Machine Learning for Early Outcome Prediction in Septic Patients in the Emergency Department
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Tsertsvadze, A.; Royle, P.; Seedat, F.; Cooper, J.; Crosby, R.; McCarthy, N. Community-Onset Sepsis and Its Public Health Burden: A Systematic Review. Syst. Rev. 2016, 5, 81. [Google Scholar] [CrossRef]
- Stoller, J.; Halpin, L.; Weis, M.; Aplin, B.; Qu, W.; Georgescu, C.; Nazzal, M. Epidemiology of Severe Sepsis: 2008–2012. J. Crit. Care 2016, 31, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Angus, D.C.; Linde-Zwirble, W.T.; Lidicker, J.; Clermont, G.; Carcillo, J.; Pinsky, M.R. Epidemiology of Severe Sepsis in the United States: Analysis of Incidence, Outcome, and Associated Costs of Care. Crit. Care Med. 2001, 29, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.S.; Mannino, D.M.; Moss, M. The Effect of Age on the Development and Outcome of Adult Sepsis. Crit. Care Med. 2006, 34, 15–21. [Google Scholar] [CrossRef]
- Gaieski, D.F.; Edwards, J.M.; Kallan, M.J.; Carr, B.G. Benchmarking the Incidence and Mortality of Severe Sepsis in the United States. Crit. Care Med. 2013, 41, 1167–1174. [Google Scholar] [CrossRef]
- Nguyen, H.B.; Rivers, E.P.; Abrahamian, F.M.; Moran, G.J.; Abraham, E.; Trzeciak, S.; Huang, D.T.; Osborn, T.; Stevens, D.; Talan, D.A. Severe Sepsis and Septic Shock: Review of the Literature and Emergency Department Management Guidelines. Ann. Emerg. Med. 2006, 48, 54.e1. [Google Scholar] [CrossRef]
- Wang, H.E.; Shapiro, N.I.; Angus, D.C.; Yealy, D.M. National Estimates of Severe Sepsis in United States Emergency Departments. Crit. Care Med. 2007, 35, 1928–1936. [Google Scholar] [CrossRef]
- Peake, S.L.; Delaney, A.; Bailey, M.; Bellomo, R.; Cameron, P.A.; Cooper, D.J.; Higgins, A.M.; Holdgate, A.; Howe, B.D.; SA, W.; et al. Goal-Directed Resuscitation for Patients with Early Septic Shock. New Engl. J. Med. 2014, 371, 1496–1506. [Google Scholar] [CrossRef]
- Freund, Y.; Lemachatti, N.; Krastinova, E.; van Laer, M.; Claessens, Y.E.; Avondo, A.; Occelli, C.; Feral-Pierssens, A.L.; Truchot, J.; Ortega, M.; et al. Prognostic Accuracy of Sepsis-3 Criteria for In-Hospital Mortality Among Patients With Suspected Infection Presenting to the Emergency Department. JAMA 2017, 317, 301–308. [Google Scholar] [CrossRef]
- Askim, Å.; Moser, F.; Gustad, L.T.; Stene, H.; Gundersen, M.; Åsvold, B.O.; Dale, J.; Bjørnsen, L.P.; Damås, J.K.; Solligård, E. Poor Performance of Quick-SOFA (QSOFA) Score in Predicting Severe Sepsis and Mortality—A Prospective Study of Patients Admitted with Infection to the Emergency Department. Scand. J. Trauma Resusc Emerg. Med. 2017, 25, 56. [Google Scholar] [CrossRef] [PubMed]
- Usman, O.A.; Usman, A.A.; Ward, M.A. Comparison of SIRS, QSOFA, and NEWS for the Early Identification of Sepsis in the Emergency Department. Am. J. Emerg Med. 2019, 37, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Holder, A.L.; Gupta, N.; Lulaj, E.; Furgiuele, M.; Hidalgo, I.; Jones, M.P.; Jolly, T.; Gennis, P.; Birnbaum, A. Predictors of Early Progression to Severe Sepsis or Shock among Emergency Department Patients with Nonsevere Sepsis. Int. J. Emerg. Med. 2016, 9, 10. [Google Scholar] [CrossRef]
- Bewersdorf, J.P.; Hautmann, O.; Kofink, D.; Abdul Khalil, A.; Zainal Abidin, I.; Loch, A. The SPEED (Sepsis Patient Evaluation in the Emergency Department) Score: A Risk Stratification and Outcome Prediction Tool. Eur. J. Emerg. Med. 2017, 24, 170. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Jay, M.; Hoffman, J.L.; Calvert, J.; Barton, C.; Shimabukuro, D.; Shieh, L.; Chettipally, U.; Fletcher, G.; Kerem, Y.; et al. Multicentre Validation of a Sepsis Prediction Algorithm Using Only Vital Sign Data in the Emergency Department, General Ward and ICU. BMJ Open 2018, 8, e017833. [Google Scholar] [CrossRef]
- McCoy, A.; Das, R. Reducing Patient Mortality, Length of Stay and Readmissions through Machine Learning-Based Sepsis Prediction in the Emergency Department, Intensive Care Unit and Hospital Floor Units. BMJ Open Qual. 2017, 6, e000158. [Google Scholar] [CrossRef]
- Perng, J.W.; Kao, I.H.; Kung, C.; Hung, S.C.; Lai, Y.H.; Su, C.M. Mortality Prediction of Septic Patients in the Emergency Department Based on Machine Learning. J. Clin. Med. 2019, 8, 1906. [Google Scholar] [CrossRef]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A Severity of Disease Classification System. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; de Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-Related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure. On Behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Iwashyna, T.J.; Odden, A.; Rohde, J.; Bonham, C.; Kuhn, L.; Malani, P.; Chen, L.; Flanders, S. Identifying Patients with Severe Sepsis Using Administrative Claims: Patient-Level Validation of the Angus Implementation of the International Consensus Conference Definition of Severe Sepsis. Med. Care 2014, 52, 39–43. [Google Scholar] [CrossRef] [Green Version]
- McDonald, K.M.; Romano, P.S.; Geppert, J.; Davies, S.M.; Duncan, B.W.; Shojania, K.G.; Hansen, A. Measures of Patient Safety Based on Hospital Administrative Data—The Patient Safety Indicators. PMC 2002, 370. Report No.: 02-0038. [Google Scholar] [PubMed]
- Angus, D.C.; Seymour, C.W.; Coopersmith, C.M.; Deutschman, C.S.; Klompas, M.; Levy, M.M.; Martin, G.S.; Osborn, T.M.; Rhee, C.; Watson, R.S. A Framework for the Development and Interpretation of Different Sepsis Definitions and Clinical Criteria. Crit. Care Med. 2016, 44, e113–e121. [Google Scholar] [CrossRef] [PubMed]
- AHRQ. AHRQ Quality IndicatorsTM (AHRQ QITM) ICD-10-CM/PCS Specification V2022; AHRQ: Rockville, MD, USA, 2022.
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.-L.; Ramsay, G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Levy, M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012. Crit. Care Med. 2013, 41, 580–637. [Google Scholar] [CrossRef] [PubMed]
- Stekhoven, D.J.; Bühlmann, P. MissForest--Non-Parametric Missing Value Imputation for Mixed-Type Data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Jo, I.J.; Lee, S.U.; Lee, T.R.; Yoon, H.; Cha, W.C.; Sim, M.S.; Shin, T.G. Low Accuracy of Positive QSOFA Criteria for Predicting 28-Day Mortality in Critically Ill Septic Patients During the Early Period After Emergency Department Presentation. Ann. Emerg Med. 2018, 71, 1–9.e2. [Google Scholar] [CrossRef]
- Gaieski, D.F.; Mikkelsen, M.E.; Band, R.A.; Pines, J.M.; Massone, R.; Furia, F.F.; Shofer, F.S.; Goyal, M. Impact of Time to Antibiotics on Survival in Patients with Severe Sepsis or Septic Shock in Whom Early Goal-Directed Therapy Was Initiated in the Emergency Department. Crit. Care Med. 2010, 38, 1045–1053. [Google Scholar] [CrossRef]
- Vincent, J.L.; De Mendonça, A.; Cantraine, F.; Moreno, R.; Takala, J.; Suter, P.M.; Sprung, C.L.; Colardyn, F.; Blecher, S. Use of the SOFA Score to Assess the Incidence of Organ Dysfunction/Failure in Intensive Care Units: Results of a Multicenter, Prospective Study. Crit Care Med. 1998, 26, 1793–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, M.; Caruso, P.F.; Cecconi, M. Artificial Intelligence in the Intensive Care Unit. Semin. Respir. Crit. Care Med. 2020, 2020, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Lemańska-Perek, A.; Krzyżanowska-Gołąb, D.; Kobylińska, K.; Biecek, P.; Skalec, T.; Tyszko, M.; Gozdzik, W.; Adamik, B. Explainable Artificial Intelligence Helps in Understanding the Effect of Fibronectin on Survival of Sepsis. Cells 2022, 11, 2433. [Google Scholar] [CrossRef]
- Viton, F.; Elbattah, M.; Guerin, J.L.; Dequen, G. Heatmaps for Visual Explainability of CNN-Based Predictions for Multivariate Time Series with Application to Healthcare. In Proceedings of the 2020 IEEE International Conference on Healthcare Informatics, ICHI 2020, Oldenburg, Germany, 30 November–3 December 2020. [Google Scholar] [CrossRef]
- Drumheller, B.C.; Agarwal, A.; Mikkelsen, M.E.; Sante, S.C.; Weber, A.L.; Goyal, M.; Gaieski, D.F. Risk Factors for Mortality despite Early Protocolized Resuscitation for Severe Sepsis and Septic Shock in the Emergency Department. J. Crit. Care 2016, 31, 13–20. [Google Scholar] [CrossRef]
- Vorwerk, C.; Loryman, B.; Coats, T.J.; Stephenson, J.A.; Gray, L.D.; Reddy, G.; Florence, L.; Butler, N. Prediction of Mortality in Adult Emergency Department Patients with Sepsis. Emerg. Med. J. 2009, 26, 254–258. [Google Scholar] [CrossRef]
- Shapiro, N.I.; Howell, M.D.; Talmor, D.; Donnino, M.; Ngo, L.; Bates, D.W. Mortality in Emergency Department Sepsis (MEDS) Score Predicts 1-Year Mortality. Crit. Care Med. 2007, 35, 192–198. [Google Scholar] [CrossRef]
- Arampatzis, S.; Funk, G.C.; Leichtle, A.B.; Fiedler, G.M.; Schwarz, C.; Zimmermann, H.; Exadaktylos, A.K.; Lindner, G. Impact of Diuretic Therapy-Associated Electrolyte Disorders Present on Admission to the Emergency Department: A Cross-Sectional Analysis. BMC Med. 2013, 11, 83. [Google Scholar] [CrossRef]
- Lindner, G.; Schwarz, C.; Haidinger, M.; Ravioli, S. Hyponatremia in the Emergency Department. Am. J. Emerg Med. 2022, 60, 1–8. [Google Scholar] [CrossRef]
- Kushimoto, S.; Abe, T.; Ogura, H.; Shiraishi, A.; Saitoh, D.; Fujishima, S.; Mayumi, T.; Hifumi, T.; Shiino, Y.; Nakada, T.-A.; et al. Impact of blood glucose abnormalities on outcomes and disease severity in patients with severe sepsis: An analysis from a multicenter, prospective survey of severe sepsis. PLoS ONE 2020, 15, e0229919. [Google Scholar] [CrossRef] [Green Version]
- Kuttab, H.I.; Lykins, J.D.; Hughes, M.D.; Wroblewski, K.; Keast, E.P.; Kukoyi, O.; Kopec, J.A.; Hall, S.; Ward, M.A. Evaluation and Predictors of Fluid Resuscitation in Patients With Severe Sepsis and Septic Shock. Crit. Care Med. 2019, 47, 1582–1590. [Google Scholar] [CrossRef] [PubMed]
- Robert Boter, N.; Mòdol Deltell, J.M.; Casas Garcia, I.; Rocamora Blanch, G.; Lladós Beltran, G.; Carreres Molas, A. Activation of a Code Sepsis in the Emergency Department Is Associated with a Decrease in Mortality. Med. Clin. 2019, 152, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Greco, M.; Messina, A.; Cecconi, M. Lactate in Critically Ill Patients: At the Crossroads Between Perfusion and Metabolism. Annu. Update Intensive Care Emerg. Med. 2019, 2019, 199–211. [Google Scholar] [CrossRef]
- Karlsson, A.; Stassen, W.; Loutfi, A.; Wallgren, U.; Larsson, E.; Kurland, L. Predicting Mortality among Septic Patients Presenting to the Emergency Department-a Cross Sectional Analysis Using Machine Learning. BMC Emerg. Med. 2021, 21, 84. [Google Scholar] [CrossRef] [PubMed]
- Greco, M.; Angelotti, G.; Caruso, P.F.; Zanella, A.; Stomeo, N.; Costantini, E.; Protti, A.; Pesenti, A.; Grasselli, G.; Cecconi, M. Outcome Prediction during an ICU Surge Using a Purely Data-Driven Approach: A Supervised Machine Learning Case-Study in Critically Ill Patients from COVID-19 Lombardy Outbreak. Int. J. Med. Inform. 2022, 164, 104807. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Carman, M. Improving Scalability and Performance of Random Forest Based Learning-to-Rank Algorithms by Aggressive Subsampling. In Proceedings of the 12th Australasian Data Mining Conference (AusDM 2014), Brisbane, Australia, 28–29 November 2014. [Google Scholar]
Total | Outcome | |||
---|---|---|---|---|
Characteristic | N = 4251 | Alive N = 3601 | Dead N = 65 | p-Value |
Male Gender | 249 (58.6%) | 209 (58.1%) | 40 (61.5%) | 0.6 |
Female Gender | 176 (41.4%) | 151 (41.9%) | 25 (38.5%) | |
Age | 77 (69, 83) | 76 (67, 83) | 83 (75, 89) | <0.001 |
Provenience | <0.001 | |||
Home | 333.0 (78.4%) | 298.0 (89.5%) | 35.0 (10.5%) | |
Long-term care | 39.0 (9.2%) | 20.0 (51.3%) | 19.0 (48.7%) | |
Readmission after hospital discharge | 53.0 (12.5%) | 42.0 (79.2%) | 11.0 (20.8%) | |
Comorbidities | ||||
Cancer | 98.0 (23.1%) | 78.0 (21.7%) | 20.0 (30.8%) | 0.11 |
Hypertension | 173.0 (40.7%) | 136.0 (37.8%) | 37.0 (56.9%) | 0.004 |
COPD | 48.0 (11.3%) | 40.0 (11.1%) | 8.0 (12.3%) | 0.8 |
Diabetes | 105.0 (24.7%) | 89.0 (24.7%) | 16.0 (24.6%) | >0.9 |
CKD | 69.0 (16.2%) | 57.0 (15.8%) | 12.0 (18.5%) | 0.6 |
Nutritional status | ||||
Underweight | 53.0 (12.5%) | 36.0 (10.0%) | 17.0 (26.2%) | 0.002 |
Normal | 320.0 (75.3%) | 281.0 (78.1%) | 39.0 (60.0%) | |
Obese | 43.0 (10.1%) | 37.0 (10.3%) | 6.0 (9.2%) | |
Overweight | 9.0 (2.1%) | 6.0 (1.7%) | 3.0 (4.6%) | |
Recent use of antibiotic therapy | 35.0 (8.2%) | 23.0 (6.4%) | 12.0 (18.5%) | 0.001 |
Immunosuppressants as home medication | 28.0 (6.6%) | 23.0 (6.4%) | 5.0 (7.7%) | 0.8 |
Delay to ED presentation | ||||
<12 h | 278.0 (65.4%) | 239.0 (66.4%) | 39.0 (60.0%) | 0.5 |
12–24 h | 32.0 (7.5%) | 25.0 (6.9%) | 7.0 (10.8%) | |
24–48 h | 18.0 (4.2%) | 16.0 (4.4%) | 2.0 (3.1%) | |
>48 h | 97.0 (22.8%) | 80.0 (22.2%) | 17.0 (26.2%) | |
Site of infection | ||||
Other | 36.0 (8.5%) | 24.0 (6.7%) | 12.0 (18.5%) | 0.008 |
Abdomen | 141.0 (33.2%) | 126.0 (35.0%) | 15.0 (23.1%) | |
Lung | 117.0 (27.5%) | 97.0 (26.9%) | 20.0 (30.8%) | |
Urinary tract | 131.0 (30.8%) | 113.0 (31.4%) | 18.0 (27.7%) | |
Clinical data at ED presentation | ||||
Systolic BP | 125 (100, 141) | 128 (105, 148) | 110 (90, 130) | <0.001 |
Diastolic BP | 70 (55, 85) | 71 (59, 85) | 64 (50, 80) | 0.001 |
MAP | 90 (72, 103) | 92 (75, 105) | 81 (63, 94) | <0.001 |
Heart Rate | 94 (78, 108) | 92 (78, 105) | 105 (88, 121) | <0.001 |
Peripheral saturation | 94 (89, 97) | 94 (90, 97) | 91 (85, 95) | 0.003 |
Respiratory Rate | 18.0 (14.0, 22.0) | 18.0 (14.0, 21.0) | 20.0 (16.0, 25.0) | 0.003 |
Temperature | 37.80 (36.40, 38.20) | 38.00 (36.58, 38.20) | 36.80 (36.00, 38.00) | <0.001 |
Glasgow Coma Scale (GCS) | 15.00 (15.00, 15.00) | 15.00 (15.00, 15.00) | 15.00 (13.00, 15.00) | <0.001 |
Septic shock | 52.0 (12.2%) | 35.0 (9.7%) | 17.0 (26.2%) | <0.001 |
Total | Outcome | |||
---|---|---|---|---|
Characteristic | Alive | Dead | p-Value | |
N = 425 | N = 360 | N = 6 | ||
White blood cell count | 13 (10, 18) | 13 (10, 18) | 15 (10, 19) | 0.4 |
Haemoglobin | 12.10 (10.60, 13.80) | 12.30 (10.90, 13.90) | 11.40 (10.00, 12.60) | 0.001 |
Neutrophiles | 14 (9, 18) | 14 (9, 18) | 13 (8, 18) | 0.5 |
Platelet count | 204 (141, 260) | 207 (142, 258) | 191 (136, 267) | 0.5 |
Glucose | 163 (119, 277) | 165 (119, 289) | 153 (111, 204) | 0.008 |
Bilirubin | 0.96 (0.55, 1.61) | 1.02 (0.58, 1.77) | 0.75 (0.47, 1.24) | 0.011 |
Creatinine | 1.51 (1.03, 2.13) | 1.50 (1.03, 2.10) | 1.67 (1.04, 2.36) | 0.3 |
Serum sodium | 136 (130, 140) | 136 (129, 139) | 140 (134, 146) | <0.001 |
Serum potassium | 4.20 (3.70, 4.70) | 4.20 (3.70, 4.70) | 4.20 (3.70, 4.90) | 0.9 |
D-dimer | 1124 (538, 2510) | 1125 (568, 2523) | 837 (493, 2081) | 0.3 |
Fibrinogen | 554 (424, 785) | 555 (424, 800) | 540 (407, 738) | 0.4 |
C-reactive protein | 13 (6, 21) | 13 (6, 20) | 17 (8, 25) | 0.008 |
INR | 1.34 (1.18, 1.83) | 1.34 (1.18, 1.83) | 1.34 (1.15, 1.71) | 0.5 |
Blood gas analysis | ||||
PaO2 | 83 (79, 104) | 84 (79, 104) | 80 (61, 90) | 0.007 |
Pao2/FiO2 ratio | 390 (367, 495) | 395 (367, 495) | 381 (286, 410) | <0.001 |
Bicarbonate | 22 (16, 27) | 21 (14, 26) | 25 (20, 29) | <0.001 |
pH | 7.44 (7.37, 7.49) | 7.44 (7.37, 7.49) | 7.41 (7.36, 7.47) | 0.14 |
Lactate | 2.6 (1.5, 7.2) | 2.6 (1.5, 7.8) | 2.3 (1.5, 4.3) | 0.4 |
Clinical scores | ||||
APACHE II | 12.0 (9.0, 16.0) | 12.0 (8.8, 16.0) | 15.0 (11.0, 17.0) | <0.001 |
SOFA score | 2.00 (0.00, 4.00) | 1.00 (0.00, 3.00) | 3.00 (2.00, 5.00) | <0.001 |
qSOFA score | 0.00 (0.00, 1.00) | 0.00 (0.00, 1.00) | 1.00 (0.00, 1.00) | <0.001 |
Need for vasopressors in ED | 52.0 (12.2%) | 35.0 (9.7%) | 17.0 (26.2%) | <0.001 |
Blood Culture | Urinary Culture | |
---|---|---|
E. coli | 38 (21.5%) | 34 (21.7%) |
C. albicans | 0 | 5 (3.2%) |
Enterobacteriaceae | 3 (1.7%) | 4 (2.5%) |
K. pneumoniae | 7(4%) | 9 (5.7%) |
E. faecalis | 11 (6.2%) | 7 (4.5%) |
E. faecium | 1(0.6%) | 1 (0.6%) |
P. mirabilis | 4 (2.3%) | 11 (7%) |
P. aeruginosa | 3 (1.7%) | 3 (1.9%) |
S. aureus | 9 (5.1%) | 2 (1.3%) |
Contamination | 13 (7.3%) | 4 (2.5%) |
Other | 17 (9.6%) | 2 (1.3%) |
Negative results | 71 (40.1%) | 75 (47.8%) |
Model | F1 Test | F1 Train | Precision Test | Precision Train | ACC Test | ACC Train | Recall Test | Recall Train | AUC Test | AUC Train |
---|---|---|---|---|---|---|---|---|---|---|
Dummy_strat | 0.810 | 0.853 | 0.833 | 0.844 | 0.688 | 0.747 | 0.787 | 0.861 | 0.524 | 0.443 |
Dummy_strat * | 0.858 | 0.834 | 0.847 | 0.842 | 0.758 | 0.721 | 0.870 | 0.825 | 0.414 | 0.506 |
LR | 0.913 | 0.930 | 0.861 | 0.869 | 0.844 | 0.872 | 0.972 | 1.000 | 0.813 | 0.845 |
LR * | 0.913 | 0.932 | 0.861 | 0.872 | 0.844 | 0.875 | 0.972 | 1.000 | 0.826 | 0.843 |
LR_balanced | 0.856 | 0.932 | 0.925 | 0.943 | 0.773 | 0.886 | 0.796 | 0.921 | 0.811 | 0.881 |
LR_balanced * | 0.866 | 0.930 | 0.935 | 0.943 | 0.789 | 0.882 | 0.806 | 0.917 | 0.818 | 0.893 |
RF | 0.847 | 0.866 | 0.943 | 0.970 | 0.766 | 0.795 | 0.769 | 0.782 | 0.863 | 0.923 |
RF * | 0.837 | 0.881 | 0.932 | 0.971 | 0.750 | 0.815 | 0.759 | 0.806 | 0.834 | 0.914 |
SOFA | 0.739 | 0.771 | 0.895 | 0.899 | 0.625 | 0.660 | 0.630 | 0.675 | 0.712 | 0.698 |
APACHE II | 0.775 | 0.749 | 0.892 | 0.891 | 0.664 | 0.633 | 0.685 | 0.647 | 0.664 | 0.655 |
qSOFA | 0.783 | 0.764 | 0.913 | 0.912 | 0.680 | 0.656 | 0.685 | 0.658 | 0.706 | 0.658 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, M.; Caruso, P.F.; Spano, S.; Citterio, G.; Desai, A.; Molteni, A.; Aceto, R.; Costantini, E.; Voza, A.; Cecconi, M. Machine Learning for Early Outcome Prediction in Septic Patients in the Emergency Department. Algorithms 2023, 16, 76. https://doi.org/10.3390/a16020076
Greco M, Caruso PF, Spano S, Citterio G, Desai A, Molteni A, Aceto R, Costantini E, Voza A, Cecconi M. Machine Learning for Early Outcome Prediction in Septic Patients in the Emergency Department. Algorithms. 2023; 16(2):76. https://doi.org/10.3390/a16020076
Chicago/Turabian StyleGreco, Massimiliano, Pier Francesco Caruso, Sofia Spano, Gianluigi Citterio, Antonio Desai, Alberto Molteni, Romina Aceto, Elena Costantini, Antonio Voza, and Maurizio Cecconi. 2023. "Machine Learning for Early Outcome Prediction in Septic Patients in the Emergency Department" Algorithms 16, no. 2: 76. https://doi.org/10.3390/a16020076
APA StyleGreco, M., Caruso, P. F., Spano, S., Citterio, G., Desai, A., Molteni, A., Aceto, R., Costantini, E., Voza, A., & Cecconi, M. (2023). Machine Learning for Early Outcome Prediction in Septic Patients in the Emergency Department. Algorithms, 16(2), 76. https://doi.org/10.3390/a16020076