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Abstract: Chest X-ray image classification suffers from the high inter-similarity in appearance that is
vulnerable to noisy labels. The data-dependent and heteroscedastic characteristic label noise make
chest X-ray image classification more challenging. To address this problem, in this paper, we first
revisit the heteroscedastic modeling (HM) for image classification with noise labels. Rather than
modeling all images in one fell swoop as in HM, we instead propose a novel framework that considers
the noisy and clean samples separately for chest X-ray image classification. The proposed framework
consists of a Gaussian Mixture Model-based noise detector and a Heteroscedastic Modeling-based
noise-aware classification network, named GMM-HM. The noise detector is constructed to judge
whether one sample is clean or noisy. The noise-aware classification network models the noisy and
clean samples with heteroscedastic and homoscedastic hypotheses, respectively. Through building
the correlations between the corrupted noisy samples, the GMM-HM is much more robust than HM,
which uses only the homoscedastic hypothesis. Compared with HM, we show consistent improvements
on the ChestX-ray2017 dataset with different levels of symmetric and asymmetric noise. Furthermore, we
also conduct experiments on a real asymmetric noisy dataset, ChestX-ray14. The experimental results on
ChestX-ray14 show the superiority of the proposed method.

Keywords: chest X-ray image classification; heteroscedastic modeling; label noise

1. Introduction

The chest X-ray is one of the most common examination methods to diagnose thorax
diseases in medical screening. In practice, the diagnosis system needs a large amount of
accurately labeled data to train a deep model. Manually distinguishing different patholo-
gies in screening is a time-consuming and labor-intensive task. Moreover, a large number
of noisy labels are also easily introduced in the annotations of chest X-ray images. First,
chest X-rays caused by different causative agents usually present similarities in appearance,
which make it difficult to distinguish. Furthermore, the noisy labels could also originate
from other kinds of factors, e.g., inter-observer variability, annotation errors, or errors gen-
erated by the annotation algorithms. Therefore, it is important to explore a robust, accurate,
computer-aided diagnosis system with noisy labels to assist in diagnosing radiographs.

Chest X-ray image classification suffers from specific heteroscedastic and highly data-
dependent noise. Figure 1a–c show different kinds of pneumonia and the normal case of
chest X-ray images. Pneumonia (caused by bacteria or a virus) images, even the normal
images, show very high inter-similarity in appearance. Compared with the noise existing
in natural images, the highly noisy labels in chest X-ray image datasets often happen in
the related classes. Furthermore, chest X-ray image classification is also limited by the
high similarity in the feature space. In Figure 1d, we visualize the features extracted by
ResNet-50 [1] with the t-distributed stochastic neighbor embedding (t-SNE). The manifolds
of bacterial and viral pneumonia and normal samples locate very close; thus, they are
difficult to correctly classify with the network.
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Figure 1. Examples of (a) Normal, (b) Bacterial Pneumonia, (c) Viral Pneumonia, and (d–f) are the
visualized t-SNE feature distributions of the Baseline, HM, and the proposed GMM-HM methods
(with 20% asymmetric noise on the ChestX-ray2017 dataset [2]).

Collier et al. [3] propose heteroscedastic modeling (HM) that places a multivariate
normally distributed latent variable on the final hidden layer of a neural network classifier
for the heteroscedastic label noise. HM breaks the homoscedasticity assumptions in network
optimization with a cross-entropy loss function. However, for most of the existing datasets,
only parts of the samples are wrongly annotated. Modeling all the samples with the
relaxed hypothesis, especially the large number of clean samples, would affect the network
convergence and increase the burden of network optimization. In Figure 1e, we could
observe that the distance between the normal and the pneumonia is expanded with HM.
However, the bacterial and viral pneumonia samples still locate very close and are difficult
to recognize. Therefore, to enhance efficiency, it is necessary to handle the clean and noisy
samples individually.

In this paper, rather than model all the samples in one fell swoop as in [3], we propose
to consider the clean and noisy samples separately and construct a novel framework that
integrates noise detection and noise-aware classification for chest X-ray image classification
with noisy labels. The noise detection module builds on a Gaussian Mixture Model (GMM)
to judge whether one sample is clean or noisy. The noise-aware classification network
consists of two branches that extract the specific features for clean and noisy samples and
classify the input images. For the clean samples, we input them into the backbone network
and classify them as usual, while for the noisy samples, we add a heteroscedastic layer
to model the aleatoric uncertainty due to the data-dependent label noise. As shown in
Figure 1f, by introducing noise detection and HM, the feature distribution of different
kinds of samples is much easier to distinguish compared with that of HM. We verify the
effectiveness of the proposed method by conducting extensive experiments on a pediatric
pneumonia dataset (very easily introducing noise), ChestX-ray2017, and a real noisy dataset,
ChestX-ray14. Empirically, GMM-HM is superior to HM in recognition performance.

We summarize the contributions of this work as follows:

• We revisit Heteroscedastic Modeling and illustrate that it is superior for modeling the
clean and noisy samples separately, rather than modeling all images in one fell swoop
for chest X-ray image classification with noisy labels.
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• We propose a novel GMM-HM that integrates a GMM-based noise detector and an
HM-based noise-aware classification into a unified framework to classify the chest
X-ray images with noisy labels.

• We present a superior performance improvement on both the ChestX-ray2017 and the
ChestX-ray14 datasets. The proposed GMM-HM shows strongly superior performance
compared with the baseline and HM methods on symmetric and asymmetric noise on
the ChestX-ray2017 dataset. On the ChestX-ray14 dataset, GMM-HM also achieves
comparable or even better performance than the state-of-the-art methods.

Table 1 gives details of the abbreviations in this paper.

Table 1. The abbreviation table.

Abbreviation Full

CXR Chest X-ray
GMM Gaussian Mixture Model
HM Heteroscedastic Modeling
GMM-HM Gaussian Mixture Model—Heteroscedastic Modeling
t-SNE t-distributed stochastic neighbor embedding

2. Related Works
2.1. Chest X-ray Image Classification with Noisy Labels

Chest X-ray (CXR) image classification with deep learning has been widely explored
and achieved significant progress in recent years. Some methods focus on generating more
discriminative features to facilitate classification by designing novel architectures in deep
neural networks [4–10]. Some other methods use the attention mechanism to improve the
classification performance by focusing on the lesion area, e.g., [11–16]. In addition, some
methods try to improve classification performance by capturing dependencies between
chest disease labels [17–19].

Label noise is inevitably introduced into the large-scale chest X-ray image dataset due
to the errors produced by the annotators or the annotation algorithms. The deep networks
are easily overfitted to these noisy samples, which leads to performance degradation. To
combat the noise in medical images, Karimi et al. [20] investigate the probabilistic methods
against label noise in solving medical image analysis tasks. Pham et al. [21] use the label
smoothing regularization (LSR) technique [22] to handle noisy samples. Calli et al. [23]
propose to use model confidence and uncertainty as metrics to identify samples mislabeled
as emphysema in the chest X-ray images. Chen et al. [24] propose to correct the label noise
by building an attribute-level graph and estimating the virtual attributes of CXR images. Li
et al. [25] propose a Bootstrap Knowledge Distillation (BKD) method to correct noisy labels
and theoretically deduce that the distribution of distilled labels is closer to the ground truth.
Liu et al. [26] use an improved Early Learning Regularization (ELR) [27] loss function to
robustly combat noise. Gundel et al. [28] design a noise-resistant loss function that takes
the human-assessed label noise probability and the observed label correlation as two priors
for the loss functions. Xue et al. [29] propose a collaborative training framework to filter
and train clean samples. Some methods also use a self-supervised learning strategy for
noisy samples and design a loss function to mitigate overfitting to noisy labels in global
and local representation learning for CXR images.

Most of the existing methods aim at designing robust loss functions or designing
efficient strategies to identify the noise labels and then correct them. Unlike previous
works, we consider the label noise from the aspect of label generation and design a robust
model to combat noise for chest X-ray image classification.

2.2. Heteroscedastic Classification

Kendall et al. [30] propose to model the heteroscedasticity between the pixels among
the boundaries by placing a Gaussian distribution with diagonal covariance matrix over the
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network outputs in the semantic segmentation task. The study in [30] could be considered
as a special case of the method of [31]. Collier et al. [31] perform general heteroscedastic
modeling (HM) that assumes the noise term is a multivariate normal distribution. HM
computes an input-dependent covariance matrix which enables modeling the inter-class
label noise correlations on a per-image basis. Experiments show that HM can effectively
improve image classification and segmentation performance under input-dependent label
noise. The chest X-ray images with noisy labels exhibit heteroscedasticity which is data-
dependent. In this paper, we explore the heteroscedasticity classification in chest X-ray
images. Unlike [3], we illustrate that it is superior to separate the clean and noisy samples
and model them individually. Therefore, we propose a novel framework that includes a
noise detector and a noise-aware classification module to achieve the above purpose.

3. Methodology
3.1. Revisiting Heteroscedastic Modeling

Heteroscedastic-based methods have been explored to model label noise, offering an
objective method for image classification with data-dependent label noise. Collier et al. [3]
propose to model such noise based on probabilistic modeling [30,31]. Suppose there are
some latent vectors of utility u(x) ∈ RC, where C is the number of classes. The utility
u(x) is the sum of a deterministic reference utility υ(x) and a stochastic component ε,
u(x) = υ(x) + ε. The label of input image x is generated by sampling from the utility and
taking the argmax, i.e., an image belongs to class c if its associated utility is greater than the
utility for all other classes,

pc = P(y = c|x) = P(arg max
j∈[C]

uj(x) = c), (1)

where C is the number of the classes. Conventionally, the popularly used cross-entropy loss
function in training a neural network is precisely the closed-form solution of predictive
probabilities pc under the assumption that the stochastic component ε is the Gumbel
distribution independently,

pc =
exp(µc)

∑C
j=1 exp

(
µj
) ⇐⇒ εj ∼ i.i.d.G(0, 1)∀j. (2)

Meanwhile, the Gumbel noise distribution is always too restrictive for the data-
dependent label noise. Collier et al. [3] propose to break the above assumption by assuming
that the noise term ε is a multivariate normal distribution, ε ∼ N (0, Σ(x)). To solve the
problem of no closed-form solution, the Monte Carlo estimation is used to approximate the
expectation of arg maxj∈[C] uj(x). Notice that the gradient-based optimization would be
infeasible; thus, the arg max is approximated with a temperature-parameterized arg maxτ ,

pc ≈
1
S

S

∑
l=1

(softmaxτu(l)(x))c, u(l)(x) ∼ N (µ(x), Σ(x)), (3)

where S is the number of Monte Carlo samplings.

3.2. The Proposed GMM-HM
3.2.1. Overview of the Framework

The framework of GMM-HM is shown in Figure 2. GMM-HM consists of a Gaussian
Mixture Model-based noise detector and a Heteroscedastic Modeling-based noise-aware
classification network. During training, we build a GMM on the sample loss values in
the previous epoch to divide the samples into a clean set and a noisy set in each epoch.
The clean and noisy samples are input to the corresponding clean or noisy branch in the
noise-aware classification network. The noisy branch models the data-dependent noisy
samples with a heteroscedastic layer. Then, the clean or noisy samples are classified.
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The two branches share the weights of the backbone. The network is optimized with a
cross-entropy loss function. During testing, all the samples are fed into the clean branch to
be classified.

CNN
Het

Clean Set

Noisy Set

Noisy-aware Classification

CE

CE

Noisy Detector

…

epoch n

GMM

CNN

Loss

GMM

epoch n-1

Noisy Detector

…

CE  – Cross Entropy Loss
CNN – Convolutional Neural Network

Loss

Figure 2. The framework of the proposed GMM-HM.

3.2.2. Noisy Detector

Generally, the small-loss samples are considered as the clean ones, and the large-
loss samples as the noisy ones [32,33]. We could straightforwardly use the loss values to
distinguish the clean and the noisy samples by setting a threshold. However, the threshold
is difficult to choose for different datasets. Another way is to model the loss distribution
and then distinguish the clean or noisy samples by the distribution. Li et al. [33] propose
that due to the flexibility of the Gaussian Mixture Model (GMM) model distribution, clean
and noise samples can be better distinguished. To this end, we build a GMM based on the
losses to determine whether one sample is clean or noisy.

Given training data D = {X ,Y} = {(xi, yi)}N
i=1, where N is the total number of

training images, xi is the i-th training image and yi = [y1
i , y2

i , ..., yC
i ] is its label vector. C

is the number of the pathologies. If xi belongs to class c, then yc
i = 1; otherwise, yc

i = 0.
Let L(X ) be the loss values at the epoch of producing the best performance. We build a
K-component GMM to loss values L(X ), and the predicted probability of each sample is
formalized as

p(gk|L(X)) =
K

∑
k=1

φk
1√

2δ2
k π

e
− (L(X)−υk)

2

2δ2
k , (4)

where υk and δk are the mean and standard variance of the k-th Gaussian component,
respectively. φk is the weight of the k-th Gaussian component. K is 2 in our experiments.
The parameters υk, δk, and φk of the GMM can be estimated using the Expectation Maxi-
mization algorithm. At each epoch, GMM divides the training data into a clean set and a
noisy set. Specifically, we distinguish one sample as belonging to clean set (Sclean) or noisy
set (Snoisy) by setting a threshold T on the p(g|L(xi)),

xi ∈
{
Sclean p(g|L(xi)) < T
Snoisy p(g|L(xi)) ≥ T,

(5)

where g is the Gaussian component with a smaller mean (small loss). Generally, we set the
T as 0.5 in the experiment. At the first epoch, due to the fact that there are effective loss
values, we consider all the training samples as clean ones, feeding into the clean branch
of the noise-aware classification network. In subsequent training, we dynamically fit a
two-component GMM on its per-sample loss distribution in the previous epoch to divide
the training samples into a noisy and a clean set. Whether a sample belongs to the clean or
noisy set is determined by the posterior probability p(g|L(xi)) whose loss belongs to the
Gaussian component with smaller mean (smaller loss). That is, if p(g|L(xi)) is larger than
a threshold T, the corresponding sample is judged to the clean set. Otherwise, it would be
classified as noisy. Therefore, all the samples in the noisy set would input into the noisy
branch of the noise-aware classification network from the second epoch in the training.
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3.2.3. Noisy-Aware Classification

The noise-aware classification network consists of two branches for dealing with
the clean and noisy samples, respectively. The clean branch is as same as the classical
classification networks, e.g., ResNet [1]. The noisy branch is placed in a multivariate
normally distributed latent variable on the final hidden layer of the classifier. The clean
and noisy branches share the weights of the CNN backbone. The clean and noisy samples
are fed into the corresponding branches to be classified.

Let the predicted logits r(x) ∈ RC of an image x as r(x) = f (x; θ), where f represents
the deep networks with parameter θ. We omit the subscript of x for simplification. Next,
to make a clear distinction in this section, we denote the samples coming from clean set
Sclean and noisy set Snoisy as xc and xn, respectively. The predicted logits of clean samples
r(xc) are directly input into the classifier. The logits of noisy samples r(xn) are first fed
into the heteroscedastic layer to compute the heteroscedastic representation u(xn), which is
then fed into the final classifier.

The u(xn) ∈ RC is computed as follows. We compute the deterministic item as
υ(xn) = Wυr(xn) + bυ, where Wυ and bυ are the parameters of a 1× 1 convolutional layer.
The stochastic item ε(xn) ∈ RC of the heteroscedastic layer is implemented with a low-
rank approximation method by ε(xn) = V(xn)V(xn)T , where V(xn) is a C × R matrix,
and R � C. In practice, the V(xn) is computed as an affine transformation of r(xn) as
V(xn) = WVr(xn) + bV , where WV and bV are the parameters of a 1× 1 convolutional layer.
In order to ensure the positive semi-definiteness of the covariance matrix, a C-dimensional
vector d2(xn) is added to the diagonal of V(xn)V(xn)T ,

ε = d(xn)� εC + V(xn)εR (6)

where d(xn) = Wdr(xn) + bd is a diagonal correction matrix. Wd and bd are the parameters
of a 1× 1 convolutional layer. εC ∈ RC and εR ∈ RK are sampled from N (0C, IC×C) and
N (0R, IR×R), respectively. � denotes the element-wise multiplication. Finally, the latent
vector u(xn) of input xn is computed by

u(xn) = υ(xn) + d(xn)� εC + V(xn)εR. (7)

3.2.4. Optimization

Algorithm 1 shows the whole training procedures. Let g denote the classifier of the
neural network with parameters ϕ. We denote the predicted logits g(x) = g( f (x; θ), ϕ)
representing the output logits of x. With g(x), we optimize the deep network by measuring
the classification loss.

The classification loss is computed by cross-entropy or binary cross-entropy loss
functions determined by the tasks. For the multi-class classification task, the probability
p(x) is obtained by feeding the logits g(x) into the Softmax function p(x) = exp(g(x))

∑C
c=1 exp(gc(x))

.

The loss is calculated with a cross-entropy loss function as follows,

L(x; θ, ϕ) = −
C

∑
c=1

yclog(pc(x)). (8)

For the multi-label classification task, the probability p(x) is calculated with the
Sigmoid function p(x) = 1

1+exp(−g(x)) . Then the network is optimized by the binary cross-
entropy loss function,

L(x; θ, ϕ) = −
C

∑
c=1

[yc· log(pc(x)) + (1− yc)· log(1− pc(x))]. (9)
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Algorithm 1: The trainingprocedures of the proposed GMM-HM

Input: Training dataset D = {X, Y}, threshold T
Initialization: Weights [θ, ϕ]

1 while epoch < MaxEpoch do
2 P(X) = GMM(Loss(X, Y), [θ, ϕ]) // construct the GMM based on the loss values

in the previous epoch.
3 Sclean = {(xj, yj, pj)|pj ≥ T, ∀(xj, yj, pj) ∈ (X, Y, P)}
4 Snoisy = {(xj, yj, pj)|pj < T, ∀(xj, yj, pj) ∈ (X, Y, P)}
5 if (xj, yj, pj) ∈ Sclean
6 p(xj) = g( f (xj; θ), ϕ) //inputting the clean branch.
7 else
8 p(xj) = g(u( f (xj; θ)), ϕ) //inputting the noisy branch, and computing the

latent vector u(xj) as Equation (7)
9 computing the classification loss as Equation (8) or Equation (9).

10 updating θ with SGD.
11 end

4. Experiment

This section evaluates the performance of the proposed GMM-HM. We first introduce
the experimental datasets, evaluation metrics, and training details in Section 4.1 and
Section 4.2, respectively. Then, we compare and analyze the performance of the GMM-HM
on different datasets in Section 4.3. Finally, we also visualize the features to demonstrate
the effectiveness of the proposed method.

4.1. Datasets and Evaluation Metrics

ChestX-ray2017 [2] has a total of 5856 anterior-posterior Chest X-ray images. Each
CXR image belongs to either normal, bacterial pneumonia, or viral pneumonia. The training
and testing sets include 5232 and 624 images, respectively. On ChestX-ray2017, we con-
duct experiments with symmetric and asymmetric noise following previous works [33,34].
ChestX-ray2017 is a clean dataset. We artificially add 20%, 40%, and 60% symmetric or
asymmetric noise on the training set, respectively. Symmetric noise means that any class of
labels is replaced by any class. Asymmetric noise means that label swapping occurs only
for similar categories. We compute the Accuracy (Acc), Sensitivity (Sens), Specificity (Spec),
and AUC as the evaluation of the proposed method,

Acc = (TP + TN)/(TP + FP + FN + TN) (10)

Sens = TP/(TP + FN) (11)

Spec = TN/(FP + TN) (12)

where TP, FP, FN, and TN are true positive, false positive, false negative, and true negative,
respectively. AUC (Area Under The Curve) is the area under the ROC (Receiver Operating
Characteristics) curve.

ChestX-ray14 [4] contains a total of 112,120 frontal-view chest X-ray images of
30,805 patients. ChestX-ray14 is a real asymmetric noisy dataset whose noise labels origi-
nate from algorithm errors. The noise proportion of the training set and test set is unknown.
This dataset includes 14 pathologies: Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass,
Nodule, Pneumonia, Pneumothorax, Consolidation, Edema, Emphysema, Fibrosis, PT,
and Hernia. The training set and validation set have 86,524 images, and the test set has
25,596 images. The AUC score for each pathology and the average AUC over 14 pathologies
are used to evaluate the performance of the proposed method.
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4.2. Implementation Details

First, we introduce the details about how GMM is applied. In one training epoch,
we fit a two-component GMM on the per-sample loss in the previous epoch to divide the
training samples into a noisy and a clean set. The posterior probability of one sample
whose loss belongs to the Gaussian component with a smaller mean larger than T (0.5 in
the experiments) belongs to the clean set. Otherwise, it belongs to the noisy set. Second,
for the noise-aware network, we perform data augmentation by randomly resizing and
cropping to 224 × 224 and randomly horizontal flipping and normalizing with the mean
and standard variance of ImageNet [34] in training. During testing, the image is also resized
to 224 × 224. We train the GMM-HM with a stochastic gradient descent algorithm with an
initial learning rate of 0.01. The batch size is set to 16. The threshold T in GMM is set to
0.5. On the ChestX-ray14 dataset, we train the network using stochastic gradient descent
with an initial learning rate of 0.01. The learning rate is reduced by a factor of 10 after every
30 epochs. The batch size is 64. In HM and GMM-HM for both of these two datasets, we
set the momentum to 0.9 and weight decay to 5e-4 in SGD, the softmax temperature to 1.5,
and MC samples to 10,000.

4.3. Comparative Studies

Comparitive Methods. (1) Baseline. We train a ResNet-50 [1] as our baseline method.
We replace the last fully connected layer with a C-dimensional fully connected layer to
classify the input images, e.g., C = 3 on ChestX-ray2017 and C = 14 on ChestX-ray14.
(2) Heteroscedastic Modeling. We also compare our method to the original Heteroscedastic
Modeling (HM) [3]. In HM, we input all the samples into the heteroscedastic layer and do
not distinguish the clean or noisy samples like our proposed GMM-HM.

4.3.1. Results on ChestX-ray2017

Table 2 shows the results on the ChestX-ray2017 dataset. We train a strong baseline
on the ChestX-ray2017 dataset with different levels of symmetric or asymmetric noise. We
first analyze the symmetric noise case. When the noise level is 20%, the accuracy of the
Baseline is 84.29%, the sensitivity is 84.29%, the specificity is 91.95%, and the AUC is 93.60%.
By introducing the Heteroscedastic Modeling of noise labels, these four evaluation metrics
are obviously improved, especially the accuracy and sensitivity (about 2%). Promoted by
our GMM-HM, the performance over all the evaluation metrics is further enhanced by at
least 1%. Compared with the Baseline, GMM-HM achieves a significant improvement of
about 3% in accuracy and sensitivity. When the noise level increases to 40%, the entire
performance of the Baseline method decreases by about 2%. We observe that the improve-
ment with HM is slight on some metrics, e.g., specificity and AUC. On the other metrics,
the performance is improved by about 1%. However, GMM-HM is not affected by the
noise ratio and promotes performance improvement on all metrics by about 3%. We could
obtain similar or greater improvements when the noise ratio increases to 60%. Particularly,
compared with Baseline, the AUC of GMM-HM achieves a significant improvement of
about 4.29%.

Next, we analyze the case where the noise type is asymmetric noise. When the noise
ratio is 20%, the accuracy of the Baseline is 84.94%, the sensitivity is 84.94%, the specificity
is 91.96%, and the AUC is 94.46%. Similar to the symmetric noise, the performance on the
four evaluation metrics is improved by introducing the Heteroscedastic Modeling for noisy
samples. We could observe that the performance of most of these metrics is enhanced by
over 2%, e.g., accuracy and sensitivity. The proposed GMM-HM obtains greater perfor-
mance gains on all evaluation metrics, especially the sensitivity with 3.36%. When the noise
ratio increases to 40%, we could observe that the performance with HM and GMM-HM
is consistently improved by about 1–2%. Particularly, GMM-HM significantly improves
the accuracy and sensitivity by 2.4%. With a larger 60% asymmetric noise, the pneumonia
recognition performance largely decreases with the Baseline method. The HM introduces
about 1–2% improvement on the four evaluation metrics. Particularly, HM surpasses the
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Baseline by about 5% on the AUC score. With GMM-HM, we observe that the pneumonia
recognition performance is tremendously enhanced compared with the Baseline method,
e.g., AUC with 7.63%, accuracy and sensitivity with about 5%. We empirically conclude
that the data-independent pneumonia noise is properly modeled by the HM and separating
the noise and clean samples could also benefit further performance enhancement.

Table 2. The experimental results on the ChestX-ray2017 dataset.

20% 40% 60%

Acc Sens Spec AUC Acc Sens Spec AUC Acc Sens Spec AUC
Model

Symmetric Noise

Baseline 84.29 84.29 91.95 93.60 82.69 82.69 90.56 91.69 78.21 78.21 88.35 88.45
HM 86.06 86.06 92.82 93.61 83.49 83.49 90.77 91.94 79.81 79.81 89.21 91.60
GMM-HM 87.34 87.34 93.28 95.65 85.26 85.26 92.81 94.24 81.57 81.57 91.73 92.74

Asymmetric Noise

Baseline 84.94 84.94 91.96 94.46 80.13 80.13 89.75 91.77 58.81 58.81 77.34 69.99
HM 87.02 87.02 93.43 94.64 80.29 80.29 90.90 92.84 60.42 60.42 78.49 74.47
GMM-HM 88.30 88.30 94.08 94.87 82.69 82.69 92.07 93.44 63.94 63.94 79.37 77.62

Acc: Accuracy; Sens: Sensitivity; Spec: Specificity. The best performance is shown in bold.

4.3.2. Results on ChestX-ray14

Table 3 reports the AUC score of each pathology and the average AUC score of
14 pathologies of Baseline, HM, and GMM-HM methods on the ChestX-ray14 dataset. We
train a relatively strong baseline which achieves an average AUC of 0.805. By introducing
the heteroscedastic modeling for the noisy samples, the average AUC score of 14 pathologies
achieves 0.812. We observe that the AUC scores of “Emphysema” and “Hernia” are
obviously improved from 0.893 to 0.904 and 0.885 to 0.915, respectively. This illustrates that
introducing the noise label strategy could benefit the model performance on the chestX-
ray14 dataset. While further handling the noisy and clean samples separately, the proposed
GMM-HM achieves the highest average AUC score of 0.822 among the three methods.
Moreover, among the 14 pathologies, some of them are improved significantly, e.g., over
2% for “Pneumonia”, “Pneumothorax”, and “Hernia”. The results suggest that detecting
noisy samples and modeling the noisy data with a heteroscedastic layer is necessary to
robustly combat noise and improve classification performance. In Table 3, we also report
the performance comparisons with the state-of-the-art methods.

Table 3. Comparisons of GMM-HM with Baseline and HM methods on ChestX-ray14.

Methods Atel Card Effu Infi Mass Nodu Pne1 Pne2 Cons Edem Emph Fibr PT Hern Mean

[4] 0.700 0.810 0.759 0.661 0.693 0.669 0.658 0.799 0.703 0.805 0.833 0.786 0.684 0.872 0.745
[5] 0.766 0.801 0.797 0.751 0.760 0.741 0.778 0.800 0.787 0.820 0.773 0.765 0.759 0.748 0.775
[12] 0.756 0.887 0.819 0.689 0.814 0.755 0.729 0.850 0.728 0.848 0.908 0.818 0.765 0.875 0.803
[35] 0.767 0.883 0.828 0.709 0.821 0.758 0.731 0.846 0.745 0.835 0.895 0.818 0.761 0.896 0.807
[14] 0.779 0.879 0.824 0.694 0.831 0.766 0.726 0.858 0.758 0.850 0.909 0.832 0.778 0.906 0.814
[28] 0.785 0.892 0.836 0.710 0.826 0.755 0.735 0.847 0.747 0.837 0.925 0.838 0.785 0.905 0.816

Baseline 0.774 0.883 0.825 0.700 0.818 0.759 0.710 0.842 0.746 0.843 0.893 0.822 0.770 0.885 0.805
HM 0.777 0.887 0.830 0.702 0.827 0.770 0.717 0.855 0.747 0.845 0.904 0.819 0.777 0.915 0.812
GMM-HM 0.764 0.887 0.824 0.720 0.836 0.774 0.743 0.887 0.759 0.857 0.901 0.825 0.790 0.945 0.822

The 14 pathologies are Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneumonia, Pneumothorax, Consolida-
tion, Edema, Emphysema, Fibrosis, Pleural Thickening, and Hernia, respectively. For each column, the best results are high-
lighted in bold.

Previous works focus on network design and performance improvement but seldom
consider the noisy labels existing in ChestX-ray14. By considering the data-correlated noise,
GMM-HM performs better than other methods. The average AUC score achieves 0.822,
which is better than the SOTA [28]. Among the 14 pathologies, GMM-HM surpasses other
methods by a large gap and has the best AUC score on the “Hernia” (0.945). In addition,
on “Infiltration”, “Pneumonia”, “Pneumothorax”, and “Edema”, the AUC score of GMM-
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HM also achieves a new state of the art. Basically, the proposed GMM-HM achieves
comparable or even better performance compared with the state-of-the-art methods.

4.3.3. Feature Visualization

Figure 3 visualizes the features of the Baseline, HM, and GMM-HM methods with
t-SNE [36] on different datasets. On the ChestX-ray2017 dataset, with the Baseline method,
shown in Figure 1d, pneumonia and normal samples locate very close, which makes
them difficult to distinguish. With HM, the distances between pneumonia and normal
samples become larger, but the bacterial and viral pneumonia samples are still difficult
to correctly classify (Figure 1e). With GMM-HM, we observe that the features of normal
and pneumonia, even the bacterial and viral pneumonia samples, are further separated,
which leads to easy classification (Figure 1f). As shown in Tables 2 and 3, GMM-HM also
exceeds the HM and Baseline methods by a large gap and benefits from better feature
representation. On the ChestX-ray14 dataset, as shown in Figure 3, we randomly select two
pathologies to show the feature distributions and could also conclude that the proposed
GMM-HM is superior to the HM and the Baseline methods.

(a) Baseline                                  (b) HM                                      (c) GMM-HM

Hern
Pneumothorax

Hern
Pneumothorax

Hern
Pneumothorax

Figure 3. (a–c) are the visualized t-SNE feature distributions of the Baseline, HM, and the proposed
GMM-HM methods on the ChestXray14 dataset.

5. Conclusions

In this paper, we rethink heteroscedastic modeling for chest X-ray image classification
with noisy labels. Rather than inputting all the samples into the heteroscedastic layer,
we propose a novel framework that considers the clean and noisy samples separately.
A GMM-based noise detector and an HM-based noise-aware classification are integrated
into a framework to robustly detect noisy samples and correctly classify the input images.
Experimental results demonstrate the superiority of the proposed framework for pneu-
monia classification and multi-label disease classification tasks. In the future, instead of
imposing a classification step between clean and noisy, we would consider keeping the
conditional probabilities of the GMM and integrating them into the classification decision
under a Bayesian approach framework.
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