An Improved Heteroscedastic Modeling Method for Chest X-ray Image Classification with Noisy Labels
Abstract
:1. Introduction
- We revisit Heteroscedastic Modeling and illustrate that it is superior for modeling the clean and noisy samples separately, rather than modeling all images in one fell swoop for chest X-ray image classification with noisy labels.
- We propose a novel GMM-HM that integrates a GMM-based noise detector and an HM-based noise-aware classification into a unified framework to classify the chest X-ray images with noisy labels.
- We present a superior performance improvement on both the ChestX-ray2017 and the ChestX-ray14 datasets. The proposed GMM-HM shows strongly superior performance compared with the baseline and HM methods on symmetric and asymmetric noise on the ChestX-ray2017 dataset. On the ChestX-ray14 dataset, GMM-HM also achieves comparable or even better performance than the state-of-the-art methods.
2. Related Works
2.1. Chest X-ray Image Classification with Noisy Labels
2.2. Heteroscedastic Classification
3. Methodology
3.1. Revisiting Heteroscedastic Modeling
3.2. The Proposed GMM-HM
3.2.1. Overview of the Framework
3.2.2. Noisy Detector
3.2.3. Noisy-Aware Classification
3.2.4. Optimization
Algorithm 1: The trainingprocedures of the proposed GMM-HM |
Input: Training dataset , threshold T Initialization: Weights [, ] 1 while epoch < MaxEpoch do 2 // construct the GMM based on the loss values in the previous epoch. 3 4 5 if 6 //inputting the clean branch. 7 else 8 //inputting the noisy branch, and computing the latent vector as Equation (7) 10 updating with SGD. 11 end |
4. Experiment
4.1. Datasets and Evaluation Metrics
4.2. Implementation Details
4.3. Comparative Studies
4.3.1. Results on ChestX-ray2017
4.3.2. Results on ChestX-ray14
4.3.3. Feature Visualization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef]
- Collier, M.; Mustafa, B.; Kokiopoulou, E.; Jenatton, R.; Berent, J. Correlated input-dependent label noise in large-scale image classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1551–1560. [Google Scholar]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2097–2106. [Google Scholar]
- Shen, Y.; Gao, M. Dynamic routing on deep neural network for thoracic disease classification and sensitive area localization. In Proceedings of the International Workshop on Machine Learning in Medical Imaging, Granada, Spain, 16 September 2018; Springer: Cham, Switzerland, 2018; pp. 389–397. [Google Scholar]
- Chen, B.; Li, J.; Guo, X.; Lu, G. DualCheXNet: Dual asymmetric feature learning for thoracic disease classification in chest X-rays. Biomed. Signal Process. Control 2019, 53, 101554. [Google Scholar] [CrossRef]
- Guan, Q.; Huang, Y.; Luo, Y.; Liu, P.; Xu, M.; Yang, Y. Discriminative Feature Learning for Thorax Disease Classification in Chest X-ray Images. IEEE Trans. Image Process. 2021, 30, 2476–2487. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Summers, R.M. Tienet: Text-image embedding network for common thorax disease classification and reporting in chest x-rays. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 9049–9058. [Google Scholar]
- Bhatt, C.M.; Patel, P.; Ghetia, T.; Mazzeo, P.L. Effective Heart Disease Prediction Using Machine Learning Techniques. Algorithms 2023, 16, 88. [Google Scholar] [CrossRef]
- Alamr, A.; Artoli, A. Unsupervised Transformer-Based Anomaly Detection in ECG Signals. Algorithms 2023, 16, 152. [Google Scholar] [CrossRef]
- Ypsilantis, P.P.; Montana, G. Learning what to look in chest X-rays with a recurrent visual attention model. arXiv 2017, arXiv:1701.06452. [Google Scholar]
- Tang, Y.; Wang, X.; Harrison, A.P.; Lu, L.; Xiao, J.; Summers, R.M. Attention-guided curriculum learning for weakly supervised classification and localization of thoracic diseases on chest radiographs. In Proceedings of the International Workshop on Machine Learning in Medical Imaging, Granada, Spain, 16 September 2018; Springer: Cham, Switzerland, 2018; pp. 249–258. [Google Scholar]
- Chen, B.; Li, J.; Lu, G.; Zhang, D. Lesion location attention guided network for multi-label thoracic disease classification in chest X-rays. IEEE J. Biomed. Health Inform. 2019, 24, 2016–2027. [Google Scholar] [CrossRef]
- Guan, Q.; Huang, Y. Multi-label chest X-ray image classification via category-wise residual attention learning. Pattern Recognit. Lett. 2020, 130, 259–266. [Google Scholar] [CrossRef]
- Ma, C.; Wang, H.; Hoi, S.C. Multi-label thoracic disease image classification with cross-attention networks. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; Springer: Cham, Switzerland, 2019; pp. 730–738. [Google Scholar]
- Lei, K.; Syed, A.; Zhu, X.; Pauly, J.; Vasanawala, S. Automated MRI Field of View Prescription from Region of Interest Prediction by Intra-Stack Attention Neural Network. Bioengineering 2023, 10, 92. [Google Scholar] [PubMed]
- Yao, L.; Poblenz, E.; Dagunts, D.; Covington, B.; Bernard, D.; Lyman, K. Learning to diagnose from scratch by exploiting dependencies among labels. arXiv 2017, arXiv:1710.10501. [Google Scholar]
- Kumar, P.; Grewal, M.; Srivastava, M.M. Boosted cascaded convnets for multilabel classification of thoracic diseases in chest radiographs. In Proceedings of the International Conference Image Analysis and Recognition, Póvoa de Varzim, Portugal, 27–29 June 2018; Springer: Cham, Switzerland, 2018; pp. 546–552. [Google Scholar]
- Chen, B.; Li, J.; Lu, G.; Yu, H.; Zhang, D. Label co-occurrence learning with graph convolutional networks for multi-label chest x-ray image classification. IEEE J. Biomed. Health Inform. 2020, 24, 2292–2302. [Google Scholar] [CrossRef]
- Karimi, D.; Dou, H.; Warfield, S.K.; Gholipour, A. Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis. Med. Image Anal. 2020, 65, 101759. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.H.; Le, T.T.; Tran, D.Q.; Ngo, D.T.; Nguyen, H.Q. Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels. Neurocomputing 2021, 437, 186–194. [Google Scholar] [CrossRef]
- Müller, R.; Kornblith, S.; Hinton, G.E. When does label smoothing help? Adv. Neural Inf. Process. Syst. 2019, 32, 6448–6458. [Google Scholar]
- Calli, E.; Sogancioglu, E.; Scholten, E.T.; Murphy, K.; van Ginneken, B. Handling label noise through model confidence and uncertainty: Application to chest radiograph classification. In Proceedings of the Medical Imaging 2019: Computer-Aided Diagnosis, San Diego, CA, USA, 17–20 February 2019; SPIE: Washington, DC, USA, 2019; Volume 10950, pp. 289–296. [Google Scholar]
- Chen, Y.; Liu, F.; Tian, Y.; Liu, Y.; Carneiro, G. Semantic-guided Image Virtual Attribute Learning for Noisy Multi-label Chest X-ray Classification. arXiv 2022, arXiv:2203.01937. [Google Scholar]
- Li, M.; Xu, J. Bootstrap Knowledge Distillation for Chest X-ray Image Classification with Noisy Labelling. In Proceedings of the International Conference on Image and Graphics, Haikou, China, 26–28 December 2021; Springer: Cham, Switzerland, 2021; pp. 704–715. [Google Scholar]
- Liu, F.; Tian, Y.; Cordeiro, F.R.; Belagiannis, V.; Reid, I.; Carneiro, G. Noisy label learning for large-scale medical image classification. arXiv 2021, arXiv:2103.04053. [Google Scholar]
- Liu, S.; Niles-Weed, J.; Razavian, N.; Fernandez-Granda, C. Early-learning regularization prevents memorization of noisy labels. Adv. Neural Inf. Process. Syst. 2020, 33, 20331–20342. [Google Scholar]
- Gündel, S.; Setio, A.A.; Ghesu, F.C.; Grbic, S.; Georgescu, B.; Maier, A.; Comaniciu, D. Robust classification from noisy labels: Integrating additional knowledge for chest radiography abnormality assessment. Med. Image Anal. 2021, 72, 102087. [Google Scholar] [CrossRef]
- Xue, C.; Yu, L.; Chen, P.; Dou, Q.; Heng, P.A. Robust Medical Image Classification from Noisy Labeled Data with Global and Local Representation Guided Co-training. IEEE Trans. Med. Imaging 2022, 41, 1371–1382. [Google Scholar] [CrossRef]
- Kendall, A.; Gal, Y. What uncertainties do we need in bayesian deep learning for computer vision? Adv. Neural Inf. Process. Syst. 2017, 30, 1–11. [Google Scholar]
- Collier, M.; Mustafa, B.; Kokiopoulou, E.; Jenatton, R.; Berent, J. A simple probabilistic method for deep classification under input-dependent label noise. arXiv 2020, arXiv:2003.06778. [Google Scholar]
- Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang, I.; Sugiyama, M. Co-teaching: Robust training of deep neural networks with extremely noisy labels. Adv. Neural Inf. Process. Syst. 2018, 31, 1–11. [Google Scholar]
- Li, J.; Socher, R.; Hoi, S.C. DivideMix: Learning with Noisy Labels as Semi-supervised Learning. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Guendel, S.; Grbic, S.; Georgescu, B.; Liu, S.; Maier, A.; Comaniciu, D. Learning to recognize abnormalities in chest x-rays with location-aware dense networks. In Proceedings of the Iberoamerican Congress on Pattern Recognition, Madrid, Spain, 19–22 November 2018; Springer: Cham, Switzerland; pp. 757–765. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Abbreviation | Full |
---|---|
CXR | Chest X-ray |
GMM | Gaussian Mixture Model |
HM | Heteroscedastic Modeling |
GMM-HM | Gaussian Mixture Model—Heteroscedastic Modeling |
t-SNE | t-distributed stochastic neighbor embedding |
Model | 20% | 40% | 60% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | Sens | Spec | AUC | Acc | Sens | Spec | AUC | Acc | Sens | Spec | AUC | |
Symmetric Noise | ||||||||||||
Baseline | 84.29 | 84.29 | 91.95 | 93.60 | 82.69 | 82.69 | 90.56 | 91.69 | 78.21 | 78.21 | 88.35 | 88.45 |
HM | 86.06 | 86.06 | 92.82 | 93.61 | 83.49 | 83.49 | 90.77 | 91.94 | 79.81 | 79.81 | 89.21 | 91.60 |
GMM-HM | 87.34 | 87.34 | 93.28 | 95.65 | 85.26 | 85.26 | 92.81 | 94.24 | 81.57 | 81.57 | 91.73 | 92.74 |
Asymmetric Noise | ||||||||||||
Baseline | 84.94 | 84.94 | 91.96 | 94.46 | 80.13 | 80.13 | 89.75 | 91.77 | 58.81 | 58.81 | 77.34 | 69.99 |
HM | 87.02 | 87.02 | 93.43 | 94.64 | 80.29 | 80.29 | 90.90 | 92.84 | 60.42 | 60.42 | 78.49 | 74.47 |
GMM-HM | 88.30 | 88.30 | 94.08 | 94.87 | 82.69 | 82.69 | 92.07 | 93.44 | 63.94 | 63.94 | 79.37 | 77.62 |
Methods | Atel | Card | Effu | Infi | Mass | Nodu | Pne1 | Pne2 | Cons | Edem | Emph | Fibr | PT | Hern | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[4] | 0.700 | 0.810 | 0.759 | 0.661 | 0.693 | 0.669 | 0.658 | 0.799 | 0.703 | 0.805 | 0.833 | 0.786 | 0.684 | 0.872 | 0.745 |
[5] | 0.766 | 0.801 | 0.797 | 0.751 | 0.760 | 0.741 | 0.778 | 0.800 | 0.787 | 0.820 | 0.773 | 0.765 | 0.759 | 0.748 | 0.775 |
[12] | 0.756 | 0.887 | 0.819 | 0.689 | 0.814 | 0.755 | 0.729 | 0.850 | 0.728 | 0.848 | 0.908 | 0.818 | 0.765 | 0.875 | 0.803 |
[35] | 0.767 | 0.883 | 0.828 | 0.709 | 0.821 | 0.758 | 0.731 | 0.846 | 0.745 | 0.835 | 0.895 | 0.818 | 0.761 | 0.896 | 0.807 |
[14] | 0.779 | 0.879 | 0.824 | 0.694 | 0.831 | 0.766 | 0.726 | 0.858 | 0.758 | 0.850 | 0.909 | 0.832 | 0.778 | 0.906 | 0.814 |
[28] | 0.785 | 0.892 | 0.836 | 0.710 | 0.826 | 0.755 | 0.735 | 0.847 | 0.747 | 0.837 | 0.925 | 0.838 | 0.785 | 0.905 | 0.816 |
Baseline | 0.774 | 0.883 | 0.825 | 0.700 | 0.818 | 0.759 | 0.710 | 0.842 | 0.746 | 0.843 | 0.893 | 0.822 | 0.770 | 0.885 | 0.805 |
HM | 0.777 | 0.887 | 0.830 | 0.702 | 0.827 | 0.770 | 0.717 | 0.855 | 0.747 | 0.845 | 0.904 | 0.819 | 0.777 | 0.915 | 0.812 |
GMM-HM | 0.764 | 0.887 | 0.824 | 0.720 | 0.836 | 0.774 | 0.743 | 0.887 | 0.759 | 0.857 | 0.901 | 0.825 | 0.790 | 0.945 | 0.822 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Q.; Chen, Q.; Huang, Y. An Improved Heteroscedastic Modeling Method for Chest X-ray Image Classification with Noisy Labels. Algorithms 2023, 16, 239. https://doi.org/10.3390/a16050239
Guan Q, Chen Q, Huang Y. An Improved Heteroscedastic Modeling Method for Chest X-ray Image Classification with Noisy Labels. Algorithms. 2023; 16(5):239. https://doi.org/10.3390/a16050239
Chicago/Turabian StyleGuan, Qingji, Qinrun Chen, and Yaping Huang. 2023. "An Improved Heteroscedastic Modeling Method for Chest X-ray Image Classification with Noisy Labels" Algorithms 16, no. 5: 239. https://doi.org/10.3390/a16050239
APA StyleGuan, Q., Chen, Q., & Huang, Y. (2023). An Improved Heteroscedastic Modeling Method for Chest X-ray Image Classification with Noisy Labels. Algorithms, 16(5), 239. https://doi.org/10.3390/a16050239