Assembly and Production Line Designing, Balancing and Scheduling with Inaccurate Data: A Survey and Perspectives
Abstract
:1. Introduction
2. A Division of Manual Labor, Assembly and Production Lines
2.1. Simple Assembly Line Balancing Problems
2.2. Optimal Design of an Assembly Line and Optimization of the Existing Assembly Line
2.3. Generalizations of the SALBP and Complexity of These Problems
3. Deterministic Problems of Designing and Balancing Assembly Lines with Deviations from Normally Fixed Conditions
3.1. Preventive Maintenance and Worker Assignment Problems
3.2. Changing Customer Demand and Optimization of Operation Sequences
4. Assembly Line Balancing Problems with Stochastic or Fuzzy Parameters
4.1. Stochastic Assembly and Production Line Balancing Problems
4.2. Assembly and Production Line Balancing Problems with Fuzzy Parameters
5. Designing and Balancing Production Lines of Disassembly of Obsolete Products
6. Designing, Balancing and Scheduling Assembly Lines with Uncertain Parameters
6.1. A Robust Approach to the ALBP with Uncertain Parameters
6.2. Stability Analysis of Assembly and Production Lines
6.3. A Stability Approach to Job-Shop Scheduling Problems with Uncertain Parameters
7. New Settings of Simple Assembly Line Balancing Problems and Unresolved Issues
7.1. Maximization of the Effectiveness of Assembly Line Modifications
7.2. Assembly Line Balancing Problems with Uncertain (Interval) Durations of Assembly Operations
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salveson, M.E. The assembly line balancing problem. J. Ind. Eng. 1955, 6, 18–25. [Google Scholar] [CrossRef]
- Baybars, I. A survey of exact algorithms for the simple assembly line balancing problem. Manag. Sci. 1986, 32, 909–932. [Google Scholar] [CrossRef]
- Boysen, N.; Fliedner, M.; Scholl, A. A classification of assembly line balancing problems. Eur. J. Oper. Res. 2007, 183, 674–693. [Google Scholar] [CrossRef]
- Scholl, A. Balancing and Sequencing of Assembly Line, 2nd ed.; Physical-Verlag: Heidelberg, Germany, 1999. [Google Scholar]
- Boysen, N.; Schulze, P.; Scholl, A. Assembly line balancing: What happened in the last fifteen years? Eur. J. Oper. Res. 2022, 301, 797–814. [Google Scholar] [CrossRef]
- Scholl, A.; Becker, C. State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur. J. Oper. Res. 2006, 168, 666–693. [Google Scholar] [CrossRef]
- Becker, C.; Scholl, A. A survey on problems and methods in generalized assembly line balancing. Eur. J. Oper. Res. 2006, 168, 694–715. [Google Scholar] [CrossRef]
- Boysen, N.; Fliedner, M.; Scholl, A. Sequencing mixed-model assembly lines: Survey, classification and model critique. Eur. J. Oper. Res. 2009, 192, 349–373. [Google Scholar] [CrossRef]
- Battaïa, O.; Dolgui, A. Taxonomy of line balancing problems and their solution approaches. Int. J. Prod. Econ. 2013, 142, 259–277. [Google Scholar] [CrossRef]
- Make, M.R.A.; Rashid, M.F.F.A.; Razali, M.M. A review of two-sided assembly line balancing problem. Int. J. Adv. Manuf. Technol. 2017, 89, 1743–1763. [Google Scholar] [CrossRef]
- Boysen, N.; Fliedner, M.; Scholl, A. Assembly line balancing: Which model to use when? Int. J. Prod. Econ. 2008, 111, 509–528. [Google Scholar] [CrossRef]
- Fathi, M.; Ghobakhloo, M. A technical comment on “a review on assembly sequence planning and assembly line balancing optimization using soft computing approaches”. Int. J. Advan. Manuf. Then. 2014, 71, 2033–2042. [Google Scholar] [CrossRef]
- Rashid, M.F.F.; Hutabarat, W.; Tiwari, A. A review on assembly sequence planning and assembly line balancing optimisation using soft computing approaches. Int. J. Adv. Manuf. Technol. 2012, 59, 335–349. [Google Scholar] [CrossRef]
- Tasan, S.O.; Tunali, S. A review of the current applications of genetic algorithms in assembly line balancing. J. Intel. Manuf. 2008, 19, 49–69. [Google Scholar] [CrossRef]
- Lusa, A. A survey of the literature on the multiple or parallel assembly line balancing problem. Eur. J. Indust. Eng. 2008, 2, 50–72. [Google Scholar] [CrossRef]
- Hazır, Ö.; Delorme, X.; Dolgui, A. A review of cost and profit oriented line design and balancing problems and solution approaches. Ann. Rev. Cont. 2015, 40, 14–24. [Google Scholar] [CrossRef]
- Hudson, S.; McNamara, T.; Shaaban, S. Unbalanced lines: Where are we now? Int. J. Prod. Res. 2014, 53, 1895–1911. [Google Scholar] [CrossRef]
- Özceylan, E.; Kalayci, C.B.; Güngör, A.; Gupta, S.M. Disassembly line balancing problem: A review of the state of the art and future directions. Int. J. Prod. Res. 2019, 57, 4805–4827. [Google Scholar] [CrossRef]
- Dolgui, A.; Sgarbossa, F.; Simonetto, M. Design and management of assembly systems 4.0: Systematic literature review and research agenda. Int. J. Prod. Res. 2021, 60, 184–210. [Google Scholar] [CrossRef]
- Eghtesadifard, M.; Khalifeh, M.; Khorram, M. A systematic review of research themes and hot topics in assembly line balancing through the web of science within 1990–2017. Comput. Indust. Eng. 2020, 139, 106182. [Google Scholar] [CrossRef]
- Hazır, Ö.; Dolgui, A. Assembly line balancing under uncertainty: Robust optimization models and exact solution method. Comput. Indust. Eng. 2013, 65, 261–267. [Google Scholar] [CrossRef]
- Boysen, N.; Scholl, A.; Wopperer, N. Resequencing of mixed-model assembly lines: Survey and research agenda. Eur. J. Oper. Res. 2012, 216, 594–604. [Google Scholar] [CrossRef]
- Smith, A. The Glasgow Edition of the Works and Correspondence of Adam Smith: An Inquiry into the Nature and Causes of the Wealth of Nations; Campbell, R.H., Skinner, A.S., Eds.; Oxford University Press: Oxford, UK, 1776/1979. [Google Scholar]
- Ford, H. My Life and Work; Open Road Media: New York, NY, USA, 1923/2015. [Google Scholar]
- Kucukkoc, I.; Li, Z.; Li, Y. Type-E disassembly line balancing problem with multi-manned workstations. Optim. Eng. 2020, 21, 611–630. [Google Scholar] [CrossRef]
- Rabbani, M.; Radmehr, F.; Manavizadeh, N. Considering the conveyer stoppages in sequencing mixed-model assembly lines by a new fuzzy programming approach. Int. J. Adv. Manuf. Technol. 2010, 10, 170–180. [Google Scholar] [CrossRef]
- Sparling, D.; Miltenburg, J. The mixed-model U-line balancing problem. Int. J. Oper. Res. 1998, 36, 485–501. [Google Scholar] [CrossRef]
- Thomopoulos, N.T. Line balancing—Sequencing for mixed model assembly. Manag. Sci. 1967, 14, 59–75. [Google Scholar] [CrossRef]
- Dar-El, E.M. Mixed-model assembly line sequencing problems. Omega 1978, 6, 317–323. [Google Scholar] [CrossRef]
- Ege, Y.; Azizoglu, M.; Ozdemirel, N. Assembly line balancing with station paralleling. Comput. Ind. Eng. 2009, 57, 1218–1225. [Google Scholar] [CrossRef]
- Kucukkoc, I. Balancing of two-sided disassembly lines: Problem definition, MILP model and genetic algorithm approach. Comput. Oper. Res. 2020, 124, 105064. [Google Scholar] [CrossRef]
- Li, Z.; Kucukkoc, I.; Zhang, Z. Branch, bound and remember algorithm for two sided assembly line balancing problem. Eur. J. Oper. Res. 2020, 284, 896–905. [Google Scholar] [CrossRef]
- Ozcan, U.; Toklu, B. Multiple—Criteria decision-making in two-sided assembly line balancing: A goal programming and a fuzzy goal programming models. Comput. Oper. Res. 2009, 36, 1955–1965. [Google Scholar] [CrossRef]
- Tonge, F.M. A Heuristic Program for Assembly Line Balancing; Prentice-Hall: Englewood Cliffs, NJ, USA, 1961. [Google Scholar]
- Pinto, P.A.; Dannenbring, D.G.; Khumawala, B.M. A branch and bound algorithm for assembly line balancing with paralleling. Int. J. Prod. Res. 1975, 13, 183–196. [Google Scholar] [CrossRef]
- Mansoor, E.M. Assembly line balancing—An improvement on the ranked positional weight technique. J. Ind. Eng. 1964, 15, 73–78. [Google Scholar]
- Freeman, D.R. A general line balancing model. In Proceedings of the 19th Annual Conference AIIE, Tampa, FL, USA, 9–11 May 1968; pp. 230–235. [Google Scholar]
- Gurevsky, E.; Battaïa, O.; Dolgui, A. Stability measure for a generalized assembly line balancing problem. Discret. Appl. Math. 2013, 161, 377–394. [Google Scholar] [CrossRef]
- Tanaev, V.S.; Sotskov, Y.N.; Strusevich, V.A. Scheduling Theory: Multi-Stage Systems; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Brucker, P. Scheduling Algorithms; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Graham, R.E.; Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A.H.G. Optimization and approximation in deterministic sequencing and scheduling: A survey. Ann. Discret. Math. 1979, 5, 287–326. [Google Scholar]
- Erel, E.; Sarin, S.C. A survey of the assembly line balancing procedures. Prod. Planning Control. 1998, 9, 414–434. [Google Scholar] [CrossRef]
- Scholl, A.; Klein, R. Balancing assembly lines effectively—A computational comparison. Eur. J. Oper. Res. 1999, 144, 50–58. [Google Scholar] [CrossRef]
- Bala Muralia, G.; Deepakb, B.B.V.L.; Raju Bahubalendrunic, M.V.A.; Biswald, B.B. Optimal assembly sequence planning using hybridized immune simulated annealing technique. Mater. Today Proc. 2017, 4, 8313–8322. [Google Scholar] [CrossRef]
- Nearchou, A.C. A differential evolution algorithm for simple assembly line balancing. In Proceedings of the IFAC 16th Triennial World Congrs, Prague, Czech Republic, 4–8 July 2005; pp. 247–252. [Google Scholar]
- Mozdgir, A.; Mahdavi, I.; Badeleh, I.S.; Solimanpur, M. Using the Taguchi method to optimize the differential evolution algorithm parameters for minimizing the workload smoothness index in simple assembly line balancing. Math. Comput. Model. 2013, 57, 137–151. [Google Scholar] [CrossRef]
- Michels, A.S.; Lopes, T.C.; Sikora, C.G.S.; Magatão, L. A Benders’ decomposition algorithm with combinatorial cuts for the multi-manned assembly line balancing problem. Eur. J. Oper. Res. 2019, 278, 796–808. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, Z.; Yang, B.; Yang, W. A review of robotic assembly strategies for the full operation procedure: Planning, execution and evaluation. Robot. Comput. Integr. Manuf. 2022, 78, 102366. [Google Scholar] [CrossRef]
- Sun, B.S.; Wang, L. A decomposition-based matheuristic for supply chain network design with assembly line balancing. Comput. Ind. Eng. 2019, 131, 408–417. [Google Scholar] [CrossRef]
- Martignago, M.; Battaia, O.; Battini, D. Workforce management in manual assembly lines of large products: A case study. IFAC-PapersOnLine 2017, 50, 6906–6911. [Google Scholar] [CrossRef]
- Levitin, G.; Rubinovitz, J.; Shnits, B. A genetic algorithm for robotic assembly line balancing. Eur. J. Oper. Res. 2006, 168, 811–825. [Google Scholar] [CrossRef]
- Hazır, Ö.; Agi, M.A.N.; Guérin, J. A fast and effective heuristic for smoothing workloads on assembly lines: Algorithm design and experimental analysis. Comput. Oper. Res. 2020, 115, 104857. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, Q.; Zhang, L. Mathematical model and grey wolf optimization for low-carbon and low-noise U-shaped robotic assembly line balancing problem. J. Cleaner. Prod. 2019, 215, 744–756. [Google Scholar] [CrossRef]
- Toksar, M.D.; Isleyen, S.K.; Guner, E.; Baykoc, O.F. Simple and U-type assembly line balancing problems with a learning effect. Appl. Math. Model. 2008, 32, 2954–2961. [Google Scholar] [CrossRef]
- Zhang, R.; Lv, J.; Li, J.; Bao, J.; Zheng, P.; Peng, T. A graph-based reinforcement learning-enabled approach for adaptive human-robot collaborative assembly operations. J. Manuf. Syst. 2022, 63, 491–503. [Google Scholar] [CrossRef]
- Meng, K.; Tang, Q.; Cheng, L.; Zhang, Z.; Yu, C. Solving multi-objective model of assembly line balancing considering preventive maintenance scenarios using heuristic and grey wolf optimizer algorithm. Eng. Appl. Artif. Intel. 2021, 127, 109341. [Google Scholar] [CrossRef]
- Öner-Közen, M.; Minner, S.; Steinthaler, F. Efficiency of paced and unpaced assembly lines under consideration of worker variability—A simulation study. Comput. Ind. Eng. 2017, 111, 516–526. [Google Scholar] [CrossRef]
- Hoedt, S.; Claeys, A.; Schamp, M.; Van Landeghem, H.; Cottyn, J. Countering the forgetting effect in mixed-model manual assembly. IFAC-PapersOnLine 2018, 51, 856–861. [Google Scholar] [CrossRef]
- Borba, L.; Ritt, M. A heuristic and a branch-and-bound algorithm for the assembly line worker assignment and balancing problem. Comput. Oper. Res. 2014, 45, 87–96. [Google Scholar] [CrossRef]
- Karas, A.; Ozcelik, F. Assembly line worker assignment and rebalancing problem: A mathematical model and an artificial bee colony algorithm. Comput. Indust. Eng. 2021, 156, 107195. [Google Scholar] [CrossRef]
- Masehian, E.; Ghandi, S. Assembly sequence and path planning for monotone and nonmonotone assemblies with rigid and flexible parts. Robot. Comput.-Integr. Manuf. 2021, 72, 102180. [Google Scholar] [CrossRef]
- Zhou, B.; He, Z. A material handling scheduling method for mixed-model automotive assembly lines based on an improved static kitting strategy. Comput. Indust. Eng. 2020, 140, 106268. [Google Scholar] [CrossRef]
- Lu, H.; Zhen, H.; Mi, W.; Huang, Y. A physically based approach with human–machine cooperation concept to generate assembly sequences. Comput. Indust. Eng. 2015, 89, 213–225. [Google Scholar] [CrossRef]
- Rade-Vilela, J.R.; Chica, M.; Cordon, O.; Damas, S. A comparative study of multi-objective ant colony optimization algorithms for the time and space assembly line balancing problem. Appl. Soft. Comput. 2013, 13, 4370–4382. [Google Scholar] [CrossRef]
- Che, Z.H. A multi-objective optimization algorithm for solving the supplier selection problem with assembly sequence planning and assembly line balancing. Comput. Indust. Eng. 2017, 105, 247–259. [Google Scholar] [CrossRef]
- Seleim, A.; ElMaraghy, H. Parametric analysis of mixed-model assembly lines using max-plus algebra. CIRP J. Manuf. Sci. Technol. 2014, 7, 305–314. [Google Scholar] [CrossRef]
- Heinecke, G.; Lamparter, S.; Lepratti, R.; Kunz, A. Advanced supply chain information for rule-based sequence adaptations on a mixed-model assembly line with unreliable just-in-sequence deliveries. In Proceedings of the 7th IFAC Conference on Manufacturing Modeling, Management, and Control, Saint Petersburg, Russia, 19–21 June 2013; pp. 1902–1907. [Google Scholar]
- Kottas, J.F.; Lau, H.S. A cost oriented approach to stochastic line balancing. AIIE Trans. 1973, 5, 164–171. [Google Scholar] [CrossRef]
- Reeve, N.R.; Thomas, W.H. Balancing stochastic assembly lines. AIIE Trans. 1973, 5, 223–229. [Google Scholar] [CrossRef]
- Silverman, F.N.; Carter, J.C. A cost- based methodology for stochastic line balancing with intermittent line stoppages. Manag. Sci. 1986, 32, 455–463. [Google Scholar] [CrossRef]
- Shin, D. An efficient heuristic for solving stochastic assembly line balancing problem. Comput. Ind. Eng. 1990, 18, 285–295. [Google Scholar] [CrossRef]
- Shin, D.; Min, H. Uniform assembly line balancing with stochastic task limes in just-in-time manufacturing. Int. J. Oper. Prod. Manag. 1991, 11, 23–34. [Google Scholar] [CrossRef]
- Sotskov, Y.N.; Werner, F. (Eds.) Sequencing and Scheduling with Inaccurate Data; Nova Science Publishers: Hauppauge, NY, USA, 2014. [Google Scholar]
- Himmiche, S.; Aubry, A.; Marange, P.; Petin, J.-F. A framework for robust scheduling under stochastic perturbations. IFAC-PapersOnLine 2021, 54, 1168–1173. [Google Scholar] [CrossRef]
- Lopes, T.C.; Michels, A.S.; Lüders, R.; Magatão, L. A simheuristic approach for throughput maximization of asynchronous buffered stochastic mixed-model assembly lines. Comput. Oper. Res. 2020, 115, 104863. [Google Scholar] [CrossRef]
- Tang, Q.; Li, Z.; Zhang, L.P.; Zhang, C. Balancing stochastic two-sided assembly line with multiple constraints using hybrid teaching-learning-based optimization algorithm. Comput. Oper. Res. 2017, 82, 102–113. [Google Scholar] [CrossRef]
- Gustavo, C.; Sikora, S. Benders’ decomposition for the balancing of assembly lines with stochastic demand. Eur. J. Oper. Res. 2021, 292, 108–124. [Google Scholar]
- Zhanga, W.; Xua, W.; Genb, M. Hybrid multiobjective evolutionary algorithm for assembly line balancing problem with stochastic processing time. Procedia Comput. Sci. 2014, 36, 287–292. [Google Scholar] [CrossRef]
- Manavizadeh, N.; Rabbani, M.; Moshtaghi, D.; Jolai, F. Mixed-model assembly line balancing in the make-to-order and stochastic environment using multi-objective evolutionary algorithms. Expert Syst. Appl. 2012, 39, 12026–12031. [Google Scholar] [CrossRef]
- Nazariana, E.; Kob, J. Robust manufacturing line design with controlled moderate robustness in bottleneck buffer time to manage stochastic inter-task times. J. Manuf. Syst. 2013, 32, 382–391. [Google Scholar] [CrossRef]
- Lolli, F.; Balugani, E.; Gamberini, R.; Rimini, B. Assembly line balancing with learning effects. IFAC-PapersOnLine 2017, 50, 5706–5711. [Google Scholar] [CrossRef]
- Mosadegh, H.; Fatemi Ghomi, S.M.T.; Süer, G.A. Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and Q-learning based simulated annealing hyper-heuristics. Eur. J. Oper. Res. 2020, 282, 530–544. [Google Scholar] [CrossRef]
- Saif, U.; Guan, Z.; Liu, W.; Zhana, C.; Wang, B. Pareto based artificial bee colony algorithm for multi objective single model assembly line balancing with uncertain task times. Comput. Indust. Eng. 2014, 76, 1–15. [Google Scholar] [CrossRef]
- Liu, M.; Liu, R.; Yang, X. Workforce assignment in assembly line considering uncertain demand. IFAC-PapersOnLine 2019, 52, 223–228. [Google Scholar] [CrossRef]
- Li, Y.; Peng, R.; Kucukkoc, I.; Tang, X.; Wei, F. System reliability optimization for an assembly line under uncertain random environment. Comput. Indust. Eng. 2020, 146, 106540. [Google Scholar] [CrossRef]
- Agpak, K.; Gökçen, H. A chance-constrained approach to stochastic line balancing problem. Eur. J. Oper. Res. 2007, 180, 1098–1115. [Google Scholar] [CrossRef]
- Borodin, V.; Dolgui, A.; Hnaien, F.; Labadie, N. Component replenishment planning for a single-level assembly system under random lead times: A chance constrained programming approach. Int. J. Prod. Econ. 2016, 181, 79–86. [Google Scholar] [CrossRef]
- Gen, M.; Tsujimura, Y.; Kubot, E. Solving fuzzy assembly-line balancing problem with genetic algorithms. Comput. Eng. 1995, 29, 543–547. [Google Scholar]
- Gen, M.; Tsujimura, Y.; Li, Y. Fuzzy assembly line balancing using genetic algorithms. Comput. Eng. 1995, 31, 631–634. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, Z. A hybrid fuzzy-neural-based dynamic scheduling method for part feeding of mixed-model assembly lines. Comput. Ind. Eng. 2022, 163, 107794. [Google Scholar] [CrossRef]
- Zacharia, P.T.; Nearchou, A.C. A meta-heuristic algorithm for the fuzzy assembly line balancing type-E problem. Comput. Oper. Res. 2013, 40, 3033–3044. [Google Scholar] [CrossRef]
- Babazadeh, H.; Alavidoost, M.H.; Zarandi, M.H.F.; Sayyari, S.T. An enhanced NSGA-II algorithm for fuzzy bi-objective assembly line balancing problems. Comput. Indust. Eng. 2018, 123, 189–208. [Google Scholar] [CrossRef]
- Alavidoost, M.H.; Babazadeh, H.; Sayyari, S.T. An interactive fuzzy programming approach for bi-objective straight and U-shaped assembly line balancing problem. Appl. Soft Comput. 2016, 40, 221–235. [Google Scholar] [CrossRef]
- Ruppert, T.; Dorgo, G.; Abonyi, J. Fuzzy activity time-based model predictive control of open-station assembly lines. J. Manuf. Syst. 2020, 54, 12–23. [Google Scholar] [CrossRef]
- Alavidoost, M.H.; Tarimoradi, M.; Zarandi, M.H.F. Fuzzy adaptive genetic algorithm for multi-objective assembly line balancing problems. Appl. Soft Comput. 2015, 34, 655–677. [Google Scholar] [CrossRef]
- Alavidoost, M.H.; Zarandi, M.F.; Tarimoradi, M.; Nemati, Y. Modified genetic algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing times. J. Intel. Manuf. 2016, 28, 313–336. [Google Scholar] [CrossRef]
- Huo, J.; Lee, C.K.M. Intelligent workload balance control of the assembly process considering condition-based maintenance. Advan. Eng. Inform. 2021, 49, 101341. [Google Scholar] [CrossRef]
- Huo, J.; Chan, F.T.S.; Lee, C.K.M.; Strandhagen, J.O.; Niu, B. Smart control of the assembly process with a fuzzy control system in the context of Industry 4.0. Advan. Eng. Inform. 2020, 43, 101031. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Xu, W.; Liu, J.; Zhou, Z.; Feng, H. Sequence planning considering human fatigue for human–robot collaboration in disassembly. Procedia CIRP 2019, 83, 95–104. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, J.; Pham, D.T.; Xu, W.; Ramirez, F.J.; Ji, C.; Liu, Q. Disassembly sequence planning: Recent developments and future trends. Proc. Inst. Mech. Eng. B 2019, 233, 1450–1471. [Google Scholar] [CrossRef]
- Fang, Y.; Ming, H.; Li, M.; Liu, Q.; Pham, D.T. Multi-objective evolutionary simulated annealing optimisation for mixed-model multi-robotic disassembly line balancing with interval processing time. Int. J. Prod. Res. 2020, 58, 846–862. [Google Scholar] [CrossRef]
- Yin, T.; Zhang, Z.; Jiang, J. A Pareto-discrete hummingbird algorithm for partial sequence-dependent disassembly line balancing problem considering tool requirements. J. Manuf. Syst. 2021, 60, 406–428. [Google Scholar] [CrossRef]
- Munker, S.; Schmitt, R.H. CAD-based and/or graph generation algorithms in (dis)assembly sequence planning of complex products. Procedia CIRP 2022, 106, 144–149. [Google Scholar] [CrossRef]
- Wang, K.; Li, X.; Gao, L.; Li, P.; Gupta, S.M. A genetic simulated annealing algorithm for parallel partial disassembly line balancing problem. Appl. Soft Comput. 2021, 107, 107404. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S. Balancing disassembly line in product recovery to promote the coordinated development of economy and environment. Sustainability 2017, 9, 309. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, D.; Zhang, C.; Tian, G.; Meng, L.; Zhou, X. An improved gravitational search algorithm for profit-oriented partial disassembly line balancing problem. Int. J. Prod. Res. 2017, 55, 7302–7316. [Google Scholar] [CrossRef]
- Kang, K.; Zhong, R.Y.; Nassehi, A. Integrated disassembly and assembly model for heavy duty equipment maintenance. Procedia CIRP 2020, 93, 995–1000. [Google Scholar] [CrossRef]
- Liang, J.; Guo, S.; Du, B.; Liu, W.; Zhang, Y. Restart genetic flatworm algorithm for two-sided disassembly line balancing problem considering negative impact of destructive disassembly. J. Clean. Prod. 2022, 355, 131708. [Google Scholar] [CrossRef]
- Vaisi, B. A review of optimization models and applications in robotic manufacturing systems: Industry 4.0 and beyond. Decis. Anal. J. 2022, 2, 100031. [Google Scholar] [CrossRef]
- Stief, P.; Dantan, J.-Y.; Etienne, A.; Siadat, A. A new methodology to analyze the functional and physical architecture of existing products for an assembly oriented product family identification. Procedia CIRP 2019, 83, 71–76. [Google Scholar] [CrossRef]
- Kaipu, W.; Xinyu, L.; Liang, G.; Garg, A. Partial disassembly line balancing for energy consumption and profit under uncertainty. Robot. Comput. Integ. Manuf. 2019, 59, 235–251. [Google Scholar]
- Minca, E.; Filipescu, A.; Voda, A. Modelling and control of an assembly/disassembly mechatronics line served by mobile robot with manipulator. Control. Eng. Pract. 2014, 31, 50–62. [Google Scholar] [CrossRef]
- Laili, Y.; Feia, W.; Wang, Y.; Pham, D.T.; Zhang, L. Interference probability matrix for disassembly sequence planning under uncertain interference. J. Manuf. Syst. 2021, 60, 214–225. [Google Scholar] [CrossRef]
- Laili, Y.; Li, Y.; Fang, Y.; Pham, D.T.; Zhang, L. Model review and algorithm comparison on multi-objective disassembly line balancing. J. Manuf. Syst. 2020, 56, 484–500. [Google Scholar] [CrossRef]
- Wang, W.; Tiana, G.; Zhang, T.; Jabarullah, N.H.; Li, F.; Fathollahi-Fard, A.M.; Wang, D.; Li, Z. Scheme selection of design for disassembly (DFD) based on sustainability: A novel hybrid of interval 2-tuple linguistic intuitionist fuzzy numbers and regret theory. J. Clean. Prod. 2021, 281, 124724. [Google Scholar] [CrossRef]
- Fei, Y.; James, P.; Zhang, L.; Yuanjun, L.; Yongjing, W. A self-evolving system for robotic disassembly sequence planning under uncertain interference conditions. Robot. Comp. Integ. Manuf. 2022, 78, 102392. [Google Scholar]
- Moncayo-Martınez, L.A.; Zhang, D.Z. Optimising safety stock placement and lead time in an assembly supply chain using bi-objective MAX–MIN ant system. Int. J. Prod. Econ. 2013, 145, 18–28. [Google Scholar] [CrossRef]
- Dehghan-Sanej, K.; Eghbali-Zarch, M.; Tavakkoli-Moghaddam, R.; Sajadi, S.M.; Sadjadi, S.J. Solving a new robust reverse job shop scheduling problem by meta-heuristic algorithms. Eng. Appl. Artif. Intel. 2021, 101, 104207. [Google Scholar] [CrossRef]
- Hazır, Ö.; Dolgui, A. A decomposition based solution algorithm for U-type assembly line balancing with interval data. Comput. Oper. Res. 2015, 59, 126–131. [Google Scholar] [CrossRef]
- Aubry, A.; Marangé, P.; Lemoine, D.; Himmiche, S.; Norre, S. Hybridization of mixed-integer linear program and discrete event systems for robust scheduling on parallel machines. IFIP Advan. Inform. Comm. Techn. 2021, 630, 73–80. [Google Scholar]
- Formoso, O.; Trinh, G.; Hu, S.; Cheung, K. Development and robustness characterization of a digital material assembly system. Procedia Manuf. 2018, 26, 1003–1013. [Google Scholar] [CrossRef]
- Van Acker, B.B.; Bombeke, K.; Durnez, W.; Parmentier, D.D.; Mateus, J.C.; Biondi, A.; Saldien, J.; Vlerick, P. Mobile pupillometry in manual assembly: A pilot study exploring the wearability and external validity of a renowned mental workload lab measure. Int. J. Industr. Ergonom. 2020, 75, 102891. [Google Scholar] [CrossRef]
- Magnanini, M.C.; Terkaj, W.; Tolio, T. Robust optimization of manufacturing systems flexibility. Procedia CIRP 2021, 96, 63–68. [Google Scholar] [CrossRef]
- Gyulai, D.; Kadar, B.; Monosotori, L. Robust production planning and capacity control for flexible assembly lines. IFAC-PapersOnLine 2015, 48, 2312–2317. [Google Scholar] [CrossRef]
- Kootbally, Z.; Schlenoff, C.; Lawler, C.; Kramer, T.; Gupta, S.K. Towards robust assembly with knowledge representation for the planning domain definition language (PDDL) Robot. Comput. Integr. Manuf. 2015, 33, 42–55. [Google Scholar] [CrossRef]
- Breckle, T.; Manns, M.; Kiefer, J. Assembly system design using interval-based customer demand. J. Manuf. Syst. 2021, 60, 239–251. [Google Scholar] [CrossRef]
- Fisel, J.; Exner, Y.; Stricker, N.; Lanza, G. Variant flexibility in assembly line balancing under the premise of feasibility robustness. Procedia CIRP 2018, 72, 774–779. [Google Scholar] [CrossRef]
- Aubry, A.; Rossi, A.; Jacomino, M. A generic off-line approach for dealing with uncertainty in production systems optimization. In Proceedings of the 13th IFAC Symposium on Information Control Problems in Manufacturing, Moscow, Russia, 3–5 June 2009; pp. 1481–1486. [Google Scholar]
- Hamta, N.; Fatemi Ghomi, S.M.T.; Jolai, F.; Bahalke, U. Bi-criteria assembly line balancing by considering flexible operation times. Appl. Math. Model. 2011, 35, 5592–5608. [Google Scholar] [CrossRef]
- Moreira, M.C.O.; Cordeau, J.-F.; Costa, A.M.; Laporte, G. Robust assembly line balancing with heterogeneous workers. Comput. Ind. Eng. 2015, 88, 254–263. [Google Scholar] [CrossRef]
- Gurevsky, E.; Rasamimanana, A.; Pirogov, A.; Dolgui, A.; Rossi, A. Stability factor for robust balancing of simple assembly lines under uncertainty. Discr. Appl. Math. 2022, 318, 113–132. [Google Scholar] [CrossRef]
- Pirogov, A.; Gurevsky, E.; Rossi, A.; Dolgui, A. Robust balancing of transfer lines with blocks of uncertain parallel tasks under fixed cycle time and space restrictions. Eur. J. Oper. Res. 2021, 290, 946–955. [Google Scholar] [CrossRef]
- Rossi, A.; Gurevsky, E.; Battaia, O.; Dolgui, A. Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations. Discret. Appl. Math. 2016, 208, 123–136. [Google Scholar] [CrossRef]
- Gurevsky, E.; Battaia, O.; Dolgui, A. Robust balancing of straight assembly lines with interval task times. J. Oper. Res. Soc. 2013, 64, 1607–1613. [Google Scholar] [CrossRef]
- Kuzmin, K.G.; Haritonova, V.R. Estimating the stability radius of an optimal solution to the simple assembly line balancing problem. J. Appl. Indust. Math. 2019, 13, 250–260. [Google Scholar] [CrossRef]
- Sotskov, Y.N.; Dolgui, A.; Portmann, M.-C. Stability analysis of optimal balance for assembly line with fixed cycle time. Eur. J. Oper. Res. 2006, 168, 783–797. [Google Scholar] [CrossRef]
- Lai, T.-C.; Sotskov, Y.N.; Dolgui, A.; Zatsiupa, A. Stability radii of optimal assembly line balances with a fixed workstation set. Int. J. Prod. Econ. 2016, 162, 356–371. [Google Scholar] [CrossRef]
- Sotskov, Y.N.; Dolgui, A.; Sotskova, N.; Werner, F. Stability of optimal line balance with given station set. In Supply Chain Optimization, Applied Optimization; Springer: New York, NY, USA, 2005; Volume 94, pp. 135–149. [Google Scholar]
- Sotskov, Y.N.; Werner, F.; Zatsiupa, A. Calculation of the stability radius of an optimal line balance. In Proceedings of the 14th IFAC Symposium on Information Control Problems in Manufacturing, Bucharest, Romania, 23–25 May 2012; pp. 192–197. [Google Scholar]
- Sotskov, Y.N.; Dolgui, A.; Lai, T.-C.; Zatsiupa, A. Enumerations and stability analysis of feasible and optimal line balances for simple assembly lines. Comput. Indust. Eng. 2015, 90, 241–258. [Google Scholar] [CrossRef]
- Lai, T.-C.; Sotskov, Y.N.; Dolgui, A. The stability radius of an optimal line balance with maximum efficiency for a simple assembly line. Eur. J. Oper. Res. 2019, 274, 466–481. [Google Scholar] [CrossRef]
- Sotskov, Y.N.; Werner, F. (Eds.) A stability approach in sequencing and scheduling. In Sequencing and Scheduling with Inaccurate Data; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 283–344. [Google Scholar]
- Brasel, H.; Sotskov, Y.N.; Werner, F. Stability of a schedule minimizing mean flow time. Math. Comput. Model. 1996, 24, 39–53. [Google Scholar] [CrossRef]
- Sotskov, Y.N.; Sotskova, N.; Werner, F. Stability of an optimal schedule in a job shop. Omega-Int. J. Manag. Sci. 1997, 25, 397–414. [Google Scholar] [CrossRef]
- Sotskov, Y.N. Stability of a schedule minimising the makespan for processing jobs on identical machines. Int. J. Prod. Res. in press. [CrossRef]
- Sotskov, Y.N.; Matsveichuk, N.M.; Hatsura, V.D. Two-machine job-shop scheduling problem to minimize the makespan with uncertain job durations. Algorithms 2020, 13, 4. [Google Scholar] [CrossRef]
- Matsveichuk, N.M.; Sotskov, Y.N.; Egorova, N.G.; Lai, T.-C. Schedule execution for two-machine flow-shop with interval processing times. Math. Comput. Model. 2009, 49, 991–1011. [Google Scholar] [CrossRef]
- Sotskov, Y.N.; Egorova, N.G.; Werner, F. Minimizing total weighted completion time with uncertain data: A stability approach. Autom. Remote Control. 2010, 71, 2038–2057. [Google Scholar] [CrossRef]
- Matsveichuk, N.M.; Sotskov, Y.N. A stability approach to two-stage scheduling problem with uncertain processing times. In Sequencing and Scheduling with Inaccurate Data; Sotskov, Y.N., Werner, F., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 377–408. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotskov, Y.N. Assembly and Production Line Designing, Balancing and Scheduling with Inaccurate Data: A Survey and Perspectives. Algorithms 2023, 16, 100. https://doi.org/10.3390/a16020100
Sotskov YN. Assembly and Production Line Designing, Balancing and Scheduling with Inaccurate Data: A Survey and Perspectives. Algorithms. 2023; 16(2):100. https://doi.org/10.3390/a16020100
Chicago/Turabian StyleSotskov, Yuri N. 2023. "Assembly and Production Line Designing, Balancing and Scheduling with Inaccurate Data: A Survey and Perspectives" Algorithms 16, no. 2: 100. https://doi.org/10.3390/a16020100
APA StyleSotskov, Y. N. (2023). Assembly and Production Line Designing, Balancing and Scheduling with Inaccurate Data: A Survey and Perspectives. Algorithms, 16(2), 100. https://doi.org/10.3390/a16020100