Multifractal Characterization and Modeling of Blood Pressure Signals
Abstract
:1. Introduction
2. Data and Methodology
2.1. Multifractal Detrended Fluctuation Analysis
- Step 1:
- Compute the profile:
- Step 2:
- Divide the profile into non-overlapping segments of equal length s. Recall that N is the length of the time series; then, the number of segments reads as
- Step 3:
- Calculate the local trend for each of the segments by a least-square fit of the series and then determine the variance as follows:
- Step 4:
- Average over all segments to obtain the q-th order fluctuation function:
- Step 5:
- Determine the scaling behavior of the fluctuation function by analyzing the log-log plots vs. s for each value of q. If the series X is long-range power-law correlated, will increase, for large values of the timescales s, as power-law, that is:
2.2. Data Pre-Processing
2.2.1. Addressing Outliers
2.2.2. Filtering out Environmental Factor Outliers
- Equiripple filter with pass-band frequency: ;
- Stop-band frequency: ;
- Stop-band attenuation: 60 dB;
- Amplitude of the ripple in the pass-band: 1 dB.
2.2.3. Addressing Non-Stationarities
- The log transformation, where each sample is substituted by [55] in order to stabilize the overall variance of the signal;
- The subtraction from the signal of the overall trend obtained by a median filter with a time window
- the so-called Fourier-detrended MFDFA [56], which consists of removing the first sinusoids from the Fourier spectrum, corresponding to slow varying cycles that are sources of residual non-stationarity.
3. Results and Discussion
3.1. Multifractal Characterization of the BPd Signal
- Multifractal strength of the singularity spectrum :
- The asymmetry of the singularity spectrum that is evaluated through a suitable asymmetry index , that reads as [63]:
3.2. Fitting a Multiplicative Cascade Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
i.i.d. | Independent and identically distributed |
BPd | (Diastolic) blood pressure |
CDF | Cumulative distribution function |
DFA | Detrended fluctuation analysis |
DFT | Discrete Fourier transform |
FIR | Finite impulse response |
fGn | Fractional Gaussian noise |
FFT | Fast Fourier transform |
ICP | Intracranial pressure |
MAD | Median absolute deviation |
MFDFA | MultiFractal detrended fluctuation analysis |
Probability density function | |
SSS | Strict-sense stationary |
TBI | Traumatic brain injury |
WSS | Wide-sense stationary |
Appendix A
- Splitting the cascade in half;
- Multiplying the first half of the cascade by a;
- Multiplying the second half of the cascade by b.
References
- Nie, C.Y.; Sun, H.X.; Wang, J. The Relationship between Chaotic Characteristics of Physiological Signals and Emotion Based on Approximate Entropy. In Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013), Hangzhou, China, 22–23 March 2013; Atlantis Press: New York, NY, USA, 2013; pp. 552–555. [Google Scholar] [CrossRef]
- Ihlen, E. Introduction to Multifractal Detrended Fluctuation Analysis in Matlab. Front. Physiol. 2012, 3, 141. [Google Scholar] [CrossRef] [PubMed]
- Naraei, P.; Abhari, A.; Sadeghian, A. Application of multilayer perceptron neural networks and support vector machines in classification of healthcare data. In Proceedings of the 2016 Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016; pp. 848–852. [Google Scholar] [CrossRef]
- Naraei, P.; Sadeghian, A. A PCA based feature reduction in intracranial hypertension analysis. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 30 April–3 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Naraei, P.; Nouri, M.; Sadeghian, A. Toward learning intracranial hypertension through physiological features: A statistical and machine learning approach. In Proceedings of the 2017 Intelligent Systems Conference (IntelliSys), London, UK, 7–8 September 2017; pp. 395–399. [Google Scholar] [CrossRef]
- Glass, L. Synchronization and rhythmic processes in physiology. Nature 2001, 410, 277–284. [Google Scholar] [CrossRef]
- Peng, C.K.; Mietus, J.; Hausdorff, J.M.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 1993, 70, 1343–1346. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Musha, T. 1/f Fluctuation of Heartbeat Period. IEEE Trans. Biomed. Eng. 1982, BME-29, 456–457. [Google Scholar] [CrossRef]
- Ivanov, P.C.; Amaral, L.A.N.; Goldberger, A.L.; Havlin, S.; Rosenblum, M.G.; Struzik, Z.R.; Stanley, H.E. Multifractality in human heartbeat dynamics. Nature 1999, 399, 461–465. [Google Scholar] [CrossRef]
- Turcott, R.G.; Teich, M.C. Fractal character of the electrocardiogram: Distinguishing heart-failure and normal patients. Ann. Biomed. Eng. 1996, 24, 269–293. [Google Scholar] [CrossRef]
- Roach, D.; Sheldon, A.; Wilson, W.; Sheldon, R. Temporally localized contributions to measures of large-scale heart rate variability. Am. J. Physiol.-Heart Circ. Physiol. 1998, 274, H1465–H1471. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.; Nafz, B.; Persson, P. Chaos in blood pressure control. Cardiovasc. Res. 1996, 31, 380–387. [Google Scholar] [CrossRef]
- Marsh, D.J.; Osborn, J.L.; Cowley, A.W. 1/f fluctuations in arterial pressure and regulation of renal blood flow in dogs. Am. J. Physiol.-Ren. Physiol. 1990, 258, F1394–F1400. [Google Scholar] [CrossRef]
- Wagner, C.D.; Persson, P.B. Two ranges in blood pressure power spectrum with different 1/f characteristics. Am. J. Physiol.-Heart Circ. Physiol. 1994, 267, H449–H454. [Google Scholar] [CrossRef]
- Piper, I.; Citerio, G.; Chambers, I.; Contant, C.; Enblad, P.; Fiddes, H.; Howells, T.; Kiening, K.; Nilsson, P.; Yau, Y.H. The BrainIT group: Concept and core dataset definition. Acta Neurochir. 2003, 145, 615–629. [Google Scholar] [CrossRef]
- Jain, V.; Choudhary, J.; Pandit, R. Blood Pressure Target in Acute Brain Injury. Indian J. Crit. Care Med. Indian Soc. Crit. Care Med. 2019, 23, S136–S139. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef] [PubMed]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef]
- Buldyrev, S.V.; Goldberger, A.L.; Havlin, S.; Mantegna, R.N.; Matsa, M.E.; Peng, C.K.; Simons, M.; Stanley, H.E. Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys. Rev. E 1995, 51, 5084–5091. [Google Scholar] [CrossRef]
- Bunde, A.; Havlin, S.; Kantelhardt, J.W.; Penzel, T.; Peter, J.H.; Voigt, K. Correlated and Uncorrelated Regions in Heart-Rate Fluctuations during Sleep. Phys. Rev. Lett. 2000, 85, 3736–3739. [Google Scholar] [CrossRef]
- Moret, M.A.; Zebende, G.F.; Nogueira, E.; Pereira, M.G. Fluctuation analysis of stellar x-ray binary systems. Phys. Rev. E 2003, 68, 041104. [Google Scholar] [CrossRef]
- Bai, M.Y.; Zhu, H.B. Power law and multiscaling properties of the Chinese stock market. Phys. A Stat. Mech. Its Appl. 2010, 389, 1883–1890. [Google Scholar] [CrossRef]
- Alvarez-Ramirez, J.; Rodriguez, E.; Echeverria, J.C. A DFA approach for assessing asymmetric correlations. Phys. A Stat. Mech. Its Appl. 2009, 388, 2263–2270. [Google Scholar] [CrossRef]
- Lévy-Véhel, J.; Lutton, E.; Tricot, C. Fractals in Engineering, 1st ed.; Springer: Berlin, Gemrnay, 2005. [Google Scholar]
- Aggarwal, S.K.; Lovallo, M.; Khan, P.K.; Rastogi, B.K.; Telesca, L. Multifractal detrended fluctuation analysis of magnitude series of seismicity of Kachchh region, Western India. Phys. A Stat. Mech. Its Appl. 2015, 426, 56–62. [Google Scholar] [CrossRef]
- Mali, P.; Mukhopadhyay, A. Multifractal characterization of gold market: A multifractal detrended fluctuation analysis. Phys. A Stat. Mech. Its Appl. 2014, 413, 361–372. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M.; Kanevski, M. Power spectrum and multifractal detrended fluctuation analysis of high-frequency wind measurements in mountainous regions. Appl. Energy 2016, 162, 1052–1061. [Google Scholar] [CrossRef]
- Mali, P.; Sarkar, S.; Ghosh, S.; Mukhopadhyay, A.; Singh, G. Multifractal detrended fluctuation analysis of particle density fluctuations in high-energy nuclear collisions. Phys. A Stat. Mech. Its Appl. 2015, 424, 25–33. [Google Scholar] [CrossRef]
- Wang, F.; Liao, G.p.; Li, J.h.; Li, X.c.; Zhou, T.j. Multifractal detrended fluctuation analysis for clustering structures of electricity price periods. Phys. A Stat. Mech. Its Appl. 2013, 392, 5723–5734. [Google Scholar] [CrossRef]
- De Santis, E.; Sadeghian, A.; Rizzi, A. A smoothing technique for the multifractal analysis of a medium voltage feeders electric current. Int. J. Bifurc. Chaos 2017, 27, 1750211. [Google Scholar] [CrossRef]
- Thomas, R.; Hsi, L.L.; Boon, S.C.; Gunawan, E. Classification of severity of mitral regurgitation patients using multifractal analysis. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 6226–6229. [Google Scholar] [CrossRef]
- Livi, L.; Maiorino, E.; Rizzi, A.; Sadeghian, A. On the long-term correlations and multifractal properties of electric arc furnace time series. Int. J. Bifurc. Chaos 2016, 26, 1650007. [Google Scholar] [CrossRef]
- Kimiagar, S.; Movahed, M.S.; Khorram, S.; Sobhanian, S.; Tabar, M.R.R. Fractal analysis of discharge current fluctuations. J. Stat. Mech. Theory Exp. 2009, 2009, P03020. [Google Scholar] [CrossRef]
- Burr, R.L.; Kirkness, C.J.; Mitchell, P.H. Detrended fluctuation analysis of intracranial pressure predicts outcome following traumatic brain injury. IEEE Trans. Biomed. Eng. 2008, 55, 2509–2518. [Google Scholar] [CrossRef]
- Kantelhardt, J.W. Fractal and Multifractal Time Series. In Mathematics of Complexity and Dynamical Systems; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2012; pp. 463–487. [Google Scholar] [CrossRef]
- Feder, J. Fractals, 1st ed.; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Meneveau, C.; Sreenivasan, K. The multifractal spectrum of the dissipation field in turbulent flows. Nucl. Phys. B Proc. Suppl. 1987, 2, 49–76. [Google Scholar] [CrossRef]
- Koscielny-Bunde, E.; Kantelhardt, J.W.; Braun, P.; Bunde, A.; Havlin, S. Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies. J. Hydrol. 2006, 322, 120–137. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rybski, D.; Braun, P.; Bunde, A.; Havlin, S. Long-term persistence and multifractality of precipitation and river runoff records. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Hu, K.; Ivanov, P.C.; Chen, Z.; Carpena, P.; Stanley, H.E. Effect of trends on detrended fluctuation analysis. Phys. Rev. E 2001, 64, 011114. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yee, L.; Zu-Guo, Y. Relationships of exponents in multifractal detrended fluctuation analysis and conventional multifractal analysis. Chin. Phys. B 2011, 20, 090507. [Google Scholar]
- Shang, P.; Lu, Y.; Kamae, S. Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis. Chaosb Solitons Fractals 2008, 36, 82–90. [Google Scholar] [CrossRef]
- Harte, D. Multifractals: Theory and Applications; Chapman & Hall/CRC: New York, NY, USA, 2001. [Google Scholar]
- Hampel, F.R. A general qualitative definition of robustness. Ann. Math. Stat. 1971, 42, 1887–1896. [Google Scholar] [CrossRef]
- Liu, H.; Shah, S.; Jiang, W. On-line outlier detection and data cleaning. Comput. Chem. Eng. 2004, 28, 1635–1647. [Google Scholar] [CrossRef]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef]
- Pearson, R.K. Outliers in process modeling and identification. IEEE Trans. Control. Syst. Technol. 2002, 10, 55–63. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing, 3rd ed.; Pearson Higher Education: London, UK, 2010. [Google Scholar]
- Howard, R.M. A Signal Theoretic Introduction to Random Processes; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civil Eng. 1951, 116, 770–808. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Bunde, A.; Havlin, S. Fractals in Science; Springer: Berlin, Germany, 2013. [Google Scholar]
- Hunt, G. Random fourier transforms. Trans. Am. Math. Soc. 1951, 71, 38–69. [Google Scholar] [CrossRef]
- Bashan, A.; Bartsch, R.; Kantelhardt, J.W.; Havlin, S. Comparison of detrending methods for fluctuation analysis. Phys. A Stat. Mech. Its Appl. 2008, 387, 5080–5090. [Google Scholar] [CrossRef]
- Lütkepohl, H.; Xu, F. The role of the log transformation in forecasting economic variables. Empir. Econ. 2012, 42, 619–638. [Google Scholar] [CrossRef]
- Chianca, C.; Ticona, A.; Penna, T. Fourier-detrended fluctuation analysis. Phys. A Stat. Mech. Its Appl. 2005, 357, 447–454. [Google Scholar] [CrossRef]
- Zhao, X.; Shang, P.; Lin, A.; Chen, G. Multifractal Fourier detrended cross-correlation analysis of traffic signals. Phys. A Stat. Mech. Its Appl. 2011, 390, 3670–3678. [Google Scholar] [CrossRef]
- Movahed, M.S.; Jafari, G.; Ghasemi, F.; Rahvar, S.; Tabar, M.R.R. Multifractal detrended fluctuation analysis of sunspot time series. J. Stat. Mech. Theory Exp. 2006, 2006, P02003. [Google Scholar] [CrossRef]
- Hu, J.; Gao, J.; Wang, X. Multifractal analysis of sunspot time series: The effects of the 11-year cycle and Fourier truncation. J. Stat. Mech. Theory Exp. 2009, 2009, P02066. [Google Scholar] [CrossRef]
- Bisgaard, S.; Kulahci, M. Time Series Analysis and Forecasting by Example; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Beran, J. Statistics for Long-Memory Processes; CRC Press: New York, NY, USA, 1994; Volume 61. [Google Scholar]
- Davies, R.B.; Harte, D. Tests for Hurst effect. Biometrika 1987, 74, 95–101. [Google Scholar] [CrossRef]
- Drożdż, S.; Oświȩcimka, P. Detecting and interpreting distortions in hierarchical organization of complex time series. Phys. Rev. E 2015, 91, 030902. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Wallis, J.R. Some long-run properties of geophysical records. Water Resour. Res. 1969, 5, 321–340. [Google Scholar] [CrossRef]
- Schreiber, T.; Schmitz, A. Surrogate time series. Phys. D Nonlinear Phenom. 2000, 142, 346–382. [Google Scholar] [CrossRef]
- Barabási, A.L.; Vicsek, T. Multifractality of self-affine fractals. Phys. Rev. A 1991, 44, 2730–2733. [Google Scholar] [CrossRef] [PubMed]
a | b | |||||||
---|---|---|---|---|---|---|---|---|
1.362 | 0.610 | 0.997 | 0.752 | 0.011 | 0.880 | 0.850 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Santis, E.; Naraei, P.; Martino, A.; Sadeghian, A.; Rizzi, A. Multifractal Characterization and Modeling of Blood Pressure Signals. Algorithms 2022, 15, 259. https://doi.org/10.3390/a15080259
De Santis E, Naraei P, Martino A, Sadeghian A, Rizzi A. Multifractal Characterization and Modeling of Blood Pressure Signals. Algorithms. 2022; 15(8):259. https://doi.org/10.3390/a15080259
Chicago/Turabian StyleDe Santis, Enrico, Parisa Naraei, Alessio Martino, Alireza Sadeghian, and Antonello Rizzi. 2022. "Multifractal Characterization and Modeling of Blood Pressure Signals" Algorithms 15, no. 8: 259. https://doi.org/10.3390/a15080259
APA StyleDe Santis, E., Naraei, P., Martino, A., Sadeghian, A., & Rizzi, A. (2022). Multifractal Characterization and Modeling of Blood Pressure Signals. Algorithms, 15(8), 259. https://doi.org/10.3390/a15080259