Early Detection of Residual/Recurrent Lung Malignancies on Post-Radiation FDG PET/CT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Pre-Processing
- Patients should have had an FDG PET/CT scan within two years after receiving radiation therapy to the lungs;
- Only the PET/CTs with abnormally increased radiotracer (FDG) uptake in the lungs were used;
- Abnormal radiotracer uptake should have been identified as benign post-radiation changes or malignant disease, by tissue sampling or follow-up imaging (CT or PET/CT) for at least 2 years;
- On follow-up imaging, stable or regressing lung parenchymal abnormalities at the site of radiation were considered benign. Progressively expanding lesions were considered malignant.
2.2. Radiomics Model
- is the feature mapping induced by the Gaussian kernel;
- is the weight vector, which determines the orientation of the hyperplane in the feature space, and b is the bias term, which shifts the hyperplane;
- are the slack variables that allow some flexibility in the classification for non-linearly separable data;
- is the box constraint that controls the trade-off between maximizing the margin and minimizing the classification error.
- are the Lagrange multipliers, and is the Gaussian kernel function.
2.3. CNN Model
2.4. Fusion Model
3. Results
4. Discussion
5. Conclusions
6. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, W.; Chen, H.-D.; Yu, Y.-W.; Li, N.; Chen, W.-Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the Global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Smythe, W.R. Treatment of stage I non-small cell lung carcinoma. Chest 2003, 123, 181S–187S. [Google Scholar] [CrossRef]
- Carmichael, J.; Degraff, W.G.; Gamson, J.; Russo, D.; Gazdar, A.F.; Levitt, M.L.; Minna, J.D.; Mitchell, J.B. Radiation sensitivity of human lung cancer cell lines. Eur. J. Cancer Clin. Oncol. 1989, 25, 527–534. [Google Scholar] [CrossRef]
- Hicks, R.J.; Mac Manus, M.P.; Matthews, J.P.; Hogg, A.; Binns, D.; Rischin, D.; Ball, D.L.; Peters, L.J. Early FDG-PET imaging after radical radiotherapy for non–small-cell lung cancer: Inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 412–418. [Google Scholar] [CrossRef]
- Larici, A.R.; Del Ciello, A.; Maggi, F.; Santoro, S.I.; Meduri, B.; Valentini, V.; Giordano, A.; Bonomo, L. Lung abnormalities at multimodality imaging after radiation therapy for non–small cell lung cancer. Radiographics 2011, 31, 771–789. [Google Scholar] [CrossRef] [PubMed]
- van Baardwijk, A.; Bosmans, G.; Dekker, A.; van Kroonenburgh, M.; Boersma, L.; Wanders, S.; Öllers, M.; Houben, R.; Minken, A.; Lambin, P.; et al. Time trends in the maximal uptake of FDG on PET scan during thoracic radiotherapy. A prospective study in locally advanced non-small cell lung cancer (NSCLC) patients. Radiother. Oncol. 2007, 82, 145–152. [Google Scholar] [CrossRef]
- Sheikhbahaei, S.; Mena, E.; Marcus, C.; Wray, R.; Taghipour, M.; Subramaniam, R.M. 18F-FDG PET/CT: Therapy response assessment interpretation (Hopkins criteria) and survival outcomes in lung cancer patients. J. Nucl. Med. 2016, 57, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Brose, A.; Michalski, K.; Ruf, J.; Tosch, M.; Eschmann, S.M.; Schreckenberger, M.; König, J.; Nestle, U.; Miederer, M. PET/CT reading for relapse in non-small cell lung cancer after chemoradiotherapy in the PET-Plan trial cohort. Cancer Imaging 2023, 23, 45. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Z.; Yi, H.; Wang, J.; Li, J.; Wang, X.; Bai, H.; Ge, H.; Zheng, X.; Ni, J.; et al. A PET/CT radiomics model for predicting distant metastasis in early-stage non–small cell lung cancer patients treated with stereotactic body radiotherapy: A multicentric study. Radiat. Oncol. 2024, 19, 10. [Google Scholar] [CrossRef]
- Bianconi, F.; Palumbo, I.; Spanu, A.; Nuvoli, S.; Fravolini, M.L.; Palumbo, B. PET/CT radiomics in lung cancer: An overview. Appl. Sci. 2020, 10, 1718. [Google Scholar] [CrossRef]
- Mattonen, S.A.; Palma, D.A.; Johnson, C.; Louie, A.V.; Landis, M.; Rodrigues, G.; Chan, I.; Etemad-Rezai, R.; Yeung, T.P.; Senan, S.; et al. Detection of Local Cancer Recurrence after Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician Performance versus Radiomic Assessment. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Dohopolski, M.; Zhou, Z.; Wang, K.; Wang, R.; Sher, D.; Wang, J. Attention guided lymph node malignancy prediction in head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, Z.; Sher, D.; Zhang, Q.; Shah, J.; Pham, N.-L.; Jiang, S.; Wang, J. Combining many-objective radiomics and 3D convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer. Phys. Med. Biol. 2019, 64, 075011. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Shen, C.; Zhou, Z.; Maquilan, G.; Thomas, K.; Folkert, M.R.; Albuquerque, K.; Wang, J. Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices. Comput. Biol. Med. 2018, 97, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Xinli, W.; Albregtsen, F.; Foyn, B. Texture Features from Gray Level Gap Length Matrix. In Proceedings of the MVA’94 IAPR Workshop on Machine Vision Applications, Kawasaki, Japan, 13–15 December 1994. [Google Scholar]
- Thibault, G.; Angulo, J.; Meyer, F. Advanced statistical matrices for texture characterization: Application to cell classification. IEEE Trans. Biomed. Eng. 2013, 61, 630–637. [Google Scholar] [CrossRef]
- Amadasun, M.; King, R. Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 1989, 19, 1264–1274. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Yang, J.-B.; Xu, D.-L. Environmental impact assessment using the evidential reasoning approach. Eur. J. Oper. Res. 2006, 174, 1885–1913. [Google Scholar] [CrossRef]
- Gao, J.; Niu, R.; Shi, Y.; Shao, X.; Jiang, Z.; Ge, X.; Wang, Y.; Shao, X. The predictive value of [18F] FDG PET/CT radiomics combined with clinical features for EGFR mutation status in different clinical staging of lung adenocarcinoma. EJNMMI Res. 2023, 13, 26. [Google Scholar] [CrossRef]
- Timmerman, R.; Paulus, R.; Galvin, J.; Michalski, J.; Straube, W.; Bradley, J.; Fakiris, A.; Bezjak, A.; Videtic, G.; Johnstone, D.; et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 2010, 303, 1070–1076. [Google Scholar] [CrossRef]
- Erdi, Y.E.; Macapinlac, H.; Rosenzweig, K.E.; Humm, J.L.; Larson, S.M.; Erdi, A.K.; Yorke, E.D. Use of PET to monitor the response of lung cancer to radiation treatment. Eur. J. Nucl. Med. 2000, 27, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Mattonen, S.A.; Palma, D.A.; Haasbeek, C.J.; Senan, S.; Ward, A.D. Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy (SABR) for lung cancer. Med. Phys. 2014, 41, 033502. [Google Scholar] [CrossRef] [PubMed]
- Wankhade, S.; Vigneshwari, S. A novel hybrid deep learning method for early detection of lung cancer using neural networks. Healthc. Anal. 2023, 3, 100195. [Google Scholar] [CrossRef]
Characteristics | Number/Median [Range] | |||
---|---|---|---|---|
Total | Benign | Malignant | ||
Gender | Male | 43 | 25 | 18 |
Female | 52 | 25 | 27 | |
Age | 72 [46–94] | 71 [46–90] | 72 [49–94] | |
Disease site | Upper lobe, lung | 58 | 31 | 27 |
Middle, lung | 3 | 1 | 2 | |
Lower lobe, lung | 34 | 18 | 16 | |
Disease laterality | Right | 52 | 30 | 22 |
Left | 43 | 20 | 23 | |
TNM clinical stage group | Early (stages 0–1) | 49 | 28 | 21 |
Intermediate (stages 2–3) | 30 | 16 | 14 | |
Advanced (stage 4+) | 6 | 4 | 2 | |
Unknown | 10 | 2 | 8 |
# of Benign Samples | # of Malignant Samples | |
---|---|---|
F1 | 12 | 8 |
F2 | 11 | 9 |
F3 | 8 | 10 |
F4 | 11 | 9 |
F5 | 8 | 9 |
Total | 50 | 45 |
Intensity | Texture | Geometry | ||||
---|---|---|---|---|---|---|
GLCM | GLSZM | GLRLM | NGTDM | |||
minimum | energy | SZE | SRE | coarseness | volume | |
maximum | contrast | LZE | LRE | busyness | major diameter | |
mean | entropy | GLN | GLN | contrast | minor diameter | |
standard-variation | homogeneity | ZSN | RLN | complexity | eccentricity | |
Features | Sum | correlation | ZP | RP | strength | elongation |
median | variance | LGZE | LGRE | bounding box volume | ||
skewness | dissimilarity | HGZE | HGRE | perimeter | ||
kurtosis | autocorrelation | SZLGE | SRLGE | orientation | ||
variance | Sum Average | SZHGE | LRLGE | |||
LZLGE | LRHGE | |||||
LZHGE | GLV | |||||
ZSV | RLV | |||||
GLV | SRHGE |
Sensitivity | Specificity | Accuracy | AUC | |
---|---|---|---|---|
Radiomics-LR [20] | 0.60 | 0.68 | 0.64 | 0.66 |
Radiomics-RF [20] | 0.60 | 0.66 | 0.63 | 0.68 |
Radiomics-SVM | 0.60 | 0.64 | 0.62 | 0.70 |
CNN | 0.56 | 0.68 | 0.62 | 0.65 |
SVM-CNN-Fusion | 0.67 | 0.72 | 0.69 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Lowe, A.; Wang, J. Early Detection of Residual/Recurrent Lung Malignancies on Post-Radiation FDG PET/CT. Algorithms 2024, 17, 435. https://doi.org/10.3390/a17100435
Chen L, Lowe A, Wang J. Early Detection of Residual/Recurrent Lung Malignancies on Post-Radiation FDG PET/CT. Algorithms. 2024; 17(10):435. https://doi.org/10.3390/a17100435
Chicago/Turabian StyleChen, Liyuan, Avanka Lowe, and Jing Wang. 2024. "Early Detection of Residual/Recurrent Lung Malignancies on Post-Radiation FDG PET/CT" Algorithms 17, no. 10: 435. https://doi.org/10.3390/a17100435
APA StyleChen, L., Lowe, A., & Wang, J. (2024). Early Detection of Residual/Recurrent Lung Malignancies on Post-Radiation FDG PET/CT. Algorithms, 17(10), 435. https://doi.org/10.3390/a17100435