Sybil in the Haystack: A Comprehensive Review of Blockchain Consensus Mechanisms in Search of Strong Sybil Attack Resistance
Abstract
:1. Introduction
1.1. Context
1.1.1. Resilient Distributed Systems
1.1.2. Byzantine Failures and Malice
1.1.3. From Distributed to Decentralised Systems
1.1.4. Blockchain
1.1.5. Sybil Identities: A New Threat
1.1.6. Consensus Mechanisms and Sybil Resistance Schemes
1.2. Motivation
1.3. Organisation
1.4. Scope
1.5. Contribution
2. Methods
- The system focuses on Computer Science or has a multidisciplinary focus
- The system supports Boolean operators (at least AND and OR)
- The system supports parentheses
- The system allows for bulk download of 50 results or more
2.1. Search Results
2.2. Duplicate Resolution
2.3. Abstract Screening
- Is the result published in 2008 or after?
- Is the result written in the English language?
- Does the result describe a primary article (e.g., an original research article) or a secondary article (e.g., a review)?
- Does the article concern the field of computer science?
- Does the article concern decentralised computing?
- Does the article describe a consensus mechanism?
3. Results
3.1. Aspects of Interest
3.2. Secondary Literature
3.3. Mechanisms for Democratic Processes
3.4. Mechanisms for Education
3.5. Mechanisms for Energy
3.6. General Purpose Mechanisms
3.7. Mechanisms for Healthcare
3.8. Mechanisms for High Performance
3.9. Mechanisms for IoT
3.10. Mechanisms for Media and Entertainment
3.11. Mechanisms for Supply Chain
3.12. Mechanisms for Telecom
3.13. Mechanisms for Useful Work
3.14. Mechanisms for Vehicles
4. Conclusions
4.1. State of the Literature
4.2. Gaps
4.3. Research Directions
4.4. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D-GHOST | Three-Dimensional Greedy Heaviest-Observed Sub-Tree Consensus |
ABC | Auction-Based Consensus |
ABM | aggregation block manager |
ACM | Association for Computing Machinery |
AI | artificial intelligence |
APoW | Adaptive Proof-of-Work |
ARPANET | Advanced Research Projects Agency Network |
ASIC | Application-specific integrated circuit |
AV | autonomous vehicle |
AWARE | Adaptive Wide-Area Replication |
BFT | Byzantine fault tolerance |
BLS | Boneh–Lynn–Shacham |
BRBC | Blockchain Reputation-Based Consensus |
BSC | Byzantine Set Union Consensus |
CA | Certificate authority |
CAPER | Cross-Application Permissioned Blockchain |
CAPEX | Capital expenditure |
CFT | crash fault tolerance |
Co-PoW | Collaborative Proof-of-Work |
CoA | Chains of Activity |
CoS | Class of Service |
COST | Consensus-based Oracle Protocol for the Secure Trade of Digital Goods |
CoT | Consensus of Trust |
cPoC | Communicate Proof-of-Credit |
CPU | central processing unit |
CRBFT | Credit Reinforce Byzantine Fault Tolerance |
CT | computerised tomography |
CT-DPoS | Collaborative Trust Based Delegated Proof-of-Stake |
DABFT | Delegated Adaptive Byzantine Fault Tolerance |
DL | deep learning |
DLT | distributed ledger technology |
DNA | deoxyribonucleic acid |
DNS | Domain Name System |
DoS | Denial-of-service |
DPBFT | Dynamic-Reputation Practical Byzantine Fault Tolerance |
DPoEV | Delegated Proof of Economic Value |
DPoP | Delegated Proof-of-Proximity |
DPoR | Delegated Proof-of-Reputation |
DPoS | Delegated Proof-of-Stake |
DPoT | Delegated Proof-of-Trust |
dPoW | dynamic Proof-of-Work |
DPoW | Deterministic Proof-of-Work |
DTC | Distributed Time-Based Consensus |
ECBCM | Edge Computing Blockchain Security Consensus Model |
ECDLP | elliptic curve discrete logarithm problem |
EGES | Efficient, General, and Scalable Consensus |
eIDAS | electronic IDentification, Authentication and trust Services |
ePoW | Enhanced Proof-of-Work |
EPoW | Estimable Proof-of-Work |
ERC | Ethereum request for comment |
FPGA | field-programmable gate array |
FPoW | Filtered Proof-of-Work |
GeoBFT | Geo-Scale Byzantine Fault Tolerance |
GOLF | Greedy Observed Largest Forest |
GPBFT | Group-Based Optimized Practical Byzantine Fault Tolerance |
GPU | Graphics processing unit |
HBA | Hybrid Byzantine Agreement |
HDPoA | Honesty-Based Distributed Proof-of-Authority via Scalable Work |
HDPoR | Hyper Delegation Proof-of-Randomness |
HSBFT | High Performance and Scalable Byzantine Fault Tolerance |
HyBE | High-Performance Blockchain Enhanced Consensus |
IdAPoS | Identity-Augmented Proof-of-Stake |
IEEE | Institute of Electrical and Electronics Engineers |
IIoT | Industrial Internet of Things |
IMP-PBFT | Improved Practical Byzantine Consensus |
IoT | Internet of Things |
IP | Internet Protocol |
iPBFT | Improved Practical Byzantine Fault Tolerance |
IPBFT | Identifiable Practical Byzantine Fault Tolerance |
L1 | Layer 1 |
L2 | Layer 2 |
LC4IoT | Lightweight Consensus for IoT |
LDPC | Low-density parity-check code |
MAC | Media Access Control |
MANET | mobile ad hoc network |
MCPBFT | Multi-Center Practical Byzantine Fault Tolerance |
McPoRA | Multi-Chain Proof of Rapid Authentication |
MCS-Chain | Mobile Crowdsourcing Chain |
ML | machine learning |
MOCA | Majority vOting Cellular Automata |
MPC-DPoS | Multi Party Computation Delegated Proof-of-Stake |
MQ | multivariate quadratic |
MRI | magnetic resonance imaging |
MSig-BFT | Multisignature Byzantine Fault Tolerance |
NFT | Non-fungible token |
OPEX | Operating expenditure |
oPoW | Optical Proof-of-Work |
ORV | Open Representative Voting |
P2P | peer-to-peer |
PASS | Personal Archive Service System |
PBFT | Practical Byzantine Fault Tolerance |
PKI | public key infrastructure |
PL-PoRX | Permissionless Proof-of-Reputation-X |
PoA | Proof-of-Achievement |
PoAh | Proof-of-Authentication |
PoAW | Proof-of-Accumulated-Work |
PoC | Proof-of-Cooperation |
PoCI | Proof-of-Common-Interest |
PoCS | Proof of Catalytic Space |
PoD | Proof-of-Driving |
PoDLwHO | Proof of Deep Learning with Hyperparameter Optimization |
PoEf | Proof-of-Efficiency |
PoEG | Proof-of-Energy-Generation |
PoET | Proof of Elapsed Time |
PoEWAL | Proof of Elapsed Work and Luck |
PoFL | Proof of Federated Learning |
PoKW | Proof of Kernel Work |
PoM | Proof-of-Majority |
PoN | Proof-of-Nonce |
PoNW | Proof-of-Notarized-Work |
PoPF | Proof-of-Participation-and-Fees |
PoPUF | Proof-of-Physical Unclonable Function |
PoQF | Proof-of-Quality-Factor |
PoR | Proof-of-Reputation |
PoRe | Proof of Reputation |
PoRep | Proof-of-Replicated-Storage |
PoRX | Proof-of-Reputation-X |
PoS | Proof-of-Stake |
PoST | Proof-of-Scalable-Traceability |
PoSv | Proof-of-Sovereignty |
PoTN | Proof-of-Negotiation/Proof-of-Trust Negotiation |
PoUW | Proof-of-useful-work |
PoW | Proof-of-Work |
PoWaP | Proof-of-Work-at-Proximity |
PoWorK | Proof-of-Work-or-Knowledge |
PoX | Proof-of-Exercise |
PPE | Private Proof-of-Effort |
PPoM | Predictive Proof of Metrics |
PRNG | Pseudorandom number generator |
PUF | physical unclonable function |
QoS | Quality of Service |
RBA | Robust Byzantine Agreement |
RBFT | Reputation-based Byzantine Fault Tolerance |
RBitcoin | Regulated Bitcoin |
RDV | Register, Deposit, Vote |
ReCon | Reputation Consensus |
RHC | Reverse Hash Chain |
RPBFT | Practical Byzantine Fault Tolerance Based on Reputation Value |
RSP | Rock-Scissors-Paper |
RUW | Reciprocally Useful Work |
SAGA-PBFT | Security-Aware Genetic Algorithm based Practical Byzantine fault Tolerance |
SBFT | Scalable Byzantine Fault Tolerance |
SDMA-PBFT | Scalable Dynamic Multi-Agent Byzantine Fault-Tolerance |
SeBFT | Scalable Efficient Byzantine Fault Tolerance |
SENATE | Sybil-Proof Wireless Network Coordinate Based Byzantine Consensus |
SharPer | Sharding Permissioned Blockchains Over Network Clusters |
SHBFT | Scalable Hierarchical Byzantine Fault Tolerance |
SMP | Synergistic Multiple Proof |
SodsBC | Stream of Distributed Secrets for Quantum-safe Blockchain |
TCNS | Twice Verifications and Consensuses of Blockchain |
TEE | Trusted Execution Environment |
UAANET | unmanned aerial vehicle ad hoc network |
VRF | Verifiable random function |
WBFT | Weight of Authentication Byzantine Fault Tolerance |
WMCA | Weighted Majority Consensus Algorithm |
Appendix A. Description of Mechanisms for Democratic Processes
Appendix A.1. Consensus for e-Democracy [106]
Appendix A.2. Democratic Byzantine Fault Tolerance [107]
Appendix A.3. Encointer [104]
Appendix A.4. Proof-of-Credibility [102]
Appendix A.5. Proof-of-Personhood [105]
Appendix B. Description of Mechanisms for Education
Appendix B.1. Group-Based Consensus for Educational Systems [110]
Appendix B.2. Improved DPoS [112]
Appendix B.3. Proof of Reputation (PoRe) [111]
Appendix C. Description of Mechanisms for Energy
Appendix C.1. Communicate Proof-of-Credit (cPoC) [116]
Appendix C.2. Consensus Resource Slicing Model [119]
Appendix C.3. Credibility Consensus [130]
Appendix C.4. Credit-Based PoW [120]
Appendix C.5. Credit-Based Concurrent Block Building Consensus [135]
Appendix C.6. Cross-Layer Trust-Based Consensus [131]
Appendix C.7. Decentralized Consensus Decision-Making [117]
Appendix C.8. Dynamic-Reputation Practical Byzantine Fault Tolerance (DPBFT) [121]
Appendix C.9. Enhanced Proof-of-Work (ePoW) [132]
Appendix C.10. Fast, Secure and Distributed Consensus Mechanism for Energy Trading among Vehicles Using Hashgraph [133]
Appendix C.11. Hyper Delegation Proof-of-Randomness (HDPoR) [122]
Appendix C.12. Improved Proof of Work [123]
Appendix C.13. Lightweight DPoS for Energy Transmitters [124]
Appendix C.14. Lightweight Credibility-Based Equity Proof Consensus [136]
Appendix C.15. Proof-of-Credit-Threshold [125]
Appendix C.16. Proof-of-Energy-Generation (PoEG) [126]
Appendix C.17. Proof-of-Benefit [137,138,139,140]
Appendix C.18. Proof-of-Cooperation [134]
Appendix C.19. Proof-of-Efficiency (PoEf) [127]
Appendix C.20. Proof-of-Generation [128]
Appendix C.21. Proof-of-Work Based on Reputation [129]
Appendix D. Description of General Purpose Mechanisms
Appendix D.1. BFT with Satellite Chains [298]
Appendix D.2. Bitcoin-NG [179]
Appendix D.3. DPoS with Quantum Entanglement [412]
Appendix D.4. ECDLP-Based PoW [180]
Appendix D.5. PBFT with Node Quality Control [299]
Appendix D.6. PoS Based on Credit Rewards and Punishments [262]
Appendix D.7. PoS Based on Verifiable Random Functions [181]
Appendix D.8. PoS for Bitcoin Sidechains [168]
Appendix D.9. PoS with Behavior Score and Trust Rating [182]
Appendix D.10. PoS with Robust Round Robin (PoW Bootstrap) [153]
Appendix D.11. PoS with Robust Round Robin (Intel SGX Variant) [153]
Appendix D.12. PoS with Waiting-Time First-Price Auctions [183]
Appendix D.13. PoS with Weighted Voting [184,185]
Appendix D.14. PoUW as a Problem-Solving Market [186]
Appendix D.15. PoW Based on Power Analysis of Low-End Microcontrollers [187]
Appendix D.16. PoW on Quadratic Multivariate Equations [263,264]
Appendix D.17. PoW with Early Stage PoS [188]
Appendix D.18. PoW with Integer Prime Factorisation [189]
Appendix D.19. PoW with Personalized Difficulty Adjustment [190]
Appendix D.20. PoW with Quantum-Resistant Hash Collision [191]
Appendix D.21. VFRs for PoW [265]
Appendix D.22. Adaptive Wide-Area Replication [300]
Appendix D.23. AdRaft [301]
Appendix D.24. Albatross [169]
Appendix D.25. Alt-PoW [192]
Appendix D.26. Alzahrani and Bulusu’s Decentralized Consensus Protocol Utilizing Game Theory and Randomness [302]
Appendix D.27. Amoeba Paxos [303]
Appendix D.28. Assigned-Majority-Validation [304]
Appendix D.29. Attack-Tolerant PoW [193]
Appendix D.30. Auction-Based Consensus [305]
Appendix D.31. Authorized Proof of Stake [306]
Appendix D.32. B4SDC [194]
Appendix D.33. Basalt [159]
Appendix D.34. BeaconBlocks [266]
Appendix D.35. BLIC [307]
Appendix D.36. Block Maturity Level [195]
Appendix D.37. Blockchain for the Common Good [196]
Appendix D.38. Blockchain Reputation-Based Consensus (BRBC) [197]
Appendix D.39. Blockchain-Based Federated Learning Framework with Committee Consensus [308]
Appendix D.40. Bobtail [198]
Appendix D.41. Byzantine Set Union Consensus (BSC) [309]
Appendix D.42. Casanova [310]
Appendix D.43. Caucus [311]
Appendix D.44. Chains of Activity (CoA) [199]
Appendix D.45. Circle of Trust [200]
Appendix D.46. Client-Assisted Consensus [267]
Appendix D.47. ClouDPoS (with CSP Invovlement) [268]
Appendix D.48. ClouDPoS (with Resource Utilisation) [268]
Appendix D.49. Coinami [312]
Appendix D.50. Committee-Based Byzantine Consensus [313]
Appendix D.51. Composite Framework Leveraging Proof-of-Stake and Proof-of-Work [201]
Appendix D.52. Conflux [202]
Appendix D.53. Consensus of Trust (CoT) [394]
Appendix D.54. Consensus through Herding [314]
Appendix D.55. Consensus-based Oracle Protocol for the Secure Trade of Digital Goods 1122 (COST) [203]
Appendix D.56. Credence-Based Consensus [315,316]
Appendix D.57. Credit-Based Verifier Selection with Double Consensus [395]
Appendix D.58. Cross-Application Permissioned Blockchain (CAPER) [317]
Appendix D.59. Crux [269]
Appendix D.60. Cumulative Proof-of-Work [204]
Appendix D.61. Dynamic PBFT [318]
Appendix D.62. DagGrid [319]
Appendix D.63. Decision-Theoretic Online Learning Consensus [396]
Appendix D.64. Delegate Consensus Algorithm [320]
Appendix D.65. Delegated Adaptive Byzantine Fault Tolerance (DABFT) [321]
Appendix D.66. Delegated Byzantine Fault Tolerance [413]
Appendix D.67. Delegated Proof of Economic Value [321]
Appendix D.68. Delegated Proof of Stake with Downgrade [270]
Appendix D.69. Delegated Proof-of-Reputation (DPoR) [205]
Appendix D.70. Delegated Proof-of-Reputation (DPoR) [397]
Appendix D.71. Delegated Proof-of-Reputation (DPoR) [206]
Appendix D.72. Delegated Proof-of-Stake [145]
Appendix D.73. Delegation Based Scalable Byzantine False [sic] Tolerance Consensus [414]
Appendix D.74. Dependability-Rank-Based Consensus [322]
Appendix D.75. Deterministic Proof-of-Work [271]
Appendix D.76. DEXON [323]
Appendix D.77. DFINITY [324]
Appendix D.78. DTNB [160]
Appendix D.79. Dynamic Hierarchical Byzantine Fault-Tolerant Consensus Based on Credit [325]
Appendix D.80. Efficient, General, and Scalable Consensus [154]
Appendix D.81. Egalitarian Practical Byzantine Fault Tolerance [326]
Appendix D.82. Electronic Identification, Authentication and Trust Services Validating Indy-Plenum [327]
Appendix D.83. Elpis [328]
Appendix D.84. Equihash [207]
Appendix D.85. Error-Correction Code Based Proof-of-Work [208]
Appendix D.86. Estimable PoW [209]
Appendix D.87. Extended PoS [272]
Appendix D.88. Extensible-PBFT [329]
Appendix D.89. Fair Proof-of-Work System with Computing Power Rating [210]
Appendix D.90. Fair Selection Protocol for Committee-Based Permissionless Blockchains [273]
Appendix D.91. Fantômette [170]
Appendix D.92. Fast Leader-Based, Randomized Byzantine Agreement [330]
Appendix D.93. Fast Probabilistic Consensus with Weighted Votes [415]
Appendix D.94. FastBFT [331]
Appendix D.95. Filtered Proof-of-Work [274]
Appendix D.96. Geo-Scale Byzantine Fault Tolerance [332]
Appendix D.97. Goshawk [211]
Appendix D.98. Graph Learning BFT [333]
Appendix D.99. Greedy Observed Largest Forest (GOLF) [275]
Appendix D.100. Green Mining [416,417]
Appendix D.101. Green-PoW [212]
Appendix D.102. Group-Based Optimized Practical Byzantine Fault Tolerance [334]
Appendix D.103. Guru [398]
Appendix D.104. HashCore [276]
Appendix D.105. HotStuff [335]
Appendix D.106. Hybrid PoW/PoS [277]
Appendix D.107. Hybrid PoW/PoS [213]
Appendix D.108. Hybrid Byzantine Agreement [336]
Appendix D.109. Hybrid Consensus with Flexible Proof-of-Activity [214]
Appendix D.110. Identifiable Practical Byzantine Fault Tolerance [337]
Appendix D.111. Identity-Augmented Proof-of-Stake (IdAPoS) [399]
Appendix D.112. Improved DPoS with K-Means [215]
Appendix D.113. Interactive Proof-of-Stake [216]
Appendix D.114. Istanbul BFT Consensus [338]
Appendix D.115. Itsuku [278]
Appendix D.116. Leader-Stable Fast Byzantine Fault Tolerance [339]
Appendix D.117. LFT2 [340]
Appendix D.118. Lisk-BFT [341]
Appendix D.119. LocalCoin [163]
Appendix D.120. MaGPoS [171]
Appendix D.121. Majority vOting Cellular Automata [342]
Appendix D.122. Mchain Consensus [343]
Appendix D.123. Mobile Crowdsourcing Chain [217]
Appendix D.124. Multi-Block BFT [344]
Appendix D.125. Multi-Round Concession Negotiation [172]
Appendix D.126. Multi-Supervised Permissioned Blockchain [345]
Appendix D.127. Multi-Tokens Proof of Stake [218]
Appendix D.128. Multiple Winners Proof of Work [219]
Appendix D.129. Multisignature-BFT [346]
Appendix D.130. Musch [347]
Appendix D.131. NeuCoin [173]
Appendix D.132. Open Business Environment BFT [348]
Appendix D.133. Open Representative Voting (ORV) [279]
Appendix D.134. Optical Proof-of-Work [220]
Appendix D.135. Ouroboros Crypsinous [280]
Appendix D.136. Ouroboros Genesis [281]
Appendix D.137. Ouroboros Praos [282]
Appendix D.138. Parallel Proof-of-Work [221]
Appendix D.139. PeerBFT [349]
Appendix D.140. Penalty by Consensus in PoW [174]
Appendix D.141. Permissioned Trusted Trading Network Consensus Algorithm [418]
Appendix D.142. Permissionless Proof-of-Reputation-X [400]
Appendix D.143. Personal Archive Service System [350]
Appendix D.144. Pixel [283]
Appendix D.145. POA-PBFT [351]
Appendix D.146. PoolCoin [222]
Appendix D.147. Practical Byzantine Fault Tolerance [144]
Appendix D.148. Practical Layered Consensus Mechanism [352]
Appendix D.149. Prism [223]
Appendix D.150. Private Proof-of-Effort [284]
Appendix D.151. Proof of Adjourn [285]
Appendix D.152. Proof of Block Inclusion [155]
Appendix D.153. Proof of Contribution [224]
Appendix D.154. Proof of Elapsed Time [146]
Appendix D.155. Proof of Experience [225]
Appendix D.156. Proof of Kernel Work (PoKW) [419]
Appendix D.157. Proof of Luck [152]
Appendix D.158. Proof of Rest [353]
Appendix D.159. Proof of Segmented Work [226]
Appendix D.160. Proof of Social Contact [162]
Appendix D.161. Proof of Training Quality [354]
Appendix D.162. Proof of Usage [227]
Appendix D.163. Proof of witness Presence [164]
Appendix D.164. Proof-by-Approval [420]
Appendix D.165. Proof-of-Accumulated-Work [286]
Appendix D.166. Proof-of-Accuracy [355]
Appendix D.167. Proof-of-Achievement [228]
Appendix D.168. Proof-of-Activity [149]
Appendix D.169. Proof-of-Activity [356]
Appendix D.170. Proof-of-Atomicity [357,358]
Appendix D.171. Proof-of-Authority [359]
Appendix D.172. Proof-of-Balance [401]
Appendix D.173. Proof-of-Behavior [287]
Appendix D.174. Proof-of-Behaviour [229]
Appendix D.175. Proof-of-Belief [230]
Appendix D.176. Proof-of-Bid [231]
Appendix D.177. Proof-of-Burn [148]
Appendix D.178. Proof-of-Business [232]
Appendix D.179. Proof-of-Communication [360]
Appendix D.180. Proof-of-Context [165]
Appendix D.181. Proof-of-Contribution [233]
Appendix D.182. Proof-of-Credit [261]
Appendix D.183. Proof-of-Discrete Logarithm [234]
Appendix D.184. Proof-of-Equivalence [165]
Appendix D.185. Proof-of-Human-Engagement [235]
Appendix D.186. Proof-of-Human-Work [236]
Appendix D.187. Proof-of-Importance [150]
Appendix D.188. Proof-of-Interaction [237]
Appendix D.189. Proof-of-Location [166]
Appendix D.190. Proof-of-Lottery [238]
Appendix D.191. Proof-of-Lucky-Id [361]
Appendix D.192. Proof-of-Majority [362]
Appendix D.193. Proof-of-Networking [239]
Appendix D.194. Proof-of-Notarized-Work [240]
Appendix D.195. Proof-of-Participation [241]
Appendix D.196. Proof-of-Participation-and-Fees [363]
Appendix D.197. Proof-of-Phone [421]
Appendix D.198. Proof-of-Points [242]
Appendix D.199. Proof-of-Prestige [288]
Appendix D.200. Proof-of-Probability [422]
Appendix D.201. Proof-of-Queue [156]
Appendix D.202. Proof-of-Replicated-Storage [289]
Appendix D.203. Proof-of-Reproducibility [290]
Appendix D.204. Proof-of-Reputation [364]
Appendix D.205. Proof-of-Reputation with Nakamoto Fallback [291]
Appendix D.206. Proof-of-Review [243]
Appendix D.207. Proof-of-Review [402]
Appendix D.208. Proof-of-Sovereignty [365]
Appendix D.209. Proof-of-Space [147]
Appendix D.210. Proof-of-Spending [244]
Appendix D.211. Proof-of-Stack [366]
Appendix D.212. Proof-of-Stake [143]
Appendix D.213. Proof-of-Stake for Bitcoin Subchains [245]
Appendix D.214. Proof-of-Stake with Time Staking [403]
Appendix D.215. Proof-of-Strategy [246]
Appendix D.216. Proof-of-Trust [367]
Appendix D.217. Proof-of-Trust [404,405]
Appendix D.218. Proof-of-Trusted-Execution-Environment-Stake [157]
Appendix D.219. Proof-of-Unique-Human [406]
Appendix D.220. Proof-of-Validation [247]
Appendix D.221. Proof-of-Verifying [175]
Appendix D.222. Proof-of-Vote [368,369]
Appendix D.223. Proof-of-Win [370]
Appendix D.224. Proof-of-Work [1,142]
Appendix D.225. Proof-of-Work Applied to the Clique Problem [292]
Appendix D.226. Proof-of-Work Based on Analog Hamiltonian [293]
Appendix D.227. Proof-of-Work on the Inflation Propensity of Collatz Orbits [294]
Appendix D.228. Proof-of-Work-or-Knowledge [423]
Appendix D.229. Proteus [371,372]
Appendix D.230. Raft [151]
Appendix D.231. Randition [373]
Appendix D.232. Random Leader Selection Ba000sed on Credit Value [374]
Appendix D.233. Randomization to PoW [248]
Appendix D.234. Rationality-Proof Consensus [158]
Appendix D.235. Regulated Bitcoin (RBitcoin) [249]
Appendix D.236. Reputation-Based BFT [375]
Appendix D.237. Reputation Based Hybrid Consensus [250]
Appendix D.238. Reputation Consensus [407]
Appendix D.239. Reputation-Based Byzantine Fault Tolerance [376]
Appendix D.240. Reverse Hash Chain [408]
Appendix D.241. Rift [377]
Appendix D.242. Robust Byzantine Agreement [336]
Appendix D.243. Robust Proof-of-Stake [295]
Appendix D.244. Rock-Scissors-Paper [176]
Appendix D.245. Roll-DPoS [251]
Appendix D.246. Rollerchain [252]
Appendix D.247. Rotating Multiple Random Sampling [378]
Appendix D.248. Saguaro [379]
Appendix D.249. Satellite-Aided Consensus [141]
Appendix D.250. Scalable Byzantine Fault Tolerance [380]
Appendix D.251. Scalable Hierarchical Byzantine Fault Tolerance [381]
Appendix D.252. Scalable Network-Coded PBFT [382]
Appendix D.253. Scalable Practical Byzantine Fault Tolerance with Short-Lived Signature Schemes [383]
Appendix D.254. Score Voting-Based BFT Consensus [384]
Appendix D.255. Secure and Scalable Hybrid Consensus [424]
Appendix D.256. Security-Aware Genetic Algorithm Based Practical Byzantine fault Tolerance [385]
Appendix D.257. Self-Stabilizing Byzantine Consensus [386]
Appendix D.258. Semada Proof-of-Reputation [253]
Appendix D.259. Separate-Proof-of-Deep-Learning [387]
Appendix D.260. Service-Zone-Based Hierarchical Consensus [296]
Appendix D.261. Sharding Permissioned Blockchains over Network Clusters [388]
Appendix D.262. SklCoin [297]
Appendix D.263. Software Guard Extension-Enabled Decentralized Intrusion Detection Framework [254]
Appendix D.264. Solida [255]
Appendix D.265. Staked IP-Address Selection [161]
Appendix D.266. Streamlet [389]
Appendix D.267. Sybil Tolerant Equality Protocol [177]
Appendix D.268. Sybil-Proof Wireless Network Coordinate Based Byzantine Consensus [167]
Appendix D.269. Thinkey [256]
Appendix D.270. Time-Memory-Data Trade-Off [257]
Appendix D.271. Token Age Based Consensus [258]
Appendix D.272. Torneo [259]
Appendix D.273. Trust Consensus Protocol [409]
Appendix D.274. Twice Verifications and Consensuses of Blockchain [410,411]
Appendix D.275. Two-Tier Voting System Architecture [390]
Appendix D.276. uMine [391]
Appendix D.277. Unitary Interchain Network [392]
Appendix D.278. Weak Centralized Consensus Mechanism with Incentive Effects [178]
Appendix D.279. Weight of Authentication Byzantine Fault Tolerance [393]
Appendix D.280. What, Where, How Much [260]
Appendix E. Description of Mechanisms for Healthcare
Appendix E.1. PoW Applied to Biomedical Image Segmentation [434]
Appendix E.2. Deep Learning Based Consensus [435]
Appendix E.3. Lightweight Proof-of-Game [433]
Appendix E.4. MedBlock [436]
Appendix E.5. Proof of Artificial Intelligence [437]
Appendix E.6. Proof of Policy [438]
Appendix E.7. Proof of Policy [439]
Appendix E.8. Proof-of-Familiarity [440]
Appendix E.9. Proof-of-Medical-Stake [441]
Appendix F. Description of Mechanisms for High Performance
Appendix F.1. BFT Consensus on FPGA [448]
Appendix F.2. BFT Consensus with SmartNIC Offloading [448]
Appendix F.3. PBFT with SVM-Based Trust Evaluation [449]
Appendix F.4. PoS Using Fair and Dynamic Sharding Management [444]
Appendix F.5. Autonomous and Controllable High-Performance Consensus [450]
Appendix F.6. BEAT [451]
Appendix F.7. Bicomp [445]
Appendix F.8. Blinkchain [480]
Appendix F.9. BlockDAG [452]
Appendix F.10. Checkpoint Consensus [453]
Appendix F.11. Concordia [454]
Appendix F.12. Consensus based on the Mortgage Model [455]
Appendix F.13. Consensus for Mobile Devices Using Online Brokers [456]
Appendix F.14. FAST [457]
Appendix F.15. Fast Probabilistic Consensus within Byzantine Infrastructures [458]
Appendix F.16. Fast, Dynamic and Robust Byzantine Fault Tolerance [459]
Appendix F.17. FastPay [460]
Appendix F.18. FireLedger [461]
Appendix F.19. FRChain Consensus [462]
Appendix F.20. Gosig [463]
Appendix F.21. High Performance and Scalable Byzantine Fault Tolerance [464]
Appendix F.22. High-Performance Blockchain Enhanced Consensus [481]
Appendix F.23. HPBC [465]
Appendix F.24. Hybrid PoW/PoS [446]
Appendix F.25. Improved Practical Byzantine Consensus [466]
Appendix F.26. MinBFT-Based Consensus [467]
Appendix F.27. Mixed Byzantine Fault Tolerance [468,469]
Appendix F.28. Multi Party Computation Delegated Proof-of-Stake (MPC-DPoS) [482,483]
Appendix F.29. Proof-of-Execution [470]
Appendix F.30. Proof-of-Scalable-Traceability (PoST) [471]
Appendix F.31. Proof-of-Vote [369]
Appendix F.32. Raft with Network Stability Evaluation [472]
Appendix F.33. Random-Checkers Proof-of-Stake [473]
Appendix F.34. SACZyzzyva [474]
Appendix F.35. Scalable BFT Consensus Mechanism through Aggregated Signature Gossip [447]
Appendix F.36. Scalable Dynamic Multi-Agent Byzantine Fault-Tolerance (SDMA-PBFT) [475]
Appendix F.37. Scalable Efficient Byzantine Fault Tolerance (SeBFT) [476]
Appendix F.38. Scored PBFT [477]
Appendix F.39. Self-Referencing Directed Acyclic Graph and Voting-Based PBFT Consensus [484]
Appendix F.40. Stream of Distributed Secrets for Quantum-Safe Blockchain (SodsBC) [478]
Appendix F.41. T-PBFT [479]
Appendix G. Description of Mechanisms for IoT
Appendix G.1. BFT Consensus Based on Dynamic Permission Adjustment [496]
Appendix G.2. DPoS for Network Intrusion Detection [526]
Appendix G.3. IoT Adaptive Dynamic Consensus [497]
Appendix G.4. Practical Byzantine Fault Tolerance Based on Reputation Value (RPBFT) [527]
Appendix G.5. PoW with Mining Tokens [488]
Appendix G.6. Adaptive Proof-of-Work (APoW) [498]
Appendix G.7. Consensus Algorithm for Mobile-Edge Computing [528]
Appendix G.8. Collaborative Proof-of-Work (Co-PoW) [489]
Appendix G.9. Collaborative Trust Based Delegated Proof-of-Stake (CT-DPoS) [499]
Appendix G.10. Consensus with Elected Leader [500]
Appendix G.11. Context-Based Consensus [501]
Appendix G.12. Credit Reinforce Byzantine Fault Tolerance (CRBFT) [529]
Appendix G.13. Credit-Based Consensus Mechanism [490,491]
Appendix G.14. Delegated Proof-of-Proximity (DPoP) [545]
Appendix G.15. Distributed Time-Based Consensus (DTC) [530]
Appendix G.16. Double-Layer PBFT [502]
Appendix G.17. Dynamic Blind Voting [503]
Appendix G.18. Edge Computing Blockchain Security Consensus Model (ECBCM) [531]
Appendix G.19. Geographic-PBFT [532]
Appendix G.20. Honesty-Based Distributed Proof-of-Work [533]
Appendix G.21. Honesty-Based Distributed Proof-of-Authority via Scalable Work (HDPoA) [534]
Appendix G.22. Hybrid PoW/PoS [492]
Appendix G.23. Hybrid Consensus [550]
Appendix G.24. Improved PBFT [504]
Appendix G.25. Lightweight Blockchain based Cybersecurity [505]
Appendix G.26. Lightweight Consensus for IoT (LC4IoT) [506]
Appendix G.27. Luckyminer [507]
Appendix G.28. Multi-Chain Proof of Rapid Authentication (McPoRA) [508]
Appendix G.29. Optimized PBFT Consensus with Speaker [509]
Appendix G.30. PF-BVM [535]
Appendix G.31. Predictive Proof of Metrics (PPoM) [536]
Appendix G.32. Proof of Elapsed Work and Luck (PoEWAL) [537]
Appendix G.33. Proof-of-Presence [510]
Appendix G.34. Proof of Physical Unclonable Function (PUF)-Enabled Authentication [553]
Appendix G.35. Proof of Random Count in Hashes [511]
Appendix G.36. Proof of Reputation [512]
Appendix G.37. Proof-of-Authentication (PoAh) [546,547,548]
Appendix G.38. Proof-of-Balance [513]
Appendix G.39. Proof-of-Block-and-Trade [514]
Appendix G.40. Proof-of-Common-Interest (PoCI) [515,516]
Appendix G.41. Proof-of-Honesty [538,539]
Appendix G.42. Proof-of-Negotiation/Proof-of-Trust Negotiation (PoTN) [540,541]
Appendix G.43. Proof-of-Physical Unclonable Function (PoPUF) [549]
Appendix G.44. Proof-of-Popularity [517]
Appendix G.45. Proof-of-Reputation-X (PoRX) [551]
Appendix G.46. Proof-of-Stability [518]
Appendix G.47. Proof-of-Trading [493]
Appendix G.48. Proof-of-Validity [519]
Appendix G.49. Proof-of-Work Using Maximization-Factorization Statistics [552]
Appendix G.50. Random Proof of Work [494]
Appendix G.51. ReBFT [520]
Appendix G.52. Register, Deposit, Vote (RDV) [542]
Appendix G.53. SCBFT [521]
Appendix G.54. Sybil Resistant IoT Trust Model [543]
Appendix G.55. Synergistic Multiple Proof (SMP) [544]
Appendix G.56. Three-Dimensional Greedy Heaviest-Observed Sub-Tree Consensus 2963 (3D-GHOST) [495]
Appendix G.57. Time-Dependent Consensus [522]
Appendix G.58. Tree-Chain [523]
Appendix G.59. Two-Layer-Consensus Architecture for IoT [524]
Appendix G.60. Weighted Majority Consensus Algorithm (WMCA) [525]
Appendix H. Description of Mechanisms for Media and Entertainment
Appendix H.1. Credibility Score [560]
Appendix H.2. Proof-of-Contribution [561]
Appendix H.3. Proof-of-Play [559]
Appendix I. Description of Mechanisms for Supply Chain
Appendix I.1. C-dBFT [565]
Appendix I.2. Consensus Mechanism for Marine Data Management System [569]
Appendix I.3. Group-Based PoW [566]
Appendix I.4. Improved Practical Byzantine Fault Tolerance (iPBFT) [570,571]
Appendix I.5. Multi-Center Practical Byzantine Fault Tolerance (MCPBFT) [567]
Appendix I.6. Proof of Accomplishment [568]
Appendix I.7. Proof-of-Location [572]
Appendix J. Description of Mechanisms for Telecom
Appendix J.1. Delegated Proof-of-Trust (DPoT) [574]
Appendix J.2. Proof-of-Majority (PoM) [575]
Appendix K. Description of Mechanisms for Useful Work
Appendix K.1. PoUW for ML Training [576]
Appendix K.2. PoW Applied to High-Dimension, Non-Linear Optimisation Problems [577]
Appendix K.3. PoW Based on NCP-Solving [578]
Appendix K.4. PoW Based on Random Multivariate Quadratic Equations [579]
Appendix K.5. PoW on Elements in a Cyclic Group [580]
Appendix K.6. BlockML [600]
Appendix K.7. Calibration of Public Key Cryptographic Systems via Proof-of-Work [581]
Appendix K.8. Coin.AI [582]
Appendix K.9. Conquering Generals [583]
Appendix K.10. Difficulty-Based Incentives for Problem Solving [584]
Appendix K.11. Hybrid Mining [585]
Appendix K.12. Image-Based Proof-of-Work [586]
Appendix K.13. Proof of Catalytic Space (PoCS) [587]
Appendix K.14. Proof of Deep Learning with Hyperparameter Optimization (PoDLwHO) [588]
Appendix K.15. Proof of Evolution [589]
Appendix K.16. Proof of Federated Learning (PoFL) [597]
Appendix K.17. Proof-of-Accuracy [598]
Appendix K.18. Proof-of-Deep-Learning [590,591]
Appendix K.19. Proof-of-Exercise [592]
Appendix K.20. Proof-of-Learning [593]
Appendix K.21. Proof-of-Learning [594]
Appendix K.22. Proof-of-Learning [599]
Appendix K.23. Proof-of-Search [601]
Appendix K.24. Proof-of-WorkStore [595]
Appendix K.25. Reciprocally Useful Work [596]
Appendix K.26. Susreum [602]
Appendix K.27. VBFL [603]
Appendix L. Description of Mechanisms for Vehicles
Appendix L.1. Consensus Mechanism for Blockchains on IoV [605]
Appendix L.2. Consensus Program for Charging Piles [611]
Appendix L.3. dynamic Proof-of-Work [606,607,608]
Appendix L.4. Enhanced DPoS [612]
Appendix L.5. Improved Byzantine Consensus for IoV [613]
Appendix L.6. Mixed Consensus Algorithm Based on PoW and PBFT [609]
Appendix L.7. Multipoint-Relay-Driven Consensus [614]
Appendix L.8. Practical Byzantine Fault Tolerance with Forwarding [615]
Appendix L.9. Proof of Event and Location [616]
Appendix L.10. Proof-of-Communication [617]
Appendix L.11. Proof-of-Driving (PoD) [618]
Appendix L.12. Proof-of-Event with Dynamic Federation [619,620]
Appendix L.13. Proof-of-Matching [621]
Appendix L.14. Proof-of-Nonce [622]
Appendix L.15. Proof-of-Quality-Factor (PoQF) [635]
Appendix L.16. Proof-of-Reputation [623]
Appendix L.17. Proof-of-Utility [624,625]
Appendix L.18. Proof-of-Vehicular-Services BFT [626]
Appendix L.19. Proof-of-Work-at-Proximity (PoWaP) [633]
Appendix L.20. Reputation-Based DPoS [634]
Appendix L.21. Reputation-Based Miner Node Selection [627]
Appendix L.22. Secured Event-Information Sharing [628]
Appendix L.23. Semi-Autonomous Distributed Blockchain-Based Framework for UAVs [629]
Appendix L.24. Time-Oriented Proof of Work [630]
Appendix L.25. Voting-Based Consensus Protocol for VANET [631,632]
References
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 13 June 2021).
- Chohan, U.W. Crypto Winters. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Humayun, M.; Belk, R.W. “Satoshi is Dead. Long Live Satoshi”: The Curious Case of Bitcoin’s Creator. In Consumer Culture Theory; Cross, S.N.N., Ruvalcaba, C., Venkatesh, A., Belk, R.W., Eds.; Emerald Publishing: Bingley, UK, 2018; pp. 19–35. [Google Scholar] [CrossRef]
- van Flymen, D. Proof of Work. In Learn Blockchain by Building One; Apress: Berkeley, CA, USA, 2020; pp. 39–53. [Google Scholar] [CrossRef]
- Narayanan, A.; Clark, J. Bitcoin’s academic pedigree. Commun. ACM 2017, 60, 36–45. [Google Scholar] [CrossRef]
- Luebbert, W.F. Commemoration of 1940 Remote Computing Demonstration by Stibitz. Ann. Hist. Comput. 1981, 3, 68–70. [Google Scholar]
- Astrahan, M.M.; Jacobs, J.F. History of the Design of the SAGE Computer-The AN/FSQ-7. IEEE Ann. Hist. Comput. 1983, 5, 340–349. [Google Scholar] [CrossRef]
- Everett, R.R.; Zraket, C.A.; Benington, H.D. SAGE: A data-processing system for air defense. In Proceedings of the Eastern Joint Computer Conference: Computers with Deadlines to Meet on XX—IRE-ACM-AIEE ’57 (Eastern), Papers and Discussions, Washington, DC, USA, 9–13 December 1957; ACM Press: New York, NY, USA, 1958; pp. 148–155. [Google Scholar] [CrossRef]
- Adair, R.J.; Bayles, R.U.; Comeau, L.W.; Creasy, R.J. A Virtual Machine System for the 360/4; Technical Report; International Business Machines Corporation: Armonk, MA, USA; Cambridge Scientific Center: Cambridge, MA, USA, 1966. [Google Scholar]
- Kleinrock, L. Information Flow in Large Communication Nets. Ph.D. Thesis, Massachu-Setts Institute of Technology, Cambridge, UK, 1961. [Google Scholar]
- Marill, T.; Roberts, L.G. Toward a cooperative network of time-shared computers. In Proceedings of the Fall Joint Computer Conference on XX—AFIPS ’66 (Fall), San Francisco, CA, USA, 7–10 November 1966; ACM Press: New York, NY, USA, 1966; p. 425. [Google Scholar] [CrossRef]
- Cerf, V.; Harslem, E.; Heafner, J.; Metcalfe, R.; White, J. An Experimental Service for Adaptable Data Reconfiguration. IEEE Trans. Commun. 1972, 20, 557–564. [Google Scholar] [CrossRef]
- He, Y.; Siganos, G.; Faloutsos, M. Internet Topology. In Encyclopedia of Complexity and Systems Science; Springer: New York, NY, USA, 2009; pp. 4930–4947. [Google Scholar] [CrossRef]
- Pease, M.; Shostak, R.; Lamport, L. Reaching Agreement in the Presence of Faults. J. ACM 1980, 27, 228–234. [Google Scholar] [CrossRef]
- Lamport, L.; Shostak, R.; Pease, M. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 1982, 4, 382–401. [Google Scholar] [CrossRef] [Green Version]
- Davenport, R. The state of the art of distributed databases. Inf. Manag. 1979, 2, 231–247. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, Z.; Yue, C.; Zhong, Z. Spitz. Proc. VLDB Endow. 2020, 13, 3449–3460. [Google Scholar] [CrossRef]
- Antonopoulos, P.; Kaushik, R.; Kodavalla, H.; Rosales Aceves, S.; Wong, R.; Anderson, J.; Szymaszek, J. SQL Ledger: Cryptographically Verifiable Data in Azure SQL Database. In Proceedings of the 2021 International Conference on Management of Data; ACM: New York, NY, USA, 2021; pp. 2437–2449. [Google Scholar] [CrossRef]
- Tai, S.; Eberhardt, J.; Klems, M. Not ACID, not BASE, but SALT—A Transaction Processing Perspective on Blockchains. In Proceedings of the 7th International Conference on Cloud Computing and Services Science, Scitepress, Porto, Portugal, 24–26 April 2017; pp. 755–764. [Google Scholar] [CrossRef]
- Platt, M.; Bandara, R.J.; Drăgnoiu, A.E.; Krishnamoorthy, S. Information Privacy in Decentralized Applications. In Trust Models for Next-Generation Blockchain Ecosystems; Rehman, M.H.U., Svetinovic, D., Salah, K., Damiani, E., Eds.; EAI/Springer Innovations in Communication and Computing, Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Platt, M.; McBurney, P. Self-Governing Public Decentralised Systems. In Proceedings of the 10th International Workshop on Socio-Technical Aspects in Security and Trust, Virtual Event, 14 September 2020; Groß, T., Viganò, L., Eds.; Springer: Guildford, UK, 2021; pp. 154–167. [Google Scholar] [CrossRef]
- Leising, M. Post-Bitcoin Technology Has Geeks, Giants, and Hackers Excited. Available online: https://www.bloomberg.com/news/articles/2017-03-23/post-bitcoin-technology-has-geeks-giants-and-hackers-excited (accessed on 28 October 2022).
- Platt, M.; Sedlmeir, J.; Platt, D.; Xu, J.; Tasca, P.; Vadgama, N.; Ibañez, J.I. The Energy Footprint of Blockchain Consensus Mechanisms Beyond Proof-of-Work. In Proceedings of the 21st International Conference on Software Quality, Reliability and Security, Hainan, China, 6–10 December 2021; pp. 1135–1144. [Google Scholar] [CrossRef]
- Hellwig, D.; Karlic, G.; Huchzermeier, A. Build Your Own Blockchain; Management for Professionals, Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Lewis, A. The Basics of Bitcoins and Blockchains; Mango Publishing: Miami, FL, USA, 2018; p. 408. [Google Scholar]
- Xu, X.; Weber, I.; Staples, M. Architecture for Blockchain Applications; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Gayvoronskaya, T.; Meinel, C. Blockchain; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Tezel, A.; Papadonikolaki, E.; Yitmen, I.; Hilletofth, P. Preparing construction supply chains for blockchain technology: An investigation of its potential and future directions. Front. Eng. Manag. 2020, 7, 547–563. [Google Scholar] [CrossRef]
- Lapsley, P. Phreaking out ma bell. IEEE Spectr. 2013, 50, 30–35. [Google Scholar] [CrossRef]
- Lukasik, S.J. Protecting users of the cyber commons. Commun. ACM 2011, 54, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Uzunov, A.V.; Fernandez, E.B.; Falkner, K. Securing distributed systems using patterns: A survey. Comput. Secur. 2012, 31, 681–703. [Google Scholar] [CrossRef]
- Douceur, J.R. The Sybil Attack. In Proceedings of the Peer-to-Peer Systems, First International Workshop, IPTPS 2002, Cambridge, MA, USA, 7–8 March 2002; Druschel, P., Kaashoek, F., Rowstron, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 251–260. [Google Scholar]
- Dhillon, V.; Metcalf, D.; Hooper, M. The DAO Hacked. In Blockchain Enabled Applications; Apress: Berkeley, CA, USA, 2017; pp. 67–78. [Google Scholar] [CrossRef]
- Kim, T.W.; Zetlin-Jones, A. The Ethics of Contentious Hard Forks in Blockchain Networks with Fixed Features. Front. Blockchain 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, M.K. Stumbling over Consensus Research: Misunderstandings and Issues. In Replication; Springer: Berlin/Heidelberg, Germany, 2010; pp. 59–72. [Google Scholar] [CrossRef]
- Gusenbauer, M.; Haddaway, N.R. Which academic search systems are suitable for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google Scholar, PubMed, and 26 other resources. Res. Synth. Methods 2020, 11, 181–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jubb, A.; Carr, E.; Sanderson, A.; Baragula, E.; McCool, R.; Glanville, J. What is the most efficient de-duplication software for use in systematic reviews? Cochrane Database Syst. Rev. 2020, 9 (Suppl. S1). [Google Scholar] [CrossRef]
- Sayeed, S.; Marco-Gisbert, H. Assessing Blockchain Consensus and Security Mechanisms against the 51% Attack. Appl. Sci. 2019, 9, 1788. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Kumar, N. Cryptographic consensus mechanisms. In The Blockchain Technology for Secure and Smart Applications across Industry Verticals; Aggarwal, S., Kumar, N., Raj, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 211–226. [Google Scholar] [CrossRef]
- Aggarwal, A.; Gaba, S.; Mittal, M. A Comparative Investigation of Consensus Algorithms in Collaboration with IoT and Blockchain. In Transforming Cybersecurity Solutions using Blockchain; Agrawal, R., Gupta, N., Eds.; Springer: Singapore, 2021; pp. 115–140. [Google Scholar] [CrossRef]
- Ahmad, A.; Saad, M.; Kim, J.; Nyang, D.; Mohaisen, D. Performance Evaluation of Consensus Protocols in Blockchain-based Audit Systems. In Proceedings of the 2021 International Conference on Information Networking (ICOIN), Jeju Island, Republic of Korea, 13–16 January 2021; pp. 654–656. [Google Scholar] [CrossRef]
- Ali Syed, T.; Alzahrani, A.; Jan, S.; Siddiqui, M.S.; Nadeem, A.; Alghamdi, T. A Comparative Analysis of Blockchain Architecture and its Applications: Problems and Recommendations. IEEE Access 2019, 7, 176838–176869. [Google Scholar] [CrossRef]
- Alsaqqa, S.; Almajali, S. Blockchain Technology Consensus Algorithms and Applications: A Survey. Int. J. Interact. Mob. Technol. (IJIM) 2020, 14, 142. [Google Scholar] [CrossRef]
- Alsunaidi, S.J.; Alhaidari, F.A. A Survey of Consensus Algorithms for Blockchain Technology. In Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia, 3–4 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Andrey, A.; Petr, C. Review of Existing Consensus Algorithms Blockchain. In Proceedings of the 2019 International Conference “Quality Management, Transport and Information Security, Information Technologies” (IT&QM&IS), Sochi, Russia, 23–27 September 2019; pp. 124–127. [Google Scholar] [CrossRef]
- Antal, C.; Cioara, T.; Anghel, I.; Antal, M.; Salomie, I. Distributed Ledger Technology Review and Decentralized Applications Development Guidelines. Future Internet 2021, 13, 62. [Google Scholar] [CrossRef]
- Azbeg, K.; Ouchetto, O.; Jai Andaloussi, S.; Fetjah, L. An Overview of Blockchain Consensus Algorithms: Comparison, Challenges and Future Directions. In Advances on Smart and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 357–369. [Google Scholar] [CrossRef]
- Bach, L.M.; Mihaljevic, B.; Zagar, M. Comparative analysis of blockchain consensus algorithms. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; pp. 1545–1550. [Google Scholar] [CrossRef]
- Bamakan, S.M.H.; Motavali, A.; Babaei Bondarti, A. A survey of blockchain consensus algorithms performance evaluation criteria. Expert Syst. Appl. 2020, 154, 113385. [Google Scholar] [CrossRef]
- Bashar, G.; Hill, G.; Singha, S.; Marella, P.; Dagher, G.G.; Xiao, J. Contextualizing Consensus Protocols in Blockchain: A Short Survey. In Proceedings of the 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Los Angeles, CA, USA, 12–14 December 2019; pp. 190–195. [Google Scholar] [CrossRef]
- Belotti, M.; Bozic, N.; Pujolle, G.; Secci, S. A Vademecum on Blockchain Technologies: When, Which, and How. IEEE Commun. Surv. Tutor. 2019, 21, 3796–3838. [Google Scholar] [CrossRef] [Green Version]
- Bhutta, M.N.M.; Khwaja, A.A.; Nadeem, A.; Ahmad, H.F.; Khan, M.K.; Hanif, M.A.; Song, H.; Alshamari, M.; Cao, Y. A Survey on Blockchain Technology: Evolution, Architecture and Security. IEEE Access 2021, 9, 61048–61073. [Google Scholar] [CrossRef]
- Dabbagh, M.; Choo, K.K.R.; Beheshti, A.; Tahir, M.; Safa, N.S. A survey of empirical performance evaluation of permissioned blockchain platforms: Challenges and opportunities. Comput. Secur. 2021, 100, 102078. [Google Scholar] [CrossRef]
- Dhaiouir, S.; Assar, S. A Systematic Literature Review of Blockchain-Enabled Smart Contracts: Platforms, Languages, Consensus, Applications and Choice Criteria. In Research Challenges in Information Science; Springer: Berlin/Heidelberg, Germany, 2020; pp. 249–266. [Google Scholar] [CrossRef]
- Ferdous, M.S.; Chowdhury, M.J.M.; Hoque, M.A. A survey of consensus algorithms in public blockchain systems for crypto-currencies. J. Netw. Comput. Appl. 2021, 182, 103035. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Shu, L.; Yang, X.; Derhab, A.; Maglaras, L. Security and Privacy for Green IoT-Based Agriculture: Review, Blockchain Solutions, and Challenges. IEEE Access 2020, 8, 32031–32053. [Google Scholar] [CrossRef]
- Fournier, G.; Petrillo, F. Architecting Blockchain Systems. In Proceedings of the 42nd International Conference on Software Engineering Workshops, Seoul, Republic of Korea, 27 June–19 July 2020; ACM: New York, NY, USA, 2020; pp. 664–670. [Google Scholar] [CrossRef]
- Fu, X.; Wang, H.; Shi, P. A survey of Blockchain consensus algorithms: Mechanism, design and applications. Sci. China Inf. Sci. 2021, 64, 121101. [Google Scholar] [CrossRef]
- Hao, Y.; Li, Y.; Dong, X.; Fang, L.; Chen, P. Performance Analysis of Consensus Algorithm in Private Blockchain. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 280–285. [Google Scholar] [CrossRef]
- Hazari, S.S.; Mahmoud, Q.H. Comparative evaluation of consensus mechanisms in cryptocurrencies. Internet Technol. Lett. 2019, 2, e100. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Guan, N.; Lv, M.; Yi, W. On the Consensus Mechanisms of Blockchain/DLT for Internet of Things. In Proceedings of the 2018 IEEE 13th International Symposium on Industrial Embedded Systems (SIES), Graz, Austria, 6–8 June 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Hellwig, D.; Karlic, G.; Huchzermeier, A. Consensus Mechanisms. In Build Your Own Blockchain; Springer: Berlin/Heidelberg, Germany, 2020; pp. 53–74. [Google Scholar] [CrossRef]
- Honnavalli, P.B.; Cholin, A.S.; Pai, A.; Anekal, A.D.; Anekal, A.D. A Study on Recent Trends of Consensus Algorithms for Private Blockchain Network. In Blockchain and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 31–41. [Google Scholar] [CrossRef]
- Indhuja, E.; Venkatesulu, M. A Survey of Blockchain Technology Applications and Consensus Algorithm. In Sustainable Communication Networks and Application; Springer: Berlin/Heidelberg, Germany, 2021; pp. 173–187. [Google Scholar] [CrossRef]
- Ismail, L.; Materwala, H. A Review of Blockchain Architecture and Consensus Protocols: Use Cases, Challenges, and Solutions. Symmetry 2019, 11, 1198. [Google Scholar] [CrossRef] [Green Version]
- Jayabalan, J.; N, J. A Study on Distributed Consensus Protocols and Algorithms: The Backbone of Blockchain Networks. In Proceedings of the 2021 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 27–29 January 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Jennath, H.S.; Asharaf, S. Survey on Blockchain Consensus Strategies. In ICDSMLA 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 637–654. [Google Scholar] [CrossRef]
- Katarya, R.; Vats, V.K. A Survey on Blockchain Technologies and Its Consensus Algorithms. In Recent Innovations in Computing; Singh, P.K., Singh, Y., Kolekar, M.H., Kar, A.K., Chhabra, J.K., Sen, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 741–752. [Google Scholar] [CrossRef]
- Kaur, S.; Chaturvedi, S.; Sharma, A.; Kar, J. A Research Survey on Applications of Consensus Protocols in Blockchain. Secur. Commun. Netw. 2021, 2021, 6693731. [Google Scholar] [CrossRef]
- Khamar, J.; Patel, H. An Extensive Survey on Consensus Mechanisms for Blockchain Technology. In Data Science and Intelligent Applications; Kotecha, K., Piuri, V., Shah, H.N., Patel, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 363–374. [Google Scholar] [CrossRef]
- Lao, L.; Li, Z.; Hou, S.; Xiao, B.; Guo, S.; Yang, Y. A Survey of IoT Applications in Blockchain Systems. ACM Comput. Surv. 2021, 53, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Lashkari, B.; Musilek, P. A Comprehensive Review of Blockchain Consensus Mechanisms. IEEE Access 2021, 9, 43620–43652. [Google Scholar] [CrossRef]
- Lasisi, A.; Hsu, S. Consensus Mechanism in Enterprise Blockchain. In Proceedings of the 2019 IEEE International Conference on Intelligence and Security Informatics (ISI), Shenzhen, China, 1–3 July 2019; p. 228. [Google Scholar] [CrossRef]
- Lepore, C.; Ceria, M.; Visconti, A.; Rao, U.P.; Shah, K.A.; Zanolini, L. A Survey on Blockchain Consensus with a Performance Comparison of PoW, PoS and Pure PoS. Mathematics 2020, 8, 1782. [Google Scholar] [CrossRef]
- MacKenzie, B.; Ferguson, R.I.; Bellekens, X. An Assessment of Blockchain Consensus Protocols for the Internet of Things. In Proceedings of the 2018 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC), Hamammet, Tunisia, 20–21 December 2018; pp. 183–190. [Google Scholar] [CrossRef] [Green Version]
- Maple, C.; Jackson, J. Selecting Effective Blockchain Solutions. In Euro-Par 2018: Parallel Processing Workshops; Mencagli, G., Heras, D.B., Cardellini, V., Casalicchio, E., Jeannot, E., Wolf, F., Salis, A., Schifanella, C., Manumachu, R.R., Ricci, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 392–403. [Google Scholar] [CrossRef]
- Masood, F.; Faridi, A.R. Consensus Algorithms In Distributed Ledger Technology For Open Environment. In Proceedings of the 2018 4th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, 14–15 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Masood, F.; Faridi, A.R. Distributed Ledger Technology for Closed Environment. In Proceedings of the 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 13–15 March 2019; pp. 1151–1156. [Google Scholar]
- Mingxiao, D.; Xiaofeng, M.; Zhe, Z.; Xiangwei, W.; Qijun, C. A review on consensus algorithm of blockchain. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 2567–2572. [Google Scholar] [CrossRef]
- Monrat, A.A.; Schelen, O.; Andersson, K. A Survey of Blockchain From the Perspectives of Applications, Challenges, and Opportunities. IEEE Access 2019, 7, 117134–117151. [Google Scholar] [CrossRef]
- Naz, S.; Lee, S.U.J. Why the new consensus mechanism is needed in blockchain technology? In Proceedings of the 2020 Second International Conference on Blockchain Computing and Applications (BCCA), Antalya, Turkey, 2–5 November 2020; pp. 92–99. [Google Scholar] [CrossRef]
- Nguyen, G.T.; Kim, K. A Survey about Consensus Algorithms Used in Blockchain. J. Inf. Process. Syst. 2018, 14, 101–128. [Google Scholar] [CrossRef]
- Nijsse, J.; Litchfield, A. A Taxonomy of Blockchain Consensus Methods. Cryptography 2020, 4, 32. [Google Scholar] [CrossRef]
- Pahlajani, S.; Kshirsagar, A.; Pachghare, V. Survey on Private Blockchain Consensus Algorithms. In Proceedings of the 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT), Chennai, India, 25–26 April2019; pp. 1–6. [Google Scholar] [CrossRef]
- Panda, S.S.; Mohanta, B.K.; Satapathy, U.; Jena, D.; Gountia, D.; Patra, T.K. Study of Blockchain Based Decentralized Consensus Algorithms. In Proceedings of the TENCON 2019—2019 IEEE Region 10 Conference (TENCON), Kochi, India, 17–20 October 2019; pp. 908–913. [Google Scholar] [CrossRef]
- Perez, M.R.L.; Lagman, A.C.; Legaspi, J.B.C.; De Angel, R.D.M.; Awat, K.A.S. Suitability of IoT to Blockchain Network based on Consensus Algorithm. In Proceedings of the 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 29 November–1 December 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Praveen, G.; Anand, M.; Singh, P.K.; Ranjan, P. An Overview of Blockchain Consensus and Vulnerability. In Information and Communication Technology for Intelligent Systems; Senjyu, T., Mahalle, P.N., Perumal, T., Joshi, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 459–468. [Google Scholar] [CrossRef]
- Ramkumar, N.; Sudhasadasivam, G.; Saranya, K. A Survey on Different Consensus Mechanisms for the Blockchain Technology. In Proceedings of the 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 28–30 July 2020; pp. 458–464. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, D. Consensus Algorithms in Blockchain Technology: A Survey. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Srivastav, R.K.; Agrawal, D.; Shrivastava, A. A Survey on Vulnerabilities and Performance Evaluation Criteria in Blockchain Technology. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 2020, 9, 91–105. [Google Scholar] [CrossRef]
- Verma, N.; Jain, S.; Doriya, R. Review on Consensus Protocols for Blockchain. In Proceedings of the 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 19–20 February 2021; pp. 281–286. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, J.; Wang, S.; Chen, Y.; Zhang, P.; He, L. A Comparative Study of Blockchain Consensus Algorithms. J. Phys. Conf. Ser. 2020, 1437, 012007. [Google Scholar] [CrossRef]
- Wazid, M.; Das, A.K.; Shetty, S.; Jo, M. A Tutorial and Future Research for Building a Blockchain-Based Secure Communication Scheme for Internet of Intelligent Things. IEEE Access 2020, 8, 88700–88716. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, N.; Li, J.; Lou, W.; Hou, Y.T. Distributed Consensus Protocols and Algorithms. In Blockchain for Distributed Systems Security; Wiley: Hoboken, NJ, USA, 2019; pp. 25–50. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, N.; Lou, W.; Hou, Y.T. A Survey of Distributed Consensus Protocols for Blockchain Networks. IEEE Commun. Surv. Tutor. 2020, 22, 1432–1465. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Wei, Y.; Li, Y.; Zhu, L.; Shi, J.; Gai, K. Consensus in Lens of Consortium Blockchain: An Empirical Study. In Algorithms and Architectures for Parallel Processing; Qiu, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 282–296. [Google Scholar] [CrossRef]
- Yousuf, R.; Jeelani, Z.; Khan, D.A.; Bhat, O.; Teli, T.A. Consensus Algorithms in Blockchain-Based Cryptocurrencies. In Proceedings of the 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 19–20 February 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, J.H. Analysis of the main consensus protocols of blockchain. ICT Express 2020, 6, 93–97. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, S.; Luo, X. On Consensus in Public Blockchains. In Proceedings of the 2019 International Conference on Blockchain Technology, Atlanta, GA, USA, 14–17 July 2019; ACM: New York, NY, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Dhillon, A.; Kotsialou, G.; McBurney, P.; Riley, L. Voting over a Distributed Ledger: An Interdisciplinary Perspective. Found. Trends Microeconomics 2021, 12, 200–268. [Google Scholar] [CrossRef]
- Abuidris, Y.; Kumar, R.; Yang, T.; Onginjo, J. Secure large-scale E-voting system based on blockchain contract using a hybrid consensus model combined with sharding. ETRI J. 2021, 43, 357–370. [Google Scholar] [CrossRef]
- Tozzi, C. Decentralizing democracy: Approaches to consensus within blockchain communities. Teknokultura Rev. Cult. Digit. Movimientos Soc. 2019, 16, 181–195. [Google Scholar] [CrossRef]
- Brenzikofer, A. Encointer—Local Community Cryptocurrencies with Universal Basic Income. arXiv 2019, arXiv:1912.12141. [Google Scholar]
- Borge, M.; Kokoris-Kogias, E.; Jovanovic, P.; Gasser, L.; Gailly, N.; Ford, B. Proof-of-Personhood: Redemocratizing Permissionless Cryptocurrencies. In Proceedings of the 2017 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Paris, France, 26–28 April 2017; pp. 23–26. [Google Scholar] [CrossRef]
- Poupko, O.; Talmon, N. A Consensus Protocol for e-Democracy. arXiv 2020, arXiv:2007.15949. [Google Scholar]
- Crain, T.; Gramoli, V.; Larrea, M.; Raynal, M. DBFT: Efficient Leaderless Byzantine Consensus and its Application to Blockchains. In Proceedings of the 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 1–3 November 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Steiu, M.F. Blockchain in education: Opportunities, applications, and challenges. First Monday 2020, 25. [Google Scholar] [CrossRef]
- Hsu, C.H.; Alavi, A.H.; Li, H. Guest Editorial: Blockchain in Smart Education. Educ. Technol. Soc. 2022, 25, 71–73. [Google Scholar]
- Wang, B.; Hu, Y.; Li, S.; Niu, J. A Blockchain Consensus Mechanism for Educational Administration System. In Proceedings of the 2019 IEEE 2nd International Conference on Electronics Technology (ICET), Chengdu, China, 10–13 May 2019; pp. 603–608. [Google Scholar] [CrossRef]
- Qin, D.; Wang, C.; Jiang, Y. RPchain: A Blockchain-Based Academic Social Networking Service for Credible Reputation Building. In Blockchain—ICBC 2018; Chen, S., Wang, H., Zhang, L.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 183–198. [Google Scholar] [CrossRef]
- Liu, X. Exploration & Research on Distance Education System Based on Blockchain Technology. J. Phys. Conf. Ser. 2021, 1769, 012041. [Google Scholar] [CrossRef]
- Brilliantova, V.; Thurner, T.W. Blockchain and the future of energy. Technol. Soc. 2019, 57, 38–45. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, X.; Lu, X.; Guan, Z.; Wu, L.; Du, X.; Guizani, M. When Energy Trading Meets Blockchain in Electrical Power System: The State of the Art. Appl. Sci. 2019, 9, 1561. [Google Scholar] [CrossRef]
- Hasan, M.K.; Alkhalifah, A.; Islam, S.; Babiker, N.B.M.; Habib, A.K.M.A.; Aman, A.H.M.; Hossain, M.A. Blockchain Technology on Smart Grid, Energy Trading, and Big Data: Security Issues, Challenges, and Recommendations. Wirel. Commun. Mob. Comput. 2022, 2022, 9065768. [Google Scholar] [CrossRef]
- Fu, X.; Wang, H.; Wang, Z. Research on Block-Chain-Based Intelligent Transaction and Collaborative Scheduling Strategies for Large Grid. IEEE Access 2020, 8, 151866–151877. [Google Scholar] [CrossRef]
- Hu, B.; Zhou, C.; Tian, Y.C.; Hu, X.; Junping, X. Decentralized Consensus Decision-Making for Cybersecurity Protection in Multimicrogrid Systems. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 51, 2187–2198. [Google Scholar] [CrossRef]
- Montakhabi, M.; Zobiri, F.; van der Graaf, S.; Deconinck, G.; Orlando, D.; Ballon, P.; Mustafa, M.A. An Ecosystem View of Peer-to-Peer Electricity Trading: Scenario Building by Business Model Matrix to Identify New Roles. Energies 2021, 14, 4438. [Google Scholar] [CrossRef]
- Hu, M.; Shen, T.; Men, J.; Yu, Z.; Liu, Y. CRSM: An Effective Blockchain Consensus Resource Slicing Model for Real-Time Distributed Energy Trading. IEEE Access 2020, 8, 206876–206887. [Google Scholar] [CrossRef]
- Guo, J.; Ding, X.; Wu, W. A Blockchain-Enabled Ecosystem for Distributed Electricity Trading in Smart City. IEEE Internet Things J. 2021, 8, 2040–2050. [Google Scholar] [CrossRef]
- Cai, W.; Jiang, W.; Xie, K.; Zhu, Y.; Liu, Y.; Shen, T. Dynamic reputation–based consensus mechanism: Real-time transactions for energy blockchain. Int. J. Distrib. Sens. Netw. 2020, 16, 155014772090733. [Google Scholar] [CrossRef]
- Huh, J.H.; Kim, S.K. The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies. Sustainability 2019, 11, 3184. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Tong, B.; Li, D.; Lu, Y.; Fu, Y.; Chen, L.; Zhao, K. An Integrated Energy Service Transaction Model Based on Energy Blockchain. Int. J. Heat Technol. 2020, 38, 293–300. [Google Scholar] [CrossRef]
- Jiang, L.; Xie, S.; Maharjan, S.; Zhang, Y. Blockchain Empowered Wireless Power Transfer for Green and Secure Internet of Things. IEEE Netw. 2019, 33, 164–171. [Google Scholar] [CrossRef]
- Wang, L.; Wu, J.; Yuan, R.; Zhang, D.; Liu, J.; Jiang, S.; Zhang, Y.; Li, M. Dynamic Adaptive Cross-Chain Trading Mode for Multi-Microgrid Joint Operation. Sensors 2020, 20, 6096. [Google Scholar] [CrossRef] [PubMed]
- Moniruzzaman, M.; Yassine, A.; Benlamri, R. Blockchain-based Mechanisms for Local Energy Trading in Smart Grids. In Proceedings of the 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-ICT), Charlotte, NC, USA, 6–9 October 2019; pp. 110–114. [Google Scholar] [CrossRef]
- Olivares-Rojas, J.C.; Reyes-Archundia, E.; Gutierrez-Gnecchi, J.A.; Cerda-Jacobo, J.; Gonzalez-Murueta, J.W. A Novel Multitier Blockchain Architecture to Protect Data in Smart Metering Systems. IEEE Trans. Eng. Manag. 2020, 67, 1271–1284. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, X.; Chan, W.K.V. Individual Green Certificates on Blockchain: A Simulation Approach. Sustainability 2020, 12, 3942. [Google Scholar] [CrossRef]
- Yahaya, A.S.; Javaid, N.; Javed, M.U.; Shafiq, M.; Khan, W.Z.; Aalsalem, M.Y. Blockchain-Based Energy Trading and Load Balancing Using Contract Theory and Reputation in a Smart Community. IEEE Access 2020, 8, 222168–222186. [Google Scholar] [CrossRef]
- Guan, Z.; Lu, X.; Yang, W.; Wu, L.; Wang, N.; Zhang, Z. Achieving efficient and Privacy-preserving energy trading based on blockchain and ABE in smart grid. J. Parallel Distrib. Comput. 2021, 147, 34–45. [Google Scholar] [CrossRef]
- Chowdhury, M.J.M.; Usman, M.; Ferdous, M.S.; Chowdhury, N.; Harun, A.I.; Jannat, U.S.; Biswas, K. A Cross-Layer Trust-Based Consensus Protocol for Peer-to-Peer Energy Trading Using Fuzzy Logic. IEEE Internet Things J. 2022, 9, 14779–14789. [Google Scholar] [CrossRef]
- Keshk, M.; Turnbull, B.; Moustafa, N.; Vatsalan, D.; Choo, K.K.R. A Privacy-Preserving-Framework-Based Blockchain and Deep Learning for Protecting Smart Power Networks. IEEE Trans. Ind. Inform. 2020, 16, 5110–5118. [Google Scholar] [CrossRef]
- Bansal, G.; Bhatia, A. A Fast, Secure and Distributed Consensus Mechanism for Energy Trading Among Vehicles using Hashgraph. In Proceedings of the 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 7–10 January 2020; pp. 772–777. [Google Scholar] [CrossRef]
- Khalid, R.; Samuel, O.; Javaid, N.; Aldegheishem, A.; Shafiq, M.; Alrajeh, N. A Secure Trust Method for Multi-Agent System in Smart Grids Using Blockchain. IEEE Access 2021, 9, 59848–59859. [Google Scholar] [CrossRef]
- Liu, N.; Tan, L.; Zhou, L.; Chen, Q. Multi-party Energy Management of Energy Hub: A Hybrid Approach with Stackelberg Game and Blockchain. J. Mod. Power Syst. Clean Energy 2020, 8, 919–928. [Google Scholar] [CrossRef]
- Lu, X.; Guan, Z.; Zhou, X.; Wu, L.; Du, X.; Guizani, M. An Efficient and Privacy-Preserving Energy Trading Scheme Based on Blockchain. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, C.; Chai, K.K.; Zhang, X.; Chen, Y. Proof-of-Benefit: A Blockchain-Enabled EV Charging Scheme. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Yang, T. Blockchain-Enabled Security in Electric Vehicles Cloud and Edge Computing. IEEE Netw. 2018, 32, 78–83. [Google Scholar] [CrossRef]
- Liu, C.; Chai, K.K.; Zhang, X.; Chen, Y. Peer-to-peer electricity trading system: Smart contracts based proof-of-benefit consensus protocol. Wirel. Netw. 2021, 27, 4217–4228. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Chai, K.K.; Zhang, X.; Chen, Y. Enhanced Proof-of-Benefit: A Secure Blockchain-Enabled EV Charging System. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ling, X.; Gao, Z.; Le, Y.; You, L.; Wang, J.; Ding, Z.; Gao, X. Satellite-Aided Consensus Protocol for Scalable Blockchains. Sensors 2020, 20, 5616. [Google Scholar] [CrossRef]
- Dwork, C.; Naor, M. Pricing via Processing or Combatting Junk Mail. In Advances in Cryptology—CRYPTO’ 92; Brickell, E.F., Ed.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 139–147. [Google Scholar] [CrossRef] [Green Version]
- QuantumMechanic. Proof of Stake Instead of Proof of Work. Available online: https://bitcointalk.org/index.php?topic=27787.0 (accessed on 26 October 2022).
- Castro, M.; Liskov, B. Practical Byzantine Fault Tolerance. In Proceedings of the Third Symposium on Operating Systems Design and Implementation (OSDI’99), New Orleans, LA, USA, 22–25 February 1999; pp. 173–186. [Google Scholar]
- Larimer, D. DPOS Consensus Algorithm—The Missing White Paper. Available online: https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper (accessed on 27 October 2022).
- Intel. PoET 1.0 Specification. Available online: https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html (accessed on 10 October 2021).
- Dziembowski, S.; Faust, S.; Kolmogorov, V.; Pietrzak, K. Proofs of Space. In Advances in Cryptology—CRYPTO 2015; Gennaro, R., Robshaw, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 585–605. [Google Scholar] [CrossRef]
- Stewart, I. Proof of Burn. Available online: https://en.bitcoin.it/wiki/Proof_of_burn (accessed on 26 October 2022).
- Bentov, I.; Lee, C.; Mizrahi, A.; Rosenfeld, M. Proof of Activity. ACM Sigmetrics Perform. Eval. Rev. 2014, 42, 34–37. [Google Scholar] [CrossRef]
- NEM. Harvesting. Available online: https://nem.io/xem/harvesting-and-poi/ (accessed on 13 May 2020).
- Ongaro, D.; Ousterhout, J. In Search of an Understandable Consensus Algorithm. In Proceedings of the 2014 USENIX Annual Technical Conference (USENIX ATC 14), Philadelphia, PA, USA, 19–20 June 2014; USENIX Association: Philadelphia, PA, USA, 2014; pp. 305–319. [Google Scholar]
- Milutinovic, M.; He, W.; Wu, H.; Kanwal, M. Proof of Luck. In Proceedings of the Proceedings of the 1st Workshop on System Software for Trusted Execution, Trento, Italy, 12–16 December 2016; ACM: New York, NY, USA, 2016; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ahmed-Rengers, M.; Kostiainen, K. Don’t Mine, Wait in Line: Fair and Efficient Blockchain Consensus with Robust Round Robin. arXiv 2018, arXiv:1804.07391. [Google Scholar]
- Chen, X.; Zhao, S.; Qi, J.; Jiang, J.; Song, H.; Wang, C.; Li, T.O.; Chan, T.H.H.; Zhang, F.; Luo, X.; et al. Efficient and DoS-resistant Consensus for Permissioned Blockchains. arXiv 2018, arXiv:1808.02252. [Google Scholar]
- Carlyle, J.; Malene, T.; Manai, C.; Shah, N.; Thomas, G.; Willis, R. Obscuro. Available online: https://whitepaper.obscu.ro/assets/images/obscuro-whitepaper-0-10-0.pdf (accessed on 27 October 2022).
- Bashar, G.D.; Avila, A.A.; Dagher, G.G. PoQ: A Consensus Protocol for Private Blockchains Using Intel SGX. In Security and Privacy in Communication Networks; Park, N., Sun, K., Foresti, S., Butler, K., Saxena, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 141–160. [Google Scholar] [CrossRef]
- Andreina, S.; Bohli, J.M.; Karame, G.O.; Li, W.; Marson, G.A. PoTS: A Secure Proof of TEE-Stake for Permissionless Blockchains. IEEE Trans. Serv. Comput. 2022, 15, 2173–2187. [Google Scholar] [CrossRef]
- Martin, J.P.; Jung, E. Rationality-proof consensus: Extended abstract. arXiv 2018, arXiv:1811.00742. [Google Scholar]
- Auvolat, A.; Bromberg, Y.D.; Frey, D.; Taïani, F. BASALT: A Rock-Solid Foundation for Epidemic Consensus Algorithms in Very Large, Very Open Networks. arXiv 2021, arXiv:2102.04063. [Google Scholar]
- Cong, X.; Zi, L.; Du, D.Z. DTNB: A Blockchain Transaction Framework With Discrete Token Negotiation for the Delay Tolerant Network. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1584–1599. [Google Scholar] [CrossRef]
- Cabellos Aparicio, A. Design and Implementation of a Proof-of-Stake Consensus Algorithm for Blockchain. Ph.D. Thesis, UPC Universitat Politècnica de Catalunya, Barcelona, Spain, 2018. [Google Scholar]
- Martinez, M.; Hekmati, A.; Krishnamachari, B.; Yun, S. Mobile Encounter-based Social Sybil Control. In Proceedings of the 2020 Seventh International Conference on Software Defined Systems (SDS), Paris, France, 20–23 April 2020; pp. 190–195. [Google Scholar] [CrossRef]
- Chatzopoulos, D.; Gujar, S.; Faltings, B.; Hui, P. LocalCoin. In Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Paderborn, Germany, 5–8 July 2016; ACM: New York, NY, USA, 2016; pp. 365–366. [Google Scholar] [CrossRef] [Green Version]
- Pournaras, E. Proof of witness presence: Blockchain consensus for augmented democracy in smart cities. J. Parallel Distrib. Comput. 2020, 145, 160–175. [Google Scholar] [CrossRef]
- Chatzopoulos, D.; Gujar, S.; Faltings, B.; Hui, P. Mneme: A Mobile Distributed Ledger. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 1897–1906. [Google Scholar] [CrossRef]
- Amoretti, M.; Brambilla, G.; Medioli, F.; Zanichelli, F. Blockchain-Based Proof of Location. In Proceedings of the 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), Lisbon, Portugal, 16–20 July 2018; pp. 146–153. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Cao, Z.; Krishnamachari, B.; Zhou, S.; Niu, Z. SENATE: A Permissionless Byzantine Consensus Protocol in Wireless Networks for Real-Time Internet-of-Things Applications. IEEE Internet Things J. 2020, 7, 6576–6588. [Google Scholar] [CrossRef]
- Longo, R.; Podda, A.S.; Saia, R. Analysis of a Consensus Protocol for Extending Consistent Subchains on the Bitcoin Blockchain. Computation 2020, 8, 67. [Google Scholar] [CrossRef]
- Berrang, P.; von Styp-Rekowsky, P.; Wissfeld, M.; Franca, B.; Trinkler, R. Albatross—An optimistic consensus algorithm. In Proceedings of the 2019 Crypto Valley Conference on Blockchain Technology (CVCBT), Rotkreuz, Switzerland, 24–26 June 2019; pp. 39–42. [Google Scholar] [CrossRef] [Green Version]
- Azouvi, S.; McCorry, P.; Meiklejohn, S. Betting on Blockchain Consensus with Fantômette. arXiv 2018, arXiv:1805.06786. [Google Scholar]
- Mckinnon, T. MaGPoS—A novel decentralized consensus mechanism combining magnetism and proof of stake. arXiv 2019, arXiv:1906.08176. [Google Scholar]
- Jiang, Y.; Cheng, X.; Zhu, J.; Xu, Y. A consensus mechanism based on multi-round concession negotiation. Comput. Stand. Interfaces 2021, 74, 103488. [Google Scholar] [CrossRef]
- Davarpanah, K.; Kaufman, D.; Pubellier, O. NeuCoin: The First Secure, Cost-efficient and Decentralized Cryptocurrency. arXiv 2015, arXiv:1503.07768. [Google Scholar] [CrossRef] [Green Version]
- Adewumi, T.P.; Liwicki, M. Inner For-Loop for Speeding Up Blockchain Mining. Open Comput. Sci. 2020, 10, 42–47. [Google Scholar] [CrossRef]
- Kang, J.; Xiong, Z.; Jiang, C.; Liu, Y.; Guo, S.; Zhang, Y.; Niyato, D.; Leung, C.; Miao, C. Scalable and Communication-Efficient Decentralized Federated Edge Learning with Multi-blockchain Framework. In Blockchain and Trustworthy Systems; Zheng, Z., Dai, H.N., Fu, X., Chen, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 152–165. [Google Scholar] [CrossRef]
- Kim, D.H.; Ullah, R.; Kim, B.S. RSP Consensus Algorithm for Blockchain. In Proceedings of the 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS), Matsue, Japan, 18–20 September 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Shin, H.; Son, K.; Han, D. Sybil Tolerant Consensus Method Using Mutual Proof of Validation. In Proceedings of the 2020 2nd International Electronics Communication Conference, Singapore, 8–10 July 2020; ACM: New York, NY, USA, 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Mu, Y.; Chen, W.; Liang, X.; Gao, Y. A Weak Centralized Consensus Mechanism with More Incentive Effects. J. Phys. Conf. Ser. 2019, 1302, 032037. [Google Scholar] [CrossRef]
- Das, D. Toward Next Generation of Blockchain Using Improvized Bitcoin-NG. IEEE Trans. Comput. Soc. Syst. 2021, 8, 512–521. [Google Scholar] [CrossRef]
- Meneghetti, A.; Sala, M.; Taufer, D. A New ECDLP-Based PoW Model. Mathematics 2020, 8, 1344. [Google Scholar] [CrossRef]
- Gilad, Y.; Hemo, R.; Micali, S.; Vlachos, G.; Zeldovich, N. Algorand. In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai China, 28 October 2017; ACM: New York, NY, USA, 2017; pp. 51–68. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Hu, X.; Zhang, J. An Improved Scheme of Proof-of-Stake Consensus Mechanism. In Proceedings of the 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Hohhot, China, 24–26 October 2019; pp. 826–8263. [Google Scholar] [CrossRef]
- Deuber, D.; Döttling, N.; Magri, B.; Malavolta, G.; Thyagarajan, S.A.K. Minting Mechanism for Proof of Stake Blockchains. In Applied Cryptography and Network Security; Springer: Berlin/Heidelberg, Germany, 2020; pp. 315–334. [Google Scholar] [CrossRef]
- Leonardos, S.; Reijsbergen, D.; Piliouras, G. Weighted Voting on the Blockchain: Improving Consensus in Proof of Stake Protocols. In Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Seoul, Republic of Korea, 14–17 May 2019; pp. 376–384. [Google Scholar] [CrossRef] [Green Version]
- Leonardos, S.; Reijsbergen, D.; Piliouras, G. Weighted voting on the blockchain: Improving consensus in proof of stake protocols. Int. J. Netw. Manag. 2020, 30, e2093. [Google Scholar] [CrossRef] [Green Version]
- Dotan, M.; Tochner, S. Proofs of Useless Work—Positive and Negative Results for Wasteless Mining Systems. arXiv 2020, arXiv:2007.01046. [Google Scholar]
- Kim, H.; Kim, K.; Kwon, H.; Seo, H. ASIC-Resistant Proof of Work Based on Power Analysis of Low-End Microcontrollers. Mathematics 2020, 8, 1343. [Google Scholar] [CrossRef]
- Chen, L.; Xu, L.; Gao, Z.; Lu, Y.; Shi, W. Protecting Early Stage Proof-of-Work Based Public Blockchain. In Proceedings of the 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Luxembourg, 25–28 June 2018; pp. 122–127. [Google Scholar] [CrossRef]
- Janjanam, M.B.; Pinnamaneni, S.P.; Atmakuri, P. An Efficient Proof-of-Work Mechanism for Computational Feasibility in Blockchain. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 820–821. [Google Scholar] [CrossRef]
- Chou, C.N.; Lin, Y.J.; Chen, R.; Chang, H.Y.; Tu, I.P.; Liao, S.W. Personalized Difficulty Adjustment for Countering the Double-Spending Attack in Proof-of-Work Consensus Protocols. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1456–1462. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, D.; Brennen, G.; Lee, T.; Santha, M.; Tomamichel, M. Quantum Attacks on Bitcoin, and How to Protect Against Them. Ledger 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, S.; Tewari, H. Alt-PoW: An Alternative Proof-of-Work Mechanism. In Proceedings of the 2019 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPCON), Newark, CA, USA, 4–9 April 2019; pp. 11–18. [Google Scholar] [CrossRef]
- Kitakami, M.; Matsuoka, K. An Attack-Tolerant Agreement Algorithm for Block Chain. In Proceedings of the 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC), Taipei, Taiwan, 4–7 December 2018; pp. 227–228. [Google Scholar] [CrossRef]
- Liu, G.; Dong, H.; Yan, Z.; Zhou, X.; Shimizu, S. B4SDC: A Blockchain System for Security Data Collection in MANETs. IEEE Trans. Big Data 2022, 8, 739–752. [Google Scholar] [CrossRef]
- Memon, M.; Bajwa, U.A.; Ikhlas, A.; Memon, Y.; Memon, S.; Malani, M. Blockchain Beyond Bitcoin: Block Maturity Level Consensus Protocol. In Proceedings of the 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS), Bangkok, Thailand, 22–23 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Jain, S.; Simha, R. Blockchain for the Common Good: A Digital Currency for Citizen Philanthropy and Social Entrepreneurship. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1387–1394. [Google Scholar] [CrossRef]
- de Oliveira, M.T.; Reis, L.H.; Medeiros, D.S.; Carrano, R.C.; Olabarriaga, S.D.; Mattos, D.M. Blockchain reputation-based consensus: A scalable and resilient mechanism for distributed mistrusting applications. Comput. Netw. 2020, 179, 107367. [Google Scholar] [CrossRef]
- Bissias, G.; Levine, B.N. Bobtail: A Proof-of-Work Target that Minimizes Blockchain Mining Variance. arXiv 2017, arXiv:1709.08750. [Google Scholar]
- Bentov, I.; Gabizon, A.; Mizrahi, A. Cryptocurrencies without Proof of Work. In Financial Cryptography and Data Security; Clark, J., Meiklejohn, S., Ryan, P.Y., Wallach, D., Brenner, M., Rohloff, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 142–157. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, R. Circle of Trust: A High Volume, Energy Efficient, Stake Blind and High Attack Tolerant Blockchain Consensus Protocol. In Proceedings of the 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3), London, UK, 16–18 January 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Baudlet, M.; Fall, D.; Taenaka, Y.; Kadobayashi, Y. The Best of Both Worlds: A New Composite Framework Leveraging PoS and PoW for Blockchain Security and Governance. In Proceedings of the 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS), Paris, France, 28–30 September 2020; pp. 17–24. [Google Scholar] [CrossRef]
- Li, C.; Li, P.; Zhou, D.; Yang, Z.; Wu, M.; Yang, G.; Xu, W.; Long, F.; Yao, A.C.C. A Decentralized Blockchain with High Throughput and Fast Confirmation. In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC 20), USENIX Association, Philadelphia, PA, USA, 15–17 July 2020; pp. 515–528. [Google Scholar]
- Muller, M.; Rodriguez Garzon, S.; Kupper, A. COST: A Consensus-Based Oracle Protocol for the Secure Trade of Digital Goods. In Proceedings of the 2020 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS), Oxford, UK, 3–6 August 2020; pp. 72–81. [Google Scholar] [CrossRef]
- Boyen, X.; Carr, C.; Haines, T. Graphchain. In Proceedings of the 2nd ACM Workshop on Blockchains, Cryptocurrencies, and Contracts—BCC’18, Incheon, Republic of Korea, 4 June 2018; ACM Press: New York, NY, USA, 2018; pp. 21–33. [Google Scholar] [CrossRef]
- Hu, Z.; Du, Y.; Rao, C.; Goh, M. Delegated Proof of Reputation Consensus Mechanism for Blockchain-Enabled Distributed Carbon Emission Trading System. IEEE Access 2020, 8, 214932–214944. [Google Scholar] [CrossRef]
- Do, T.; Nguyen, T.; Pham, H. Delegated Proof of Reputation. In Proceedings of the 2019 International Electronics Communication Conference, Okinawa, Japan, 7–9 July 2019; ACM: New York, NY, USA, 2019; pp. 90–98. [Google Scholar] [CrossRef]
- Biryukov, A.; Khovratovich, D. Equihash: Asymmetric Proof-of-Work Based on the Generalized Birthday Problem. Ledger 2017, 2, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.; Lee, H.N. ECCPoW: Error-Correction Code based Proof-of-Work for ASIC Resistance. Symmetry 2020, 12, 988. [Google Scholar] [CrossRef]
- Hsueh, C.W.; Chin, C.T. EPoW: Solving blockchain problems economically. In Proceedings of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, 4–8 August 2017; pp. 1–8. [Google Scholar] [CrossRef]
- Nakahara, R.; Inaba, H. Proposal of Fair Proof-of-Work System Based on Rating of User’s Computing Power. In Proceedings of the 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE), Nara, Japan, 9–12 October 2018; pp. 746–748. [Google Scholar] [CrossRef]
- Wan, C.; Tang, S.; Zhang, Y.; Pan, C.; Liu, Z.; Long, Y.; Liu, Z.; Yu, Y. Goshawk: A Novel Efficient, Robust and Flexible Blockchain Protocol. In Information Security and Cryptology; Guo, F., Huang, X., Yung, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 49–69. [Google Scholar] [CrossRef]
- Lasla, N.; Al-Sahan, L.; Abdallah, M.; Younis, M. Green-PoW: An energy-efficient blockchain Proof-of-Work consensus algorithm. Comput. Netw. 2022, 214, 109118. [Google Scholar] [CrossRef]
- Harvilla, M.; Du, J. Prospective Hybrid Consensus for Project PAI. arXiv 2019, arXiv:1902.02469. [Google Scholar]
- Liu, Z.; Tang, S.; Chow, S.S.; Liu, Z.; Long, Y. Fork-free hybrid consensus with flexible Proof-of-Activity. Future Gener. Comput. Syst. 2019, 96, 515–524. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Wang, X.; Peng, Y.; She, W.; Tian, Z. A donation tracing blockchain model using improved DPoS consensus algorithm. Peer-to-Peer Netw. Appl. 2021, 14, 2789–2800. [Google Scholar] [CrossRef]
- Chepurnoy, A. Interactive Proof-of-stake. arXiv 2016, arXiv:1601.00275. [Google Scholar]
- Feng, W.; Yan, Z. MCS-Chain: Decentralized and trustworthy mobile crowdsourcing based on blockchain. Future Gener. Comput. Syst. 2019, 95, 649–666. [Google Scholar] [CrossRef]
- Pang, Y. A New Consensus Protocol for Blockchain Interoperability Architecture. IEEE Access 2020, 8, 153719–153730. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, Y. MWPoW: Multiple Winners Proof of Work Protocol, a Decentralisation Strengthened Fast-Confirm Blockchain Protocol. Secur. Commun. Netw. 2019, 2019, 3674274. [Google Scholar] [CrossRef] [Green Version]
- Dubrovsky, M.; Ball, M.; Penkovsky, B. Optical Proof of Work. arXiv 2019, arXiv:1911.05193. [Google Scholar]
- Hazari, S.S.; Mahmoud, Q.H. A Parallel Proof of Work to Improve Transaction Speed and Scalability in Blockchain Systems. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 916–921. [Google Scholar] [CrossRef]
- Kaci, A.; Rachedi, A. PoolCoin: Toward a distributed trust model for miners’ reputation management in blockchain. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Bagaria, V.; Kannan, S.; Tse, D.; Fanti, G.; Viswanath, P. Prism. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019; ACM: New York, NY, USA, 2019; pp. 585–602. [Google Scholar] [CrossRef]
- Xue, T.; Yuan, Y.; Ahmed, Z.; Moniz, K.; Cao, G.; Wang, C. Proof of Contribution: A Modification of Proof of Work to Increase Mining Efficiency. In Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018; pp. 636–644. [Google Scholar] [CrossRef]
- Masseport, S.; Darties, B.; Giroudeau, R.; Lartigau, J. Proof of Experience: Empowering Proof of Work protocol with miner previous work. In Proceedings of the 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS), Paris, France, 28–30 September 2020; pp. 57–58. [Google Scholar] [CrossRef]
- Monem, M.; Ahmad, A.; Jumana; Ahmed, R.; Arif, H. Efficient Blockchain System based on Proof of Segmented Work. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 989–992. [Google Scholar] [CrossRef]
- Masseport, S.; Lartigau, J.; Darties, B.; Giroudeau, R. Proof of usage: User-centric consensus for data provision and exchange. Ann. Telecommun. 2020, 75, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Komiya, K.; Nakajima, T. Increasing Motivation for Playing Blockchain Games Using Proof-of-Achievement Algorithm. In HCI in Games; Fang, X., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 125–140. [Google Scholar] [CrossRef]
- Grollemund, P.M.; Lafourcade, P.; Thiry-Atighehchi, K.; Tichit, A. Proof of Behavior. In Open Access Series in Informatics (OASIcs), Proceedings of the 2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020), Toulouse, France, 26–27 October 2020; Anceaume, E., Bisière, C., Bouvard, M., Bramas, Q., Casamatta, C., Eds.; Schloss Dagstuhl–Leibniz-Zentrum für Informatik: Dagstuhl, Germany, 2021; Volume 82, pp. 111–116. [Google Scholar] [CrossRef]
- Abramowicz, M. Autonocoin: A Proof-of-Belief Cryptocurrency. Ledger 2016, 1, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.K.; Chin, J.J.; Goh, V.T. Proof of Bid as Alternative to Proof of Work. In Advances in Cyber Security; Anbar, M., Abdullah, N., Manickam, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 60–73. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, W.; Bai, X.; Jin, S.; Jiang, T. Blockchain Enabled Federated Slicing for 5G Networks with AI Accelerated Optimization. IEEE Netw. 2020, 34, 46–52. [Google Scholar] [CrossRef]
- Komiya, K.; Nakajima, T. Community Cash: A Community-Based Cryptocurrency for Implementing Activity-Based Micro-Pricing. In Smart Blockchain; Qiu, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 66–75. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, X.; Wang, X.; Mu, Y.; Rezaeibagha, F.; Xu, G.; Wang, H.; Zheng, X.; Yang, G.; Xia, Q.; et al. HUCDO: A Hybrid User-centric Data Outsourcing Scheme. ACM Trans. Cyber-Phys. Syst. 2020, 4, 1–23. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, S.; Wei, W. Proof of Human Engagement on Decentralized Networks. In Proceedings of the Future Technologies Conference (FTC) 2018; Arai, K., Bhatia, R., Kapoor, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 712–717. [Google Scholar] [CrossRef]
- Blocki, J.; Zhou, H.S. Designing Proof of Human-Work Puzzles for Cryptocurrency and Beyond. In Theory of Cryptography; Hirt, M., Smith, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 517–546. [Google Scholar] [CrossRef]
- Abegg, J.P.; Bramas, Q.; Noel, T. Blockchain using Proof-of-Interaction. arXiv 2020, arXiv:2002.07763. [Google Scholar]
- Lee, S.b.; Hwang, D.; Kim, J.; Kim, K.H. Proof-of-Lottery: Design for Block Producing Algorithm Based on PoS for Scalability. In Proceedings of the 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 7–10 January 2020; pp. 666–669. [Google Scholar] [CrossRef]
- Ghiro, L.; Maccari, L.; Cigno, R.L. Proof of networking: Can blockchains boost the next generation of distributed networks? In Proceedings of the 2018 14th Annual Conference on Wireless On-demand Network Systems and Services (WONS), Isola, France, 6–8 February 2018; pp. 29–32. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, M.; Jaroucheh, Z.; Al-Dubai, A.; Buchanan, B. PoNW: A Secure and Scalable Proof-of-Notarized-Work Based Consensus Mechanism. In Proceedings of the 2020 4th International Conference on Vision, Image and Signal Processing, Bangkok, Thailand, 9–11 December 2020; ACM: New York, NY, USA, 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Nandwani, A.; Gupta, M.; Thakur, N. Proof-of-Participation: Implementation of Proof-of-Stake Through Proof-of-Work. In International Conference on Innovative Computing and Communications; Bhattacharyya, S., Hassanien, A.E., Gupta, D., Khanna, A., Pan, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 17–24. [Google Scholar] [CrossRef]
- Lin, Z.; Luo, Y.; Fu, S.; Xie, T. BIMP: Blockchain-Based Incentive Mechanism with Privacy Preserving in Location Proof. In Algorithms and Architectures for Parallel Processing; Qiu, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 520–536. [Google Scholar] [CrossRef]
- Matsuyama, Y. Divergence Family Contribution to Data Evaluation in Blockchain Via Alpha-EM and Log-EM Algorithms. IEEE Access 2021, 9, 24546–24559. [Google Scholar] [CrossRef]
- Liu, C. Proof of spending in block-chain systems. arXiv 2018, arXiv:1804.11136. [Google Scholar]
- Bartoletti, M.; Lande, S.; Podda, A.S. A Proof-of-Stake Protocol for Consensus on Bitcoin Subchains. In Financial Cryptography and Data Security; Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y., Teague, V., Bracciali, A., Sala, M., Pintore, F., Jakobsson, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 568–584. [Google Scholar] [CrossRef]
- Cai, X.; Wang, Y.; Lin, F.; Tang, C.; Chen, Z. A Blockchain-Based Crowdsourcing System with QoS Guarantee via a Proof-of-Strategy Consensus Protocol. In Blockchain and Trustworthy Systems; Zheng, Z., Dai, H.N., Fu, X., Chen, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 72–86. [Google Scholar] [CrossRef]
- Hassanzadeh-Nazarabadi, Y.; Kupcu, A.; Ozkasap, O. LightChain: Scalable DHT-Based Blockchain. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2582–2593. [Google Scholar] [CrossRef]
- Sumathy Kingslin, R.Z. An Effective Randomization Framework to POW Consensus Algorithm of Blockchain (RPoW). Int. J. Eng. Adv. Technol. 2019, 8, 1793–1797. [Google Scholar] [CrossRef]
- Ahuja, A.; Ribeiro, V.J.; Pal, R. A Regulatory System for Optimal Legal Transaction Throughput in Cryptocurrency Blockchains. arXiv 2021, arXiv:2103.16216. [Google Scholar]
- Sun, Y.; Zhang, R.; Xue, R.; Su, Q.; Li, P. A Reputation Based Hybrid Consensus for E-Commerce Blockchain. In Web Services—ICWS 2020; Ku, W.S., Kanemasa, Y., Serhani, M.A., Zhang, L.J., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–16. [Google Scholar] [CrossRef]
- Fan, X.; Chai, Q. Roll-DPoS. In Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Virtual, 5–7 November 2018; ACM: New York, NY, USA, 2018; pp. 482–484. [Google Scholar] [CrossRef]
- Chepurnoy, A.; Larangeira, M.; Ojiganov, A. Rollerchain, a Blockchain with Safely Pruneable Full Blocks. arXiv 2016, arXiv:1603.07926. [Google Scholar]
- Calcaterra, C.; Kaal, W.A. Reputation Protocol for the Internet of Trust. In Legal Tech and the New Sharing Economy; Compagnucci, M.C., Forgó, N., Kono, T., Teramoto, S., Vermeulen, E.P.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 155–179. [Google Scholar] [CrossRef]
- Liu, G.; Yan, Z.; Feng, W.; Jing, X.; Chen, Y.; Atiquzzaman, M. SeDID: An SGX-enabled decentralized intrusion detection framework for network trust evaluation. Inf. Fusion 2021, 70, 100–114. [Google Scholar] [CrossRef]
- Abraham, I.; Malkhi, D.; Nayak, K.; Ren, L.; Spiegelman, A. Solida: A Blockchain Protocol Based on Reconfigurable Byzantine Consensus. In Leibniz International Proceedings in Informatics (LIPIcs), Proceedings of the 21st International Conference on Principles of Distributed Systems (OPODIS 2017), Lisboa, Portugal, 18–20 December 2017; Aspnes, J., Bessani, A., Felber, P., Leitão, J., Eds.; Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2018; Volume 95, pp. 251–2519. [Google Scholar] [CrossRef]
- Chen, S.; Dai, W.; Dai, Y.; Fu, H.; Gao, Y.; Guo, J.; He, H.; Liu, Y. Thinkey: A Scalable Blockchain Architecture. arXiv 2019, arXiv:1904.04560. [Google Scholar]
- Mihaljevic, M.J. A Blockchain Consensus Protocol Based on Dedicated Time-Memory-Data Trade-Off. IEEE Access 2020, 8, 141258–141268. [Google Scholar] [CrossRef]
- Sun, S.; Liu, Y.; Guo, G. A Privacy-Preserving and Robust Reputation System Based on Blockchain. In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 16–18 December 2019; pp. 634–639. [Google Scholar] [CrossRef]
- Lucas, B.; Paez, R.V. Consensus Algorithm for a Private Blockchain. In Proceedings of the 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 12–14 July 2019; pp. 264–271. [Google Scholar] [CrossRef]
- Mazurok, I.; Pienko, V.; Leonchyk, Y. Empowering Fault-Tolerant Consensus Algorithm by Economic Leverages. In Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications, Integration, Harmonization and Knowledge Transfer, Kherson, Ukraine, 12–15 June 2019. [Google Scholar]
- Han, X.; Yuan, Y.; Wang, F.Y. A Fair Blockchain Based on Proof of Credit. IEEE Trans. Comput. Soc. Syst. 2019, 6, 922–931. [Google Scholar] [CrossRef]
- Li, L.; Yan, J.; Peng, H.; Yang, Y. An Improved Consensus Mechanism for the Blockchain Based on Credit Rewards and Punishments. In Proceedings of the 2020 The 2nd International Conference on Blockchain Technology, Hilo, HI, USA, 12–14 March 2020; ACM: New York, NY, USA, 2020; pp. 105–109. [Google Scholar] [CrossRef]
- Chen, J.; Gan, W.; Hu, M.; Chen, C.M. On the Construction of a Post-Quantum Blockchain. In Proceedings of the 2021 IEEE Conference on Dependable and Secure Computing (DSC), Aizuwakamatsu, Fukushima, Japan, 30 January–2 February 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Chen, J.; Gan, W.; Hu, M.; Chen, C.M. On the construction of a post-quantum blockchain for smart city. J. Inf. Secur. Appl. 2021, 58, 102780. [Google Scholar] [CrossRef]
- Han, R.; Lin, H.; Yu, J. VRF-Based Mining. In Data Privacy Management, Cryptocurrencies and Blockchain Technology; Garcia-Alfaro, J., Navarro-Arribas, G., Herrera-Joancomarti, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 287–304. [Google Scholar] [CrossRef]
- Hartl, A.; Zseby, T.; Fabini, J. BeaconBlocks: Augmenting Proof-of-Stake with On-Chain Time Synchronization. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 353–360. [Google Scholar] [CrossRef]
- Liu, J.; Ren, K. Improving Blockchains With Client-Assistance. IEEE Trans. Comput. 2022, 71, 1230–1236. [Google Scholar] [CrossRef]
- Tosh, D.; Shetty, S.; Foytik, P.; Kamhoua, C.; Njilla, L. CloudPoS: A Proof-of-Stake Consensus Design for Blockchain Integrated Cloud. In Proceedings of the 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018; pp. 302–309. [Google Scholar] [CrossRef]
- Li, P.; Peng, J.; Yang, L.; Zheng, Q.; Pan, G. Crux—A New Fast, Flexible and Decentralized Consensus Algorithm with High Fault Tolerance Rate. In Smart Blockchain; Qiu, M., Ed.; Springer: Cham, Switzerland, 2018; pp. 66–76. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, W.; Wu, Q.; Long, R.; Xiong, N.N.; Zhou, M. Delegated Proof of Stake With Downgrade: A Secure and Efficient Blockchain Consensus Algorithm With Downgrade Mechanism. IEEE Access 2019, 7, 118541–118555. [Google Scholar] [CrossRef]
- Cheng, Z.; Wu, G.; Wu, H.; Zhao, M.; Zhao, L.; Cai, Q. A New Hybrid Consensus Protocol: Deterministic Proof Of Work. arXiv 2018, arXiv:1808.04142. [Google Scholar]
- Saad, M.; Qin, Z.; Ren, K.; Nyang, D.; Mohaisen, D. e-PoS: Making Proof-of-Stake Decentralized and Fair. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 1961–1973. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Zhang, Z.; Yu, H. A fair selection protocol for committee-based permissionless blockchains. Comput. Secur. 2020, 91, 101718. [Google Scholar] [CrossRef]
- Ashik, M.H.; Shahriar Maswood, M.M.; Alharbi, A.G.; Medhi, D. FPoW: An ASIC-resistant Proof-of-Work for Blockchain Applications. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1608–1611. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, J.; Liu, J.K. Consolidating Hash Power in Blockchain Shards with a Forest. In Information Security and Cryptology; Liu, Z., Yung, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 309–322. [Google Scholar] [CrossRef]
- Georghiades, Y.; Flolid, S.; Vishwanath, S. HashCore: Proof-of-Work Functions for General Purpose Processors. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019; pp. 1951–1959. [Google Scholar] [CrossRef] [Green Version]
- Kolokotronis, N.; Brotsis, S.; Germanos, G.; Vassilakis, C.; Shiaeles, S. On Blockchain Architectures for Trust-Based Collaborative Intrusion Detection. In Proceedings of the 2019 IEEE World Congress on Services (SERVICES), Milan, Italy, 8–13 July 2019; pp. 21–28. [Google Scholar] [CrossRef]
- Coelho, F.; Larroche, A.; Colin, B. Itsuku: A Memory-Hardened Proof-of-Work Scheme; Technical Report; MINES ParisTech—PSL Research University: Paris, France, 2017. [Google Scholar]
- Morais, R.; Crocker, P.; Melo de Sousa, S. A Tool for Implementing Privacy in Nano. In Proceedings of the 2020 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS), Oxford, UK, 3–6 August 2020; pp. 159–163. [Google Scholar] [CrossRef]
- Kerber, T.; Kiayias, A.; Kohlweiss, M.; Zikas, V. Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 157–174. [Google Scholar] [CrossRef]
- Badertscher, C.; Gaži, P.; Kiayias, A.; Russell, A.; Zikas, V. Ouroboros Genesis. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; ACM: New York, NY, USA, 2018; pp. 913–930. [Google Scholar] [CrossRef] [Green Version]
- David, B.; Gaži, P.; Kiayias, A.; Russell, A. Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake Blockchain. In Advances in Cryptology—EUROCRYPT 2018; Nielsen, J.B., Rijmen, V., Eds.; Springer: Cham, Switzerland, 2018; pp. 66–98. [Google Scholar] [CrossRef] [Green Version]
- Drijvers, M.; Gorbunov, S.; Neven, G.; Wee, H. Pixel: Multi-signatures for Consensus. In Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), USENIX Association, San Diego, CA, USA, 12–14 August 2020; pp. 2093–2110. [Google Scholar]
- Alberini, G.; Moran, T.; Rosen, A. Public Verification of Private Effort. In Theory of Cryptography; Dodis, Y., Nielsen, J.B., Eds.; Springer: Cham, Switzerland, 2015; pp. 169–198. [Google Scholar] [CrossRef] [Green Version]
- Sayeed, S.; Marco-Gisbert, H. Proof of Adjourn (PoAj): A Novel Approach to Mitigate Blockchain Attacks. Appl. Sci. 2020, 10, 6607. [Google Scholar] [CrossRef]
- Amar, D.; Zilpa, L. Incentive-Based Ledger Protocols for Solving Machine Learning Tasks and Optimization Problems via Competitions. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 2838–2846. [Google Scholar] [CrossRef]
- Wang, L.e.; Bai, Y.; Jiang, Q.; Leung, V.C.M.; Cai, W.; Li, X. Beh-Raft-Chain: A Behavior-Based Fast Blockchain Protocol for Complex Networks. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1154–1166. [Google Scholar] [CrossRef]
- Krol, M.; Sonnino, A.; Al-Bassam, M.; Tasiopoulos, A.; Psaras, I. Proof-of-Prestige: A Useful Work Reward System for Unverifiable Tasks. In Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Seoul, Republic of Korea, 14–17 May 2019; pp. 293–301. [Google Scholar] [CrossRef] [Green Version]
- Damgård, I.; Ganesh, C.; Orlandi, C. Proofs of Replicated Storage Without Timing Assumptions. In Advances in Cryptology—CRYPTO 2019; Boldyreva, A., Micciancio, D., Eds.; Springer: Cham, Switzerland, 2019; pp. 355–380. [Google Scholar] [CrossRef]
- Al-Mamun, A.; Li, T.; Sadoghi, M.; Zhao, D. In-memory Blockchain: Toward Efficient and Trustworthy Data Provenance for HPC Systems. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 3808–3813. [Google Scholar] [CrossRef]
- Kleinrock, L.; Ostrovsky, R.; Zikas, V. Proof-of-Reputation Blockchain with Nakamoto Fallback. In Progress in Cryptology—INDOCRYPT 2020; Bhargavan, K., Oswald, E., Prabhakaran, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 16–38. [Google Scholar] [CrossRef]
- Bag, S.; Ruj, S.; Sakurai, K. On the Application of Clique Problem for Proof-of-Work in Cryptocurrencies. In Information Security and Cryptology; Lin, D., Wang, X., Yung, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 260–279. [Google Scholar] [CrossRef]
- Kalinin, K.P.; Berloff, N.G. Blockchain platform with proof-of-work based on analog Hamiltonian optimisers. arXiv 2018, arXiv:1802.10091. [Google Scholar]
- Bocart, F. Inflation Propensity of Collatz Orbits: A New Proof-of-Work for Blockchain Applications. J. Risk Financ. Manag. 2018, 11, 83. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Wei, X.; He, Z. Robust Proof of Stake: A New Consensus Protocol for Sustainable Blockchain Systems. Sustainability 2020, 12, 2824. [Google Scholar] [CrossRef] [Green Version]
- Kwak, J.Y.; Yim, J.; Ko, N.S.; Kim, S.M. The Design of Hierarchical Consensus Mechanism Based on Service-Zone Sharding. IEEE Trans. Eng. Manag. 2020, 67, 1387–1403. [Google Scholar] [CrossRef]
- Jaroucheh, Z.; Ghaleb, B.; Buchanan, W.J. SklCoin: Toward a Scalable Proof-of-Stake and Collective Signature Based Consensus Protocol for Strong Consistency in Blockchain. In Proceedings of the 2020 IEEE International Conference on Software Architecture Companion (ICSA-C), Salvador, Brazil, 16–20 March 2020; pp. 143–150. [Google Scholar] [CrossRef]
- Li, W.; Sforzin, A.; Fedorov, S.; Karame, G.O. Towards Scalable and Private Industrial Blockchains. In Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts, BCC ’17, Incheon, Republic of Korea, 4 June 2018; Association for Computing Machinery: New York, NY, USA, 2017; pp. 9–14. [Google Scholar] [CrossRef]
- Bao, X. A Decentralized Secure Mailbox System based on Blockchain. In Proceedings of the 2020 International Conference on Computer Communication and Network Security (CCNS), Xi’an, China, 21–23 August 2020; pp. 136–141. [Google Scholar] [CrossRef]
- Berger, C.; Reiser, H.P.; Sousa, J.; Bessani, A. AWARE: Adaptive Wide-Area Replication for Fast and Resilient Byzantine Consensus. IEEE Trans. Dependable Secur. Comput. 2022, 19, 1605–1620. [Google Scholar] [CrossRef]
- Fu, W.; Wei, X.; Tong, S. An Improved Blockchain Consensus Algorithm Based on Raft. Arab. J. Sci. Eng. 2021, 46, 8137–8149. [Google Scholar] [CrossRef]
- Alzahrani, N.; Bulusu, N. Towards True Decentralization: A Blockchain Consensus Protocol Based on Game Theory and Randomness. In Decision and Game Theory for Security; Bushnell, L., Poovendran, R., Başar, T., Eds.; Springer: Cham, Switzerland, 2018; pp. 465–485. [Google Scholar] [CrossRef]
- Tan, H.; Golab, W. Optimizing All-to-All Data Transmission in WANs. IEEE Trans. Netw. Serv. Manag. 2021, 18, 3677–3690. [Google Scholar] [CrossRef]
- Jill, D.E. The Verex Blockchain: A Non-Anonymous Decentralized Ledger with an Assigned-Majority-Validation Consensus Protocol. Available online: https://zenodo.org/record/1173637#.Y4Xdk31BxPY (accessed on 26 October 2022).
- Ai, Z.; Liu, Y.; Wang, X. ABC: An Auction-Based Blockchain Consensus-Incentive Mechanism. In Proceedings of the 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS), Hong Kong, China, 2–4 December 2020; pp. 609–616. [Google Scholar] [CrossRef]
- Van Toan, N.; Park, U.; Ryu, G. RCANE: Semi-Centralized Network of Parallel Blockchain and APoS. In Proceedings of the 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), Singapore, 11–13 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Bose, S.; Raikwar, M.; Mukhopadhyay, D.; Chattopadhyay, A.; Lam, K.Y. BLIC: A Blockchain Protocol for Manufacturing and Supply Chain Management of ICS. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1326–1335. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Liu, N.; Huang, H.; Zheng, Z.; Yan, Q. A Blockchain-Based Decentralized Federated Learning Framework with Committee Consensus. IEEE Netw. 2021, 35, 234–241. [Google Scholar] [CrossRef]
- Dold, F. The GNU Taler System: Practical and Provably Secure Electronic Payments. Ph.D. Thesis, Universite Rennes, Rennes, France, 2019. [Google Scholar]
- Butt, K.; Sorensen, D.; Stay, M. Casanova. arXiv 2018, arXiv:1812.02232. [Google Scholar]
- Azouvi, S.; McCorry, P.; Meiklejohn, S. Winning the Caucus Race: Continuous Leader Election via Public Randomness. arXiv 2018, arXiv:1801.07965. [Google Scholar]
- Ileri, A.M.; Ozercan, H.I.; Gundogdu, A.; Senol, A.K.; Ozkaya, M.Y.; Alkan, C. Coinami: A Cryptocurrency with DNA Sequence Alignment as Proof-of-work. arXiv 2016, arXiv:1602.03031. [Google Scholar]
- Meng, Y.; Cao, Z.; Qu, D. A Committee-Based Byzantine Consensus Protocol for Blockchain. In Proceedings of the 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Hubert Chan, T.H.; Pass, R.; Shi, E. Consensus through Herding. In Advances in Cryptology—EUROCRYPT 2019; Ishai, Y., Rijmen, V., Eds.; Springer: Cham, Switzerland, 2019; pp. 720–749. [Google Scholar] [CrossRef]
- He, G.; Su, W.; Gao, S.; Yue, J.; Das, S.K. ROAchain: Securing Route Origin Authorization With Blockchain for Inter-Domain Routing. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1690–1705. [Google Scholar] [CrossRef]
- He, G.; Su, W.; Gao, S.; Yue, J. TD-Root: A trustworthy decentralized DNS root management architecture based on permissioned blockchain. Future Gener. Comput. Syst. 2020, 102, 912–924. [Google Scholar] [CrossRef]
- Amiri, M.J.; Agrawal, D.; Abbadi, A.E. CAPER. Proc. VLDB Endow. 2019, 12, 1385–1398. [Google Scholar] [CrossRef]
- Hao, X.; Yu, L.; Zhiqiang, L.; Zhen, L.; Dawu, G. Dynamic Practical Byzantine Fault Tolerance. In Proceedings of the 2018 IEEE Conference on Communications and Network Security (CNS), Beijing, China, 30 May–1 June 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Chen, W.; Yang, X.; Zhang, H.; Xu, Y.; Pang, Z. Big Data Architecture for Scalable and Trustful DNS based on Sharded DAG Blockchain. J. Signal Process. Syst. 2021, 93, 753–768. [Google Scholar] [CrossRef]
- Lei, K.; Fang, J.; Zhang, Q.; Lou, J.; Du, M.; Huang, J.; Wang, J.; Xu, K. Blockchain-Based Cache Poisoning Security Protection and Privacy-Aware Access Control in NDN Vehicular Edge Computing Networks. J. Grid Comput. 2020, 18, 593–613. [Google Scholar] [CrossRef]
- Deng, Q. Blockchain Economical Models, Delegated Proof of Economic Value and Delegated Adaptive Byzantine Fault Tolerance and their implementation in Artificial Intelligence BlockCloud. J. Risk Financ. Manag. 2019, 12, 177. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yao, S.; Yuan, Q.; He, K.; Ji, S.; Du, R. CertChain: Public and Efficient Certificate Audit Based on Blockchain for TLS Connections. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 2060–2068. [Google Scholar] [CrossRef]
- Chen, T.Y.; Huang, W.N.; Kuo, P.C.; Chung, H.; Chao, T.W. DEXON: A Highly Scalable, Decentralized DAG-Based Consensus Algorithm. arXiv 2018, arXiv:1811.07525. [Google Scholar]
- Hanke, T.; Movahedi, M.; Williams, D. DFINITY Technology Overview Series, Consensus System. arXiv 2018, arXiv:1805.04548. [Google Scholar]
- Li, F.; Liu, K.; Liu, J.; Fan, Y.; Wang, S. DHBFT: Dynamic Hierarchical Byzantine Fault-Tolerant Consensus Mechanism Based on Credit. In Web and Big Data; Wang, X., Zhang, R., Lee, Y.K., Sun, L., Moon, Y.S., Eds.; Springer: Cham, Switzerland, 2020; pp. 3–17. [Google Scholar] [CrossRef]
- He, L.; Hou, Z. An Improvement of Consensus Fault Tolerant Algorithm Applied to Alliance Chain. In Proceedings of the 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 12–14 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Abraham, A.; Theuermann, K.; Kirchengast, E. Qualified eID Derivation Into a Distributed Ledger Based IdM System. In Proceedings of the 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018; pp. 1406–1412. [Google Scholar] [CrossRef]
- Garg, M.; Peluso, S.; Arun, B.; Ravindran, B. Generalized Consensus for Practical Fault Tolerance. In Proceedings of the 20th International Middleware Conference, Davis, CA, USA, 9–13 December 2019; ACM: New York, NY, USA, 2019; pp. 55–67. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Z.; Fan, J.; Zheng, Y.; Luo, Y.; Deng, C.; Ding, J. An Extensible Consensus Algorithm Based on PBFT. In Proceedings of the 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Guilin, China, 17–19 October 2019; pp. 17–23. [Google Scholar] [CrossRef]
- Locher, T. Fast Byzantine Agreement for Permissioned Distributed Ledgers. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual, 15–17 July 2020; ACM: New York, NY, USA, 2020; pp. 371–382. [Google Scholar] [CrossRef]
- Liu, J.; Li, W.; Karame, G.O.; Asokan, N. Scalable Byzantine Consensus via Hardware-Assisted Secret Sharing. IEEE Trans. Comput. 2019, 68, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Rahnama, S.; Hellings, J.; Sadoghi, M. ResilientDB. Proc. VLDB Endow. 2020, 13, 868–883. [Google Scholar] [CrossRef] [Green Version]
- Oh, M.; Ha, S.; Yoon, J.H.; Lee, K.W.; Son, Y.; Yeom, H.Y. Graph Learning BFT: A Design of Consensus System for Distributed Ledgers. IEEE Access 2020, 8, 161739–161751. [Google Scholar] [CrossRef]
- Bao, Z.; Liu, Y.; Zhang, W. A Group-Based Optimized Practical Byzantine Fault Tolerance Consensus Algorithm. In Blockchain Technology and Application; Xu, K., Zhu, J., Song, X., Lu, Z., Eds.; Springer: Cham, Switzerland, 2021; pp. 95–115. [Google Scholar] [CrossRef]
- Yin, M.; Malkhi, D.; Reiter, M.K.; Gueta, G.G.; Abraham, I. HotStuff. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, Toronto, ON, Canada, 29 July–2 August 2019; ACM: New York, NY, USA, 2019; pp. 347–356. [Google Scholar] [CrossRef] [Green Version]
- Kuo, P.C.; Chung, H.; Chao, T.W.; Cheng, C.M. Fair Byzantine Agreements for Blockchains. IEEE Access 2020, 8, 70746–70761. [Google Scholar] [CrossRef]
- Liang, L.; Cao, X.; Zhang, J.; Sun, C. SLC: A Permissioned Blockchain for Secure Distributed Machine Learning against Byzantine Attacks. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 7073–7078. [Google Scholar] [CrossRef]
- Moniz, H. The Istanbul BFT Consensus Algorithm. arXiv 2020, arXiv:2002.03613. [Google Scholar]
- Liu, Y.; Liu, J.; Li, D.; Yu, H.; Wu, Q. FleetChain: A Secure Scalable and Responsive Blockchain Achieving Optimal Sharding. In Algorithms and Architectures for Parallel Processing; Qiu, M., Ed.; Springer: Cham, Switzerland, 2020; pp. 409–425. [Google Scholar] [CrossRef]
- Lim, G.; Kwon, Y.; Kim, Y. Analysis of LFT2. arXiv 2020, arXiv:2004.04294. [Google Scholar]
- Hackfeld, J. A lightweight BFT consensus protocol for blockchains. arXiv 2019, arXiv:1903.11434. [Google Scholar]
- Wang, Z. MOCA: A Scalable Consensus Algorithm Based on Cellular Automata. In Proceedings of the 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 23–25 November 2018; pp. 314–318. [Google Scholar] [CrossRef]
- Zhao, B.; Fan, P.; Ni, M. Mchain: A Blockchain-Based VM Measurements Secure Storage Approach in IaaS Cloud With Enhanced Integrity and Controllability. IEEE Access 2018, 6, 43758–43769. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Jeong, C.; Cho, S. Byzantine Fault Tolerance Based Multi-Block Consensus Algorithm for Throughput Scalability. In Proceedings of the 2020 International Conference on Electronics, Information, and Communication (ICEIC), Barcelona, Spain, 19–22 January 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Bao, Z.; Wang, K.; Zhang, W. An Auditable and Secure Model for Permissioned Blockchain. In Proceedings of the 2019 International Electronics Communication Conference, Okinawa, Japan, 7–9 July 2019; ACM: New York, NY, USA, 2019; pp. 139–145. [Google Scholar] [CrossRef]
- Chen, C.W.; Su, J.W.; Kuo, T.W.; Chen, K. MSig-BFT: A Witness-Based Consensus Algorithm for Private Blockchains. In Proceedings of the 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), Singapore, 11–13 December 2018; pp. 992–997. [Google Scholar] [CrossRef]
- Jalalzai, M.M.; Busch, C. Window Based BFT Blockchain Consensus. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 971–979. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Gao, Z. An Improved Blockchain Consensus Mechanism Based on Open Business Environment. IOP Conf. Ser. Earth Environ. Sci. 2020, 428, 012043. [Google Scholar] [CrossRef]
- Ma, J.; Jo, Y.; Park, C. PeerBFT: Making Hyperledger Fabric’s Ordering Service Withstand Byzantine Faults. IEEE Access 2020, 8, 217255–217267. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, Z.; Sane, A.; Bhimsain, A. Trustworthy When Human and Bots Are Mingled. In Proceedings of the 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), New York, NY, USA, 1–3 August 2020; pp. 76–81. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, R.; Cao, Y.; Yuan, X.; Yu, Z.; Yan, X.; Zhang, X. A Hybrid Model for Central Bank Digital Currency Based on Blockchain. IEEE Access 2021, 9, 53589–53601. [Google Scholar] [CrossRef]
- He, S.; Ning, Y.; Chen, H.; Xing, C.; Zhang, L.J. Layered Consensus Mechanism in Consortium Blockchain for Enterprise Services. In Blockchain—ICBC 2019; Joshi, J., Nepal, S., Zhang, Q., Zhang, L.J., Eds.; Springer: Cham, Switzerland, 2019; pp. 49–64. [Google Scholar] [CrossRef]
- Shen, W.; Huang, X.; Yu, Y.; Gu, L.; Pan, J.; Ling, L. Blockchain Based on PoR Consensus Mechanism. In Proceedings of the 2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 20–22 November 2020; pp. 73–76. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Dai, Y.; Maharjan, S.; Zhang, Y. Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT. IEEE Trans. Ind. Inform. 2020, 16, 4177–4186. [Google Scholar] [CrossRef]
- Kudin, A.M.; Kovalenko, B.A.; Shvidchenko, I.V. Blockchain Technology: Issues of Analysis and Synthesis. Cybern. Syst. Anal. 2019, 55, 488–495. [Google Scholar] [CrossRef]
- Belfer, R.; Kashtalian, A.; Nicheporuk, A.; Markowsky, G.; Sachenko, A. Proof-Of-Activity Consensus Protocol based on a Network’s Active Nodes. In Proceedings of the 1st International Workshop on Intelligent Information TEchnologies and Systems of Information, IntelITSIS 2020, Khmelnytskyi, Ukraine, 23–25 March 2020; pp. 239–251. [Google Scholar]
- Lee, E.; Yoon, Y.I. Project Management Model Based on Consistency Strategy for Blockchain Platform. In Proceedings of the 2019 IEEE 17th International Conference on Software Engineering Research, Management and Applications (SERA), Honolulu, HI, USA, 29–31 May 2019; pp. 38–44. [Google Scholar] [CrossRef]
- Lee, E.; Yoon, Y.; Lee, G.M.; Um, T.W. Blockchain-based Perfect Sharing Project Platform based on the Proof of Atomicity Consensus Algorithm. Teh. Vjesn. Tech. Gaz. 2020, 27. [Google Scholar] [CrossRef]
- Wood, G. PoA Private Chains. Available online: https://github.com/ethereum/guide/blob/master/poa.md (accessed on 26 October 2022).
- Chen, Y.; Xie, H.; Lv, K.; Wei, S.; Hu, C. DEPLEST: A blockchain-based privacy-preserving distributed database toward user behaviors in social networks. Inf. Sci. 2019, 501, 100–117. [Google Scholar] [CrossRef]
- Ogawa, T.; Kima, H.; Miyaho, N. Proposal of Proof-of-Lucky-Id(PoL) to Solve the Problems of PoW and PoS. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1212–1218. [Google Scholar] [CrossRef]
- Kim, J.T.; Jin, J.; Kim, K. A study on an energy-effective and secure consensus algorithm for private blockchain systems (PoM: Proof of Majority). In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 17–19 October 2018; pp. 932–935. [Google Scholar] [CrossRef]
- Fu, X.; Wang, H.; Shi, P.; Mi, H. PoPF: A Consensus Algorithm for JCLedger. In Proceedings of the 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE), Bamberg, Germany, 26–29 March 2018; pp. 204–209. [Google Scholar] [CrossRef]
- Gai, F.; Wang, B.; Deng, W.; Peng, W. Proof of Reputation: A Reputation-Based Consensus Protocol for Peer-to-Peer Network. In Database Systems for Advanced Applications; Pei, J., Manolopoulos, Y., Sadiq, S., Li, J., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Hegadekatti, K.; Yatish, S.G. Proof-of-Sovereignty (PoSv) As a Method to Achieve Distributed Consensus in Crypto-Currency Networks. SSRN Electron. J. 2016. [Google Scholar] [CrossRef] [Green Version]
- Barhanpure, A.; Belandor, P.; Das, B. Proof of Stack Consensus for Blockchain Networks. In Security in Computing and Communications; Thampi, S.M., Madria, S., Wang, G., Rawat, D.B., Calero, J.M.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 104–116. [Google Scholar] [CrossRef]
- Zou, J.; Ye, B.; Qu, L.; Wang, Y.; Orgun, M.A.; Li, L. A Proof-of-Trust Consensus Protocol for Enhancing Accountability in Crowdsourcing Services. IEEE Trans. Serv. Comput. 2019, 12, 429–445. [Google Scholar] [CrossRef]
- Li, K.; Li, H.; Wang, H.; An, H.; Lu, P.; Yi, P.; Zhu, F. PoV: An Efficient Voting-Based Consensus Algorithm for Consortium Blockchains. Front. Blockchain 2020, 3. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Li, H.; Hou, H.; Li, K.; Chen, Y. Proof of Vote: A High-Performance Consensus Protocol Based on Vote Mechanism & Consortium Blockchain. In Proceedings of the 2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Bangkok, Thailand, 18–20 December 2017; pp. 466–473. [Google Scholar] [CrossRef]
- Gupta, H.; Janakiram, D. Colosseum. In Proceedings of the Third ACM Workshop on Blockchains, Cryptocurrencies and Contracts—BCC ’19, Auckland, New Zealand, 8 July 2019; ACM Press: New York, NY, USA, 2019; pp. 23–25. [Google Scholar] [CrossRef]
- Jalalzai, M.M.; Busch, C.; Richard, G.G. Proteus: A Scalable BFT Consensus Protocol for Blockchains. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 308–313. [Google Scholar] [CrossRef]
- Jalalzai, M.M.; Busch, C.; Richard, G.G. Consistent BFT Performance for Blockchains. In Proceedings of the 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks—Supplemental Volume (DSN-S), Portland, OR, USA, 24–27 June 2019; pp. 17–18. [Google Scholar] [CrossRef]
- Moh, M.; Nguyen, D.; Moh, T.S.; Khieu, B. Blockchain for Efficient Public Key Infrastructure and Fault-Tolerant Distributed Consensus. In Blockchain Cybersecurity, Trust and Privacy; Choo, K.K.R., Dehghantanha, A., Parizi, R.M., Eds.; Springer: Cham, Switzerland, 2020; pp. 69–97. [Google Scholar] [CrossRef]
- He, G.; Su, W.; Gao, S. Chameleon: A Scalable and Adaptive Permissioned Blockchain Architecture. In Proceedings of the 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN), Shenzhen, China, 15–17 August 2018; pp. 87–93. [Google Scholar] [CrossRef]
- Dingyu, W.; Dingmin, W.; Lupin, Q.; MinLong, X. A Byzantine consensus based on proof-of-work of nodes’ behaviors. J. Phys. Conf. Ser. 2020, 1684, 012049. [Google Scholar] [CrossRef]
- Lei, K.; Zhang, Q.; Xu, L.; Qi, Z. Reputation-Based Byzantine Fault-Tolerance for Consortium Blockchain. In Proceedings of the 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), Singapore, 11–13 December 2018; pp. 604–611. [Google Scholar] [CrossRef]
- Khan, F.A.; Abubakar, A.; Mahmoud, M.; Al-Khasawneh, M.A.; Alarood, A.A. Rift: A high-performance consensus algorithm for consortium blockchain. Int. J. Recent Technol. Eng. 2019, 7, 989–997. [Google Scholar]
- Fan, Y.; Zou, J.; Liu, S.; Yin, Q.; Guan, X.; Yuan, X.; Wu, W.; Du, D. A blockchain-based data storage framework: A rotating multiple random masters and error-correcting approach. Peer-Peer Netw. Appl. 2020, 13, 1486–1504. [Google Scholar] [CrossRef]
- Amiri, M.J.; Lai, Z.; Patel, L.; Loo, B.T.; Lo, E.; Zhou, W. Saguaro: An Edge Computing-Enabled Hierarchical Permissioned Blockchain. arXiv 2021, arXiv:2101.08819. [Google Scholar]
- Golan Gueta, G.; Abraham, I.; Grossman, S.; Malkhi, D.; Pinkas, B.; Reiter, M.; Seredinschi, D.A.; Tamir, O.; Tomescu, A. SBFT: A Scalable and Decentralized Trust Infrastructure. In Proceedings of the 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland, OR, USA, 24–27 June 2019; pp. 568–580. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Qiao, L.; Lv, Z. An Optimized Byzantine Fault Tolerance Algorithm for Consortium Blockchain. Peer-to-Peer Netw. Appl. 2021, 14, 2826–2839. [Google Scholar] [CrossRef]
- Choi, B.; Sohn, J.y.; Han, D.J.; Moon, J. Scalable Network-Coded PBFT Consensus Algorithm. In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 857–861. [Google Scholar] [CrossRef]
- Fan, X. Scalable Practical Byzantine Fault Tolerance with Short-Lived Signature Schemes. In Proceedings of the 28th Annual International Conference on Computer Science and Software Engineering, CASCON ’18, Markham, ON, Canada, 29–31 October 2018; IBM Corp.: Armonk, NY, USA, 2018; pp. 245–256. [Google Scholar]
- Li, C.; Zhang, J.; Yang, X.; Youlong, L. Lightweight blockchain consensus mechanism and storage optimization for resource-constrained IoT devices. Inf. Process. Manag. 2021, 58, 102602. [Google Scholar] [CrossRef]
- Kashyap, R.; Arora, K.; Sharma, M.; Aazam, A. Security-Aware GA Based Practical Byzantine Fault Tolerance for Permissioned Blockchain. In Proceedings of the 2019 4th International Conference on Control, Robotics and Cybernetics (CRC), Tokyo, Japan, 27–30 September 2019; pp. 162–168. [Google Scholar] [CrossRef]
- Binun, A.; Dolev, S.; Hadad, T. Self-stabilizing Byzantine Consensus for Blockchain. In Cyber Security Cryptography and Machine Learning; Dolev, S., Hendler, D., Lodha, S., Yung, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 106–110. [Google Scholar] [CrossRef]
- Luo, X.; Yang, P.; Wang, W.; Gao, Y.; Yuan, M. S-PoDL: A two-stage computational-efficient consensus mechanism for blockchain-enabled multi-access edge computing. Phys. Commun. 2021, 46, 101338. [Google Scholar] [CrossRef]
- Amiri, M.J.; Agrawal, D.; Abbadi, A.E. SharPer: Sharding Permissioned Blockchains Over Network Clusters. arXiv 2019, arXiv:1910.00765. [Google Scholar]
- Chan, B.Y.; Shi, E. Streamlet: Textbook Streamlined Blockchains. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, New York, NY, USA, 21–23 October 2020; ACM: New York, NY, USA, 2020; pp. 1–11. [Google Scholar] [CrossRef]
- Khalid, M.H.; Murtaza, M.; Saeed, A.; Raza, M. Proposing 2-tier Architecture for Permission-ed and Permission-less Blockchain Consensus Algorithms Based on Voting System. In Proceedings of the 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA), Sydney, Australia, 25–27 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Kopp, H.; Kargl, F.; Bösch, C.; Peter, A. uMine: A Blockchain Based on Human Miners. In Information and Communications Security; Naccache, D., Xu, S., Qing, S., Samarati, P., Blanc, G., Lu, R., Zhang, Z., Meddahi, A., Eds.; Springer: Cham, Switzerland, 2018; pp. 20–38. [Google Scholar] [CrossRef]
- Guo, H.; Zheng, H.; Xu, K.; Kong, X.; Liu, J.; Liu, F.; Gai, K. An Improved Consensus Mechanism for Blockchain. In Smart Blockchain; Qiu, M., Ed.; Springer: Cham, Switzerland, 2018; pp. 129–138. [Google Scholar] [CrossRef]
- Heo, G.; Yang, D.; Doh, I.; Chae, K. Design of Blockchain System for Protection of Personal Information in Digital Content Trading Environment. In Proceedings of the 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 7–10 January 2020; pp. 152–157. [Google Scholar] [CrossRef]
- Lv, S.; Li, H.; Wang, H.; Wang, X. CoT: A Secure Consensus of Trust with Delegation Mechanism in Blockchains. In Blockchain Technology and Application; Si, X., Jin, H., Sun, Y., Zhu, J., Zhu, L., Song, X., Lu, Z., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Liang, D.; An, J.; Cheng, J.; Yang, H.; Gui, R. The Quality Control in Crowdsensing Based on Twice Consensuses of Blockchain. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore, 8–12 October 2018; ACM: New York, NY, USA, 2018; pp. 630–635. [Google Scholar] [CrossRef]
- Bugday, A.; Ozsoy, A.; Öztaner, S.M.; Sever, H. Creating consensus group using online learning based reputation in blockchain networks. Pervasive Mob. Comput. 2019, 59, 101056. [Google Scholar] [CrossRef]
- An, J.; Cheng, J.; Gui, X.; Zhang, W.; Liang, D.; Gui, R.; Jiang, L.; Liao, D. A Lightweight Blockchain-Based Model for Data Quality Assessment in Crowdsensing. IEEE Trans. Comput. Soc. Syst. 2020, 7, 84–97. [Google Scholar] [CrossRef]
- Biryukov, A.; Feher, D.; Khovratovich, D. Guru: Universal Reputation Module for Distributed Consensus Protocols; Technical Report; University of Luxembourg: Luxembourg, 2017. [Google Scholar]
- Platt, M.; McBurney, P. Sybil attacks on identity-augmented Proof-of-Stake. Comput. Netw. 2021, 199, 108424. [Google Scholar] [CrossRef]
- Bou Abdo, J.; El Sibai, R.; Demerjian, J. Permissionless proof-of-reputation-X: A hybrid reputation-based consensus algorithm for permissionless blockchains. Trans. Emerg. Telecommun. Technol. 2021, 32, e4148. [Google Scholar] [CrossRef]
- Ehrlich, C.; Guzova, A. KRNC: New Foundations for Permissionless Byzantine Consensus and Global Monetary Stability. arXiv 2019, arXiv:1909.07433. [Google Scholar]
- Khan, D.; Tang, L.; Ahmed, M. Proof-of-Review: A Review based Consensus Protocol for Blockchain Application. Int. J. Adv. Comput. Sci. Appl. 2021, 12. [Google Scholar] [CrossRef]
- Burmaka, I.; Stoianov, N.; Lytvynov, V.; Dorosh, M.; Lytvyn, S. Proof of Stake for Blockchain Based Distributed Intrusion Detecting System. In Mathematical Modeling and Simulation of Systems (MODS’2020); Shkarlet, S., Morozov, A., Palagin, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 237–247. [Google Scholar] [CrossRef]
- Bahri, L.; Girdzijauskas, S. When Trust Saves Energy. In Proceedings of the Companion of the The Web Conference 2018 on The Web Conference 2018—WWW ’18, Lyon, France, 23–27 April 2018; ACM Press: New York, NY, USA; pp. 1165–1169. [Google Scholar] [CrossRef] [Green Version]
- Bahri, L.; Girdzijauskas, S. Trust Mends Blockchains: Living up to Expectations. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019; pp. 1358–1368. [Google Scholar] [CrossRef] [Green Version]
- Hajialikhani, M.; Jahanara, M. UniqueID: Decentralized Proof-of-Unique-Human. arXiv 2018, arXiv:1806.07583. [Google Scholar]
- Biryukov, A.; Feher, D. ReCon: Sybil-resistant consensus from reputation. Pervasive Mob. Comput. 2020, 61, 101109. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J. A Reverse Hash Chain Path-Based Access Control Scheme for a Connected Smart Home System. IEEE Consum. Electron. Mag. 2021, 10, 93–100. [Google Scholar] [CrossRef]
- Shala, B.; Trick, U.; Lehmann, A.; Ghita, B.; Shiaeles, S. Novel trust consensus protocol and blockchain-based trust evaluation system for M2M application services. Internet Things 2019, 7, 100058. [Google Scholar] [CrossRef]
- An, J.; Yang, H.; Gui, X.; Zhang, W.; Gui, R.; Kang, J. TCNS: Node Selection With Privacy Protection in Crowdsensing Based on Twice Consensuses of Blockchain. IEEE Trans. Netw. Serv. Manag. 2019, 16, 1255–1267. [Google Scholar] [CrossRef]
- An, J.; Liang, D.; Gui, X.; Yang, H.; Gui, R.; He, X. Crowdsensing Quality Control and Grading Evaluation Based on a Two-Consensus Blockchain. IEEE Internet Things J. 2019, 6, 4711–4718. [Google Scholar] [CrossRef]
- Gao, Y.L.; Chen, X.B.; Xu, G.; Yuan, K.G.; Liu, W.; Yang, Y.X. A novel quantum blockchain scheme base on quantum entanglement and DPoS. Quantum Inf. Process. 2020, 19, 420. [Google Scholar] [CrossRef]
- Neo. Neo Consensus Mechanism. Available online: https://docs.neo.org/docs/en-us/basic/consensus/dbft.html (accessed on 26 October 2022).
- Liu, Y.; Ai, Z.; Tian, M.; Guo, G.; Jiang, L. DSBFT: A Delegation Based Scalable Byzantine False Tolerance Consensus Mechanism. In Algorithms and Architectures for Parallel Processing; Qiu, M., Ed.; Springer: Cham, Switzerland, 2020; pp. 426–440. [Google Scholar] [CrossRef]
- Müller, S.; Penzkofer, A.; Kuśmierz, B.; Camargo, D.; Buchanan, W.J. Fast Probabilistic Consensus with Weighted Votes. In Proceedings of the Future Technologies Conference (FTC); Arai, K., Kapoor, S., Bhatia, R., Eds.; Springer: Cham, Switzerland, 2021; pp. 360–378. [Google Scholar] [CrossRef]
- Jacquet, P.; Mans, B. Green Mining: Toward a less energetic impact of cryptocurrencies. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 210–215. [Google Scholar] [CrossRef]
- Jacquet, P.; Mans, B. Blockchain moderated by empty blocks to reduce the energetic impact of crypto-moneys. Comput. Commun. 2020, 152, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Min, X.; Li, Q.; Liu, L.; Cui, L. A Permissioned Blockchain Framework for Supporting Instant Transaction and Dynamic Block Size. In Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016. [Google Scholar] [CrossRef]
- Lundbæk, L.N.; Janes Beutel, D.; Huth, M.; Jackson, S.; Kirk, L.; Steiner, R. Proof of Kernel Work: A democratic low-energy consensus for distributed access-control protocols. R. Soc. Open Sci. 2018, 5, 180422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhilesh, N.; Aniruddha, M.; Sowmya, K. Implementation of Blockchain for Secure Bank Transactions. In Proceedings of the 2020 International Conference on Mainstreaming Block Chain Implementation (ICOMBI), Bengaluru, India, 21–22 February 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Kim, J.M.; Won Lee, J.; Lee, K.; Huh, J. Proof of Phone: A Low-cost Blockchain Platform. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J. POSTER: Mining with Proof-of-Probability in Blockchain. In Proceedings of the 2018 on Asia Conference on Computer and Communications Security, Incheon, Republic of Korea, 4–8 June 2018; ACM: New York, NY, USA, 2018; pp. 841–843. [Google Scholar] [CrossRef]
- Baldimtsi, F.; Kiayias, A.; Zacharias, T.; Zhang, B. Indistinguishable Proofs of Work or Knowledge. In Advances in Cryptology—ASIACRYPT 2016; Cheon, J., Takagi, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 902–923. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Wu, Q.; Yu, H.; Hei, Y.; Zhou, Z. SSHC: A Secure and Scalable Hybrid Consensus Protocol for Sharding Blockchains With a Formal Security Framework. IEEE Trans. Dependable Secur. Comput. 2022, 19, 2070–2088. [Google Scholar] [CrossRef]
- Roman-Belmonte, J.M.; la Corte-Rodriguez, H.D.; Rodriguez-Merchan, E.C. How blockchain technology can change medicine. Postgrad. Med. 2018, 130, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Junaid, S.B.; Imam, A.A.; Balogun, A.O.; Silva, L.C.D.; Surakat, Y.A.; Kumar, G.; Abdulkarim, M.; Shuaibu, A.N.; Garba, A.; Sahalu, Y.; et al. Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey. Healthcare 2022, 10, 1940. [Google Scholar] [CrossRef] [PubMed]
- Krichen, M.; Ammi, M.; Mihoub, A.; Almutiq, M. Blockchain for Modern Applications: A Survey. Sensors 2022, 22, 5274. [Google Scholar] [CrossRef] [PubMed]
- Shah, I.; Doshi, C.; Patel, M.; Tanwar, S.; Hong, W.C.; Sharma, R. A Comprehensive Review of the Technological Solutions to Analyse the Effects of Pandemic Outbreak on Human Lives. Medicina 2022, 58, 311. [Google Scholar] [CrossRef] [PubMed]
- Mackey, T.K.; Kuo, T.T.; Gummadi, B.; Clauson, K.A.; Church, G.; Grishin, D.; Obbad, K.; Barkovich, R.; Palombini, M. “Fit-for-purpose?” challenges and opportunities for applications of blockchain technology in the future of healthcare. BMC Med. 2019, 17, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasselgren, A.; Kralevska, K.; Gligoroski, D.; Pedersen, S.A.; Faxvaag, A. Blockchain in healthcare and health sciences—A scoping review. Int. J. Med. Inform. 2020, 134, 104040. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.F.; Chang, I.P.; Kung, T.S. Blockchain-Based Healthcare Information Preservation Using Extended Chaotic Maps for HIPAA Privacy/Security Regulations. Appl. Sci. 2021, 11, 10576. [Google Scholar] [CrossRef]
- Hashim, F.; Shuaib, K.; Sallabi, F. Connected Blockchain Federations for Sharing Electronic Health Records. Cryptography 2022, 6, 47. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar Sharma, D.; Nayyar, A.; Singh, S.; Yoon, B. Lightweight Proof of Game (LPoG): A Proof of Work (PoW)’s Extended Lightweight Consensus Algorithm for Wearable Kidneys. Sensors 2020, 20, 2868. [Google Scholar] [CrossRef]
- Li, B.; Chenli, C.; Xu, X.; Jung, T.; Shi, Y. Exploiting Computation Power of Blockchain for Biomedical Image Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 2802–2811. [Google Scholar] [CrossRef]
- Li, B.; Chenli, C.; Xu, X.; Shi, Y.; Jung, T. DLBC: A Deep Learning-Based Consensus in Blockchains for Deep Learning Services. arXiv 2019, arXiv:1904.07349. [Google Scholar]
- Fan, K.; Wang, S.; Ren, Y.; Li, H.; Yang, Y. MedBlock: Efficient and Secure Medical Data Sharing Via Blockchain. J. Med. Syst. 2018, 42, 136. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Parangjothi, C.; Guru, S.; Kiran, M. Peer Consonance in Blockchain based Healthcare Application using AI-based Consensus Mechanism. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Pohl, M.; Nahhas, A.; Bosse, S.; Turowski, K. Proof of Provision: Improving Blockchain Technology by Cloud Computing. In Proceedings of the 9th International Conference on Cloud Computing and Services Science, SCITEPRESS—Science and Technology Publications, Crete, Greece, 2–4 May2019; pp. 523–527. [Google Scholar] [CrossRef]
- Mythili, R.; Venkataraman, R. Proof of Policy (PoP): A New Attribute-Based Blockchain Consensus Protocol. In Computational Methods and Data Engineering; Singh, V., Asari, V., Kumar, S., Patel, R., Eds.; Springer: Singapore, 2021; pp. 451–464. [Google Scholar] [CrossRef]
- Yang, J.; Onik, M.; Lee, N.Y.; Ahmed, M.; Kim, C.S. Proof-of-Familiarity: A Privacy-Preserved Blockchain Scheme for Collaborative Medical Decision-Making. Appl. Sci. 2019, 9, 1370. [Google Scholar] [CrossRef] [Green Version]
- Malamas, V.; Dasaklis, T.; Kotzanikolaou, P.; Burmester, M.; Katsikas, S. A Forensics-by-Design Management Framework for Medical Devices Based on Blockchain. In Proceedings of the 2019 IEEE World Congress on Services (SERVICES), Milan, Italy, 8–13 July 2019; pp. 35–40. [Google Scholar] [CrossRef]
- Oyinloye, D.P.; Teh, J.S.; Jamil, N.; Alawida, M. Blockchain Consensus: An Overview of Alternative Protocols. Symmetry 2021, 13, 1363. [Google Scholar] [CrossRef]
- Merrad, Y.; Habaebi, M.H.; Elsheikh, E.A.A.; Suliman, F.E.M.; Islam, M.R.; Gunawan, T.S.; Mesri, M. Blockchain: Consensus Algorithm Key Performance Indicators, Trade-Offs, Current Trends, Common Drawbacks, and Novel Solution Proposals. Mathematics 2022, 10, 2754. [Google Scholar] [CrossRef]
- Lee, D.R.; Jang, Y.; Kim, H. Poster: A Proof-of-Stake (PoS) Blockchain Protocol using Fair and Dynamic Sharding Management. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019; ACM: New York, NY, USA, 2019; pp. 2553–2555. [Google Scholar] [CrossRef]
- Jiao, Z.; Tian, R.; Shang, D.; Ding, H. Bicomp: A Bilayer Scalable Nakamoto Consensus Protocol. arXiv 2018, arXiv:1809.01593. [Google Scholar]
- Gupta, K.D.; Rahman, A.; Poudyal, S.; Huda, M.N.; Mahmud, M.A.P. A Hybrid POW-POS Implementation Against 51 percent Attack in Cryptocurrency System. In Proceedings of the 2019 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Sydney, Australia, 11–13 December 2019; pp. 396–403. [Google Scholar] [CrossRef]
- Long, J.; Wei, R. Scalable BFT Consensus Mechanism Through Aggregated Signature Gossip. In Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Seoul, Republic of Korea, 14–17 May 2019; pp. 360–367. [Google Scholar] [CrossRef] [Green Version]
- Bravo, M.; István, Z.; Sit, M.K. Towards Improving the Performance of BFT Consensus For Future Permissioned Blockchains. arXiv 2020, arXiv:2007.12637. [Google Scholar]
- Du, N.; Liang, Z.; Huang, Y.; Guo, Z.; Yang, H.; Wang, S. Performance optimisation Method of PBFT Consensus for Supply Chain Integration SVM. In Proceedings of the 2020 7th International Conference on Dependable Systems and Their Applications (DSA), Xi’an, China, 28–29 November 2020; pp. 371–377. [Google Scholar] [CrossRef]
- Chengfu, Y. Research on Autonomous and Controllable High-performance Consensus Mechanism of Blockchain. In Proceedings of the 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 25–27 August 2020; pp. 223–228. [Google Scholar] [CrossRef]
- Duan, S.; Reiter, M.K.; Zhang, H. BEAT: Asynchronous BFT Made Practical. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; ACM: New York, NY, USA, 2018; pp. 2028–2041. [Google Scholar] [CrossRef]
- Gai, K.; Hu, Z.; Zhu, L.; Wang, R.; Zhang, Z. Blockchain Meets DAG: A BlockDAG Consensus Mechanism. In Algorithms and Architectures for Parallel Processing; Qiu, M., Ed.; Springer: Cham, Switzerland, 2020; pp. 110–125. [Google Scholar] [CrossRef]
- Cong, K.; Ren, Z.; Pouwelse, J. A Blockchain Consensus Protocol With Horizontal Scalability. In Proceedings of the 2018 IFIP Networking Conference (IFIP Networking) and Workshops, Zurich, Switzerland, 14–16 May 2018; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Santiago, C.; Ren, S.; Lee, C.; Ryu, M. Concordia: A Streamlined Consensus Protocol for Blockchain Networks. IEEE Access 2021, 9, 13173–13185. [Google Scholar] [CrossRef]
- Lin, T.; Yang, X.; Wang, T.; Peng, T.; Xu, F.; Lao, S.; Ma, S.; Wang, H.; Hao, W. Implementation of High-Performance Blockchain Network Based on Cross-Chain Technology for IoT Applications. Sensors 2020, 20, 3268. [Google Scholar] [CrossRef]
- Kiamari, M.; Krishnamachari, B.; Naveed, M.; Yun, S. Distributed Consensus for Mobile Devices using Online Brokers. In Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Toronto, ON, Canada, 2–6 May 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Khan, N. FAST: A MapReduce Consensus for High Performance Blockchains. In Proceedings of the 1st Workshop on Blockchain-enabled Networked Sensor Systems, Shenzhen, China, 4 November 2018; ACM: New York, NY, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Popov, S.; Buchanan, W.J. FPC-BI: Fast Probabilistic Consensus within Byzantine Infrastructures. J. Parallel Distrib. Comput. 2021, 147, 77–86. [Google Scholar] [CrossRef]
- Song, A.; Wang, J.; Yu, W.; Dai, Y.; Zhu, H. Fast, Dynamic and Robust Byzantine Fault Tolerance Protocol for Consortium Blockchain. In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 16–18 December 2019; pp. 419–426. [Google Scholar] [CrossRef]
- Baudet, M.; Danezis, G.; Sonnino, A. FastPay: High-Performance Byzantine Fault Tolerant Settlement. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, New York, NY, USA, 21–23 October 2020; ACM: New York, NY, USA, 2020; pp. 163–177. [Google Scholar] [CrossRef]
- Buchnik, Y.; Friedman, R. FireLedger. Proc. VLDB Endow. 2020, 13, 1525–1539. [Google Scholar] [CrossRef]
- Chander, G.; Deshpande, P.; Chakraborty, S. A Fault Resilient Consensus Protocol for Large Permissioned Blockchain Networks. In Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Seoul, Republic of Korea, 14–17 May 2019; pp. 33–37. [Google Scholar] [CrossRef]
- Li, P.; Wang, G.; Chen, X.; Long, F.; Xu, W. Gosig: A scalable and high-performance byzantine consensus for consortium blockchains. In Proceedings of the 11th ACM Symposium on Cloud Computing, Virtual, 19–21 October 2020; ACM: New York, NY, USA, 2020; pp. 223–237. [Google Scholar] [CrossRef]
- Jiang, Y.; Lian, Z. High Performance and Scalable Byzantine Fault Tolerance. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 March 2019; pp. 1195–1202. [Google Scholar] [CrossRef]
- Jiang, Y.; Ding, S. A High Performance Consensus Algorithm for Consortium Blockchain. In Proceedings of the 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 7–10 December 2018; pp. 2379–2386. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, L. Optimization Scheme of Consensus Mechanism Based on Practical Byzantine Fault Tolerance Algorithm. In Blockchain Technology and Application; Springer: Singapore, 2020; pp. 187–195. [Google Scholar] [CrossRef]
- Huang, T.L.; Huang, J. Design and analysis of a distributed consensus protocol for real-time blockchain systems. In Proceedings of the 2020 International Computer Symposium (ICS), Tainan, Taiwan, 17–19 December 2020; pp. 179–184. [Google Scholar] [CrossRef]
- Du, M.; Chen, Q.; Ma, X. MBFT: A New Consensus Algorithm for Consortium Blockchain. IEEE Access 2020, 8, 87665–87675. [Google Scholar] [CrossRef]
- Du, M.; Chen, Q.; Chen, J.; Ma, X. An Optimized Consortium Blockchain for Medical Information Sharing. IEEE Trans. Eng. Manag. 2021, 68, 1677–1689. [Google Scholar] [CrossRef]
- Gupta, S.; Hellings, J.; Rahnama, S.; Sadoghi, M. Proof-of-Execution: Reaching Consensus through Fault-Tolerant Speculation. arXiv 2019, arXiv:1911.00838. [Google Scholar]
- Al-Mamun, A.; Zhao, D. SciChain: Trustworthy Scientific Data Provenance. arXiv 2020, arXiv:2002.00141. [Google Scholar]
- Kim, D.; Doh, I.; Chae, K. Improved Raft Algorithm exploiting Federated Learning for Private Blockchain performance enhancement. In Proceedings of the 2021 International Conference on Information Networking (ICOIN), Jeju Island, Republic of Korea, 13–16 January 2021; pp. 828–832. [Google Scholar] [CrossRef]
- Chomsiri, T.; Kongsup, K. P Coin: High Speed Cryptocurrency Based on Random-Checkers Proof of Stake. In Proceedings of the 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS), Toyama, Japan, 5–8 December 2018; pp. 524–529. [Google Scholar] [CrossRef]
- Gunn, L.J.; Liu, J.; Vavala, B.; Asokan, N. Making Speculative BFT Resilient with Trusted Monotonic Counters. In Proceedings of the 2019 38th Symposium on Reliable Distributed Systems (SRDS), Lyon, France, 1–4 October 2019; pp. 133–13309. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Zhang, H.; Chen, Y.; Lou, L. Scalable Dynamic Multi-Agent Practical Byzantine Fault-Tolerant Consensus in Permissioned Blockchain. Appl. Sci. 2018, 8, 1919. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Lian, Z. Scalable Efficient Byzantine Fault Tolerance. In Proceedings of the 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 11–13 October 2019; pp. 1736–1742. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Q.; Xie, Y. A Methodology for High-efficient Federated-learning with Consortium Blockchain. In Proceedings of the 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 30 October–1 November 2020; pp. 3090–3095. [Google Scholar] [CrossRef]
- Dolev, S.; Wang, Z. SodsBC: Stream of Distributed Secrets for Quantum-safe Blockchain. In Proceedings of the 2020 IEEE International Conference on Blockchain (Blockchain), Rhodes, Greece, 2–6 November 2020; pp. 247–256. [Google Scholar] [CrossRef]
- Gao, S.; Yu, T.; Zhu, J.; Cai, W. T-PBFT: An EigenTrust-based practical Byzantine fault tolerance consensus algorithm. China Commun. 2019, 16, 111–123. [Google Scholar] [CrossRef]
- Basescu, C.; Kokoris-Kogias, E.; Ford, B.A. Low-latency Blockchain Consensus. In Proceedings of the 38th IEEE Symposium on Security and Privacy, San Jose, CA, USA, 22–24 May 2017. [Google Scholar]
- Al-Mamun, A.; Zhao, D. BAASH: Enabling Blockchain-as-a-Service on High-Performance Computing Systems. arXiv 2020, arXiv:2001.07022. [Google Scholar]
- Luo, Y.; Deng, X.; Wu, Y.; Wang, J. MPC-DPOS: An efficient consensus algorithm based on secure multi-party computation. In Proceedings of the 2019 2nd International Conference on Blockchain Technology and Applications, Xi’an, China, 9–11 December 2019; ACM: New York, NY, USA, 2019; pp. 105–112. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, Y.; Chen, Q.; Liang, Q. A New Election Algorithm for DPos Consensus Mechanism in Blockchain. In Proceedings of the 2018 7th International Conference on Digital Home (ICDH), Guilin, China, 30 November–1 December 2018; pp. 116–120. [Google Scholar] [CrossRef]
- Cao, K.; Lin, F.; Qian, C.; Li, K. A High Efficiency Network Using DAG and Consensus in Blockchain. In Proceedings of the 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 16–18 December 2019; pp. 279–285. [Google Scholar] [CrossRef]
- Sadhu, P.K.; Yanambaka, V.P.; Abdelgawad, A. Internet of Things: Security and Solutions Survey. Sensors 2022, 22, 7433. [Google Scholar] [CrossRef]
- Lei, M.; Xu, L.; Liu, T.; Liu, S.; Sun, C. Integration of Privacy Protection and Blockchain-Based Food Safety Traceability: Potential and Challenges. Foods 2022, 11, 2262. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Yang, X.; Li, X.; Deng, H. Computational Resources Allocation and Vehicular Application Offloading in VEC Networks. Electronics 2022, 11, 2130. [Google Scholar] [CrossRef]
- Gupta, Y.; Shorey, R.; Kulkarni, D.; Tew, J. The applicability of blockchain in the Internet of Things. In Proceedings of the 2018 10th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 3–7 January 2018; pp. 561–564. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Qian, K.; Du, M.; Guo, S. Tornado: Enabling Blockchain in Heterogeneous Internet of Things Through a Space-Structured Approach. IEEE Internet Things J. 2020, 7, 1273–1286. [Google Scholar] [CrossRef]
- Huang, J.; Kong, L.; Chen, G.; Wu, M.Y.; Liu, X.; Zeng, P. Towards Secure Industrial IoT: Blockchain System With Credit-Based Consensus Mechanism. IEEE Trans. Ind. Inform. 2019, 15, 3680–3689. [Google Scholar] [CrossRef]
- Huang, J.; Kong, L.; Chen, G.; Cheng, L.; Wu, K.; Liu, X. B-IoT: Blockchain Driven Internet of Things with Credit-Based Consensus Mechanism. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019; pp. 1348–1357. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, Y.; Ye, F.; Yang, Y. Incentive Assignment in PoW and PoS Hybrid Blockchain in Pervasive Edge Environments. In Proceedings of the 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS), Hang Zhou, China, 15–17 June 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Lin, X.; Li, J.; Wu, J.; Liang, H.; Yang, W. Making Knowledge Tradable in Edge-AI Enabled IoT: A Consortium Blockchain-Based Efficient and Incentive Approach. IEEE Trans. Ind. Inform. 2019, 15, 6367–6378. [Google Scholar] [CrossRef]
- Du, X.F.; Lu, Y.M.; Han, D.Q. Point-to-Point Offline Authentication Consensus Algorithm in the Internet of Things. In Artificial Intelligence and Security; Sun, X., Wang, J., Bertino, E., Eds.; Springer: Cham, Switzerland, 2020; pp. 655–663. [Google Scholar] [CrossRef]
- Du, M.; Wang, K.; Liu, Y.; Qian, K.; Sun, Y.; Xu, W.; Guo, S. Spacechain: A Three-Dimensional Blockchain Architecture for IoT Security. IEEE Wirel. Commun. 2020, 27, 38–45. [Google Scholar] [CrossRef]
- Liao, D.; Li, H.; Wang, W.; Wang, X.; Zhang, M.; Chen, X. Achieving IoT data security based blockchain. Peer-Peer Netw. Appl. 2021, 14, 2694–2707. [Google Scholar] [CrossRef]
- Hu, X.; Zheng, Y.; Su, Y.; Guo, R. IoT Adaptive Dynamic Blockchain Networking Method Based on Discrete Heartbeat Signals. Sensors 2020, 20, 6503. [Google Scholar] [CrossRef] [PubMed]
- Chuang, I.H.; Chiang, S.H.; Chao, W.C.; Huang, S.H.; Zeng, B.L.; Kuo, Y.H. A Hierarchical Blockchain-based Data Service Platform in MEC Environments. In Proceedings of the 2020 The 2nd International Conference on Blockchain Technology, Hilo, HI, USA, 12–14 March 2020; ACM: New York, NY, USA, 2020; pp. 95–99. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Liang, H.; Mumtaz, S.; Li, J.; Konstantin, K.; Bashir, A.K.; Nawaz, R. Collaborative Trust Blockchain Based Unbiased Control Transfer Mechanism for Industrial Automation. IEEE Trans. Ind. Appl. 2020, 1. [Google Scholar] [CrossRef]
- Melnik, E.V.; Klimenko, A.; Korobkin, V.V. Fault-Tolerant Management for the Edge Devices on the Basis of Consensus with Elected Leader. In Software Engineering Perspectives in Intelligent Systems; Silhavy, R., Silhavy, P., Prokopova, Z., Eds.; Springer: Cham, Switzerland, 2020; pp. 464–474. [Google Scholar] [CrossRef]
- Lunardi, R.C.; Alharby, M.; Nunes, H.C.; Zorzo, A.F.; Dong, C.; van Moorsel, A. Context-based consensus for appendable-block blockchains. In Proceedings of the 2020 IEEE International Conference on Blockchain (Blockchain), Rhodes, Greece, 2–6 November 2020; pp. 401–408. [Google Scholar] [CrossRef]
- Li, W.; Feng, C.; Zhang, L.; Xu, H.; Cao, B.; Imran, M.A. A Scalable Multi-Layer PBFT Consensus for Blockchain. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 1146–1160. [Google Scholar] [CrossRef]
- Cho, S.; Park, S.Y.; Lee, S.R. Blockchain Consensus Rule Based Dynamic Blind Voting for Non-Dependency Transaction. Int. J. Grid Distrib. Comput. 2017, 10, 93–106. [Google Scholar] [CrossRef]
- Fan, K.; Wang, S.; Ren, Y.; Yang, K.; Yan, Z.; Li, H.; Yang, Y. Blockchain-Based Secure Time Protection Scheme in IoT. IEEE Internet Things J. 2019, 6, 4671–4679. [Google Scholar] [CrossRef]
- Abdulkader, O.; Bamhdi, A.M.; Thayananthan, V.; Elbouraey, F.; Al-Ghamdi, B. A Lightweight Blockchain Based Cybersecurity for IoT environments. In Proceedings of the 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), Paris, France, 21–23 June 2019; pp. 139–144. [Google Scholar] [CrossRef]
- Moudoud, H.; Cherkaoui, S.; Khoukhi, L. An IoT Blockchain Architecture Using Oracles and Smart Contracts: The Use-Case of a Food Supply Chain. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Huang, C.W.; Chen, Y.C. ZeroCalo: A Lightweight Blockchain Based on DHT Network. In Proceedings of the 2019 2nd International Conference on Blockchain Technology and Applications, Xi’an, China, 9–11 December 2019; ACM: New York, NY, USA, 2019; pp. 38–42. [Google Scholar] [CrossRef]
- Alkhodair, A.; Mohanty, S.; Kougianos, E.; Puthal, D. McPoRA: A Multi-chain Proof of Rapid Authentication for Post-Blockchain Based Security in Large Scale Complex Cyber-Physical Systems. In Proceedings of the 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Limassol, Cyprus, 6–8 July 2020; pp. 446–451. [Google Scholar] [CrossRef]
- Guo, S.; Hu, X.; Guo, S.; Qiu, X.; Qi, F. Blockchain Meets Edge Computing: A Distributed and Trusted Authentication System. IEEE Trans. Ind. Inform. 2020, 16, 1972–1983. [Google Scholar] [CrossRef]
- Mamun, Q.; Khan, M.A. A Group Mutual Exclusion protocol for the Use Case of IoT-Blockchain Integration In Work-Safe Scenario. In Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020; pp. 25–30. [Google Scholar] [CrossRef]
- Hossain, M.T.; Badsha, S.; Shen, H. PoRCH: A Novel Consensus Mechanism for Blockchain-Enabled Future SCADA Systems in Smart Grids and Industry 4. In 0. In Proceedings of the 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC, Canada, 9–12 September 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Majdoubi, D.E.; El Bakkali, H.; Sadki, S. Towards Smart Blockchain-Based System for Privacy and Security in a Smart City environment. In Proceedings of the 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications (CloudTech), Marrakesh, Morocco, 24–26 November 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Liao, S.; Wu, J.; Li, J.; Bashir, A.K. Proof-of-Balance: Game-Theoretic Consensus for Controller Load Balancing of SDN. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 231–236. [Google Scholar] [CrossRef]
- Biswas, S.; Sharif, K.; Li, F.; Maharjan, S.; Mohanty, S.P.; Wang, Y. PoBT: A Lightweight Consensus Algorithm for Scalable IoT Business Blockchain. IEEE Internet Things J. 2020, 7, 2343–2355. [Google Scholar] [CrossRef]
- Doku, R.; Rawat, D.B.; Garuba, M.; Njilla, L. Fusion of Named Data Networking and Blockchain for Resilient Internet-of-Battlefield-Things. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020. [Google Scholar] [CrossRef]
- Doku, R.; Rawat, D.B. IFLBC: On the Edge Intelligence Using Federated Learning Blockchain Network. In Proceedings of the 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Baltimore, MD, USA, 25–27 May 2020; pp. 221–226. [Google Scholar] [CrossRef]
- Li, G.; Dong, M.; Yang, L.T.; Ota, K.; Wu, J.; Li, J. Preserving Edge Knowledge Sharing Among IoT Services: A Blockchain-Based Approach. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 653–665. [Google Scholar] [CrossRef]
- Fan, K.; Sun, S.; Yan, Z.; Pan, Q.; Li, H.; Yang, Y. A blockchain-based clock synchronization Scheme in IoT. Future Gener. Comput. Syst. 2019, 101, 524–533. [Google Scholar] [CrossRef]
- Falcone, S.; Zhang, J.; Cameron, A.; Abdel-Rahman, A. Blockchain Design for an Embedded System. Ledger 2019. [Google Scholar] [CrossRef]
- Lin, W.; Yin, X.; Wang, S.; Khosravi, M.R. A Blockchain-enabled decentralized settlement model for IoT data exchange services. Wirel. Netw. 2020. [Google Scholar] [CrossRef]
- Hou, M.; Kang, T.; Guo, L. A Blockchain Based Architecture for IoT Data Sharing Systems. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Austin, TX, USA, 23–27 March 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Mohanty, S.N.; Ramya, K.; Rani, S.S.; Gupta, D.; Shankar, K.; Lakshmanaprabu, S.; Khanna, A. An efficient Lightweight integrated Blockchain (ELIB) model for IoT security and privacy. Future Gener. Comput. Syst. 2020, 102, 1027–1037. [Google Scholar] [CrossRef]
- Dorri, A.; Jurdak, R. Tree-Chain: A Fast Lightweight Consensus Algorithm for IoT Applications. In Proceedings of the 2020 IEEE 45th Conference on Local Computer Networks (LCN), Sydney, Australia, 16–19 November 2020; pp. 369–372. [Google Scholar] [CrossRef]
- Bai, H.; Xia, G.; Fu, S. A Two-Layer-Consensus Based Blockchain Architecture for IoT. In Proceedings of the 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 12–14 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Alhejazi, M.M.; Mohammad, R.M.A. Enhancing the blockchain voting process in IoT using a novel blockchain Weighted Majority Consensus Algorithm (WMCA). Inf. Secur. J. A Glob. Perspect. 2022, 31, 125–143. [Google Scholar] [CrossRef]
- Jinhua, F.; Mixue, X.; Yongzhong, H.; Hongwei, T. A New Network Intrusion Detection System based on Blockchain. Int. J. Perform. Eng. 2019, 15, 3187. [Google Scholar] [CrossRef]
- Guo, S.; Qi, Y.; Jin, Y.; Li, W.; Qiu, X.; Meng, L. Endogenous Trusted DRL-Based Service Function Chain Orchestration for IoT. IEEE Trans. Comput. 2022, 71, 397–406. [Google Scholar] [CrossRef]
- Asheralieva, A.; Niyato, D. Reputation-Based Coalition Formation for Secure Self-Organized and Scalable Sharding in IoT Blockchains With Mobile-Edge Computing. IEEE Internet Things J. 2020, 7, 11830–11850. [Google Scholar] [CrossRef]
- Chen, P.; Han, D.; Weng, T.H.; Li, K.C.; Castiglione, A. A novel Byzantine fault tolerance consensus for Green IoT with intelligence based on reinforcement. J. Inf. Secur. Appl. 2021, 59, 102821. [Google Scholar] [CrossRef]
- Dorri, A.; Kanhere, S.S.; Jurdak, R.; Gauravaram, P. LSB: A Lightweight Scalable Blockchain for IoT security and anonymity. J. Parallel Distrib. Comput. 2019, 134, 180–197. [Google Scholar] [CrossRef]
- Xuan, S.; Chen, Z.; Chung, I.; Tan, H.; Man, D.; Du, X.; Yang, W.; Guizani, M. ECBCM: A prestige-based edge computing blockchain security consensus model. Trans. Emerg. Telecommun. Technol. 2021, 32. [Google Scholar] [CrossRef]
- Lao, L.; Dai, X.; Xiao, B.; Guo, S. G-PBFT: A Location-based and Scalable Consensus Protocol for IoT-Blockchain Applications. In Proceedings of the 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), New Orleans, LA, USA, 18–22 May 2020; pp. 664–673. [Google Scholar] [CrossRef]
- Alrubei, S.; Ball, E.; Rigelsford, J. A Secure Distributed Blockchain Platform for Use in AI-Enabled IoT Applications. In Proceedings of the 2020 IEEE Cloud Summit, Harrisburg, PA, USA, 21–22 October 2020; pp. 85–90. [Google Scholar] [CrossRef]
- Alrubei, S.M.; Ball, E.; Rigelsford, J.M. The Use of Blockchain to Support Distributed AI Implementation in IoT Systems. IEEE Internet Things J. 2022, 9, 14790–14802. [Google Scholar] [CrossRef]
- Baniata, H.; Kertesz, A. PF-BVM: A Privacy-aware Fog-enhanced Blockchain Validation Mechanism. In Proceedings of the 10th International Conference on Cloud Computing and Services Science. SCITEPRESS—Science and Technology Publications, Prague, Czech Republic, 7–9 May 2020; pp. 430–439. [Google Scholar] [CrossRef]
- Bhamidipati, V.S.V.; Chan, M.; Jain, A.; Murthy, A.S.; Chamorro, D.; Muralidhar, A.K. Predictive Proof of Metrics—A New Blockchain Consensus Protocol. In Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Granada, Spain, 22–25 October 2019; pp. 498–505. [Google Scholar] [CrossRef]
- Raghav; Andola, N.; Venkatesan, S.; Verma, S. PoEWAL: A lightweight consensus mechanism for blockchain in IoT. PErvasive Mob. Comput. 2020, 69, 101291. [Google Scholar] [CrossRef]
- Makhdoom, I.; Tofigh, F.; Zhou, I.; Abolhasan, M.; Lipman, J. PLEDGE: A Proof-of-Honesty based Consensus Protocol for Blockchain-based IoT Systems. In Proceedings of the 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Toronto, ON, Canada, 2–6 May 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Makhdoom, I.; Tofigh, F.; Zhou, I.; Abolhasan, M.; Lipman, J. PLEDGE: An IoT-oriented Proof-of-Honesty based Blockchain Consensus Protocol. In Proceedings of the 2020 IEEE 45th Conference on Local Computer Networks (LCN), Sydney, Australia, 16–19 November 2020; pp. 54–64. [Google Scholar] [CrossRef]
- Feng, J.; Zhao, X.; Lu, G.; Zhao, F. PoTN: A Novel Blockchain Consensus Protocol with Proof-of-Trust Negotiation in Distributed IoT Networks. In Proceedings of the 2nd International ACM Workshop on Security and Privacy for the Internet-of-Things—IoT S&P’19, London, UK, 15 November 2019; ACM Press: New York, NY, USA, 2019; pp. 32–37. [Google Scholar] [CrossRef]
- Feng, J.; Zhao, X.; Chen, K.; Zhao, F.; Zhang, G. Towards random-honest miners selection and multi-blocks creation: Proof-of-negotiation consensus mechanism in blockchain networks. Future Gener. Comput. Syst. 2020, 105, 248–258. [Google Scholar] [CrossRef]
- Solat, S. RDV: An Alternative To Proof-of-Work And A Real Decentralized Consensus For Blockchain. In Proceedings of the 1st Workshop on Blockchain-enabled Networked Sensor Systems, Shenzhen, China, 4 November 2018; ACM: New York, NY, USA, 2018; pp. 25–31. [Google Scholar] [CrossRef]
- Asiri, S.; Miri, A. A Sybil Resistant IoT Trust Model Using Blockchains. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1017–1026. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Lin, Y.; Xu, W. LightChain: A Lightweight Blockchain System for Industrial Internet of Things. IEEE Trans. Ind. Inform. 2019, 15, 3571–3581. [Google Scholar] [CrossRef]
- Ledwaba, L.P.; Hancke, G.P.; Mitrokotsa, A.; Isaac, S.J. A Delegated Proof of Proximity Scheme for Industrial Internet of Things Consensus. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 4441–4446. [Google Scholar] [CrossRef]
- Maitra, S.; Yanambaka, V.P.; Abdelgawad, A.; Puthal, D.; Yelamarthi, K. Proof-of-Authentication Consensus Algorithm: Blockchain-based IoT Implementation. In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Puthal, D.; Mohanty, S.P. Proof of Authentication: IoT-Friendly Blockchains. IEEE Potentials 2019, 38, 26–29. [Google Scholar] [CrossRef]
- Puthal, D.; Mohanty, S.P.; Nanda, P.; Kougianos, E.; Das, G. Proof-of-Authentication for Scalable Blockchain in Resource-Constrained Distributed Systems. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Asif, R.; Ghanem, K.; Irvine, J. Proof-of-PUF Enabled Blockchain: Concurrent Data and Device Security for Internet-of-Energy. Sensors 2020, 21, 28. [Google Scholar] [CrossRef]
- Chen, J. Hybrid blockchain and pseudonymous authentication for secure and trusted IoT networks. ACM SIGBED Rev. 2018, 15, 22–28. [Google Scholar] [CrossRef]
- Wang, E.K.; Liang, Z.; Chen, C.M.; Kumari, S.; Khan, M.K. PoRX: A reputation incentive scheme for blockchain consensus of IIoT. Future Gener. Comput. Syst. 2020, 102, 140–151. [Google Scholar] [CrossRef]
- Kumar, G.; Saha, R.; Rai, M.K.; Thomas, R.; Kim, T.H. Proof-of-Work Consensus Approach in Blockchain Technology for Cloud and Fog Computing Using Maximization-Factorization Statistics. IEEE Internet Things J. 2019, 6, 6835–6842. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Yanambaka, V.P.; Kougianos, E.; Puthal, D. PUFchain: A Hardware-Assisted Blockchain for Sustainable Simultaneous Device and Data Security in the Internet of Everything (IoE). IEEE Consum. Electron. Mag. 2020, 9, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Valeonti, F.; Bikakis, A.; Terras, M.; Speed, C.; Hudson-Smith, A.; Chalkias, K. Crypto Collectibles, Museum Funding and OpenGLAM: Challenges, Opportunities and the Potential of Non-Fungible Tokens (NFTs). Appl. Sci. 2021, 11, 9931. [Google Scholar] [CrossRef]
- Ippolito, J. Crypto-Preservation and the Ghost of Andy Warhol. Arts 2022, 11, 47. [Google Scholar] [CrossRef]
- Colicev, A. How can non-fungible tokens bring value to brands. Int. J. Res. Mark. 2022. [Google Scholar] [CrossRef]
- Zaucha, T.; Agur, C. Newly minted: Non-fungible tokens and the commodification of fandom. New Media Soc. 2022, 146144482210804. [