR-4351; INRIA: Sophia Antipolis, France, 2002. [Google Scholar]
- Shang, M.; Zhu, C.; Chen, J.; Xiao, Z.; Zheng, Y. A parallel local reconnection approach for tetrahedral mesh improvement. Procedia Eng. 2016, 163, 289–301. [Google Scholar] [CrossRef]
- Holoch, J.; Lenhardt, S.; Renz, R.; Albers, A. Investigation on the influence of different modeling of multiple surface layers on a 3d topology optimization. In Proceedings of the NAFEMS World Congress, Online, 25–29 October 2021. [Google Scholar]
- Hu, Y.; Schneider, T.; Wang, B.; Zorin, D.; Panozzo, D. Fast tetrahedral meshing in the wild. ACM Trans. Graph. 2020, 39, 117:1–117:18. [Google Scholar] [CrossRef]
- Henrot, A.; Pierre, M. Shape Variation and Optimization: A Geometrical Analysis, 1st ed.; EMS Tracts in Mathematics; EMS Press: Helsinki, Finland, 2018; Volume 28. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renz, R.; Albers, A. Multi-Material Topology Optimization on Separate Tetrahedral Meshes with Explicit Design Resolution by Means of Remeshing. Algorithms 2024, 17, 460. https://doi.org/10.3390/a17100460
Renz R, Albers A. Multi-Material Topology Optimization on Separate Tetrahedral Meshes with Explicit Design Resolution by Means of Remeshing. Algorithms. 2024; 17(10):460. https://doi.org/10.3390/a17100460
Chicago/Turabian StyleRenz, Robert, and Albert Albers. 2024. "Multi-Material Topology Optimization on Separate Tetrahedral Meshes with Explicit Design Resolution by Means of Remeshing" Algorithms 17, no. 10: 460. https://doi.org/10.3390/a17100460
APA StyleRenz, R., & Albers, A. (2024). Multi-Material Topology Optimization on Separate Tetrahedral Meshes with Explicit Design Resolution by Means of Remeshing. Algorithms, 17(10), 460. https://doi.org/10.3390/a17100460